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Introduction

I Objective: analyze and extract information for
decision-making from large-scale and high-dimensional
datasets

I Method: Deep Learning (DL), especially Convolutional Neural
Networks (CNNs), on Graphs

I Fields: Deep Learning and Graph Signal Processing (GSP)
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Motivation

I Important and growing class of data lies on irregular domains
I Natural graphs / networks
I Constructed (feature / data) graphs

I Modeling versatility: graphs model heterogeneous pairwise
relationships

I Important problem: recent works, high demand

I Reproduce the breakthrough of DL beyond Computer Vision !
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Problem

Formulate DL components on graphs (& discover alternatives)

Convolutional Neural Networks (CNNs)

I Localization: compact filters for low complexity
I Stationarity: translation invariance
I Compositionality: analysis with a filterbank

Challenges
I Generalize convolution, downsampling and pooling to graphs
I Evaluate the assumptions on graph signals
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Local Receptive Fields
Gregor and LeCun 2010; Coates and Ng 2011; Bruna et al. 2013

I Group features based upon similarity
I Reduce the number of learned parameters
I Can use graph adjacency matrix

I No weight-sharing / convolution / stationarity
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Spatial approaches to Convolution on Graphs
Niepert, Ahmed, and Kutzkov 2016; Vialatte, Gripon, and Mercier 2016

1. Define receptive field / neighborhood
2. Order nodes
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Geodesic CNNs on Riemannian manifolds
Masci et al. 2015

I Generalization of CNNs to non-Euclidean manifolds
I Local geodesic system of polar coordinates to extract patches
I Tailored for geometry analysis and processing
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Graph Neural Networks (GNNs)
Scarselli et al. 2009

I Recurrent Neural Networks (RNNs) on Graphs
I Propagate node representations until convergence
I Representations used as features
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Diffusion-Convolutional Neural Networks (DCNNs)
Atwood and Towsley 2015

I Multiplication with powers (0 to H) of transition matrix
I Diffused features multiplied by weight vector of support H
I No pooling, followed by a fully connected layer

Node classification Graph classification Edge classification
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Spectral Networks on Graphs
Bruna et al. 2013; Henaff, Bruna, and LeCun 2015

I First spectral definition

I Introduced a supervised graph estimation strategy

I Experiments on image recognition, text categorization and
bioinformatics

I Spline filter parametrization

I Agglomerative method for coarsening
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Further Work

Build on (Bruna et al. 2013) and (Henaff, Bruna, and LeCun 2015)

I Spectral formulation
I Computational complexity
I Localization
I Ad hoc coarsening & pooling

11 / 25



State of Research
Performed Research

Further Research

Learning Fast Localized Spectral Filters
Coarsening & Pooling
Results

Performed Research

Proposed an efficient spectral generalization of CNNs to graphs

Main contributions
1. Spectral formulation
2. Strictly localized filters
3. Low computational complexity
4. Efficient pooling
5. Experimental results
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Paper

“Convolutional Neural Networks on Graphs with Fast Localized
Spectral Filtering” Defferrard, Bresson, and Vandergheynst 2016

I Accepted for publication at NIPS 2016
I Presented by Xavier at SUTD and University of Bergen

Peer Reviews
I “extend ... data driven, end-to-end learning with excellent learning complexity”
I “very clean, efficient parametrization [for] efficient learning and evaluation”
I “highly promising paper ... shows how to efficiently generalize the [convolution]”
I “the potential for significant impact is high”
I “new and upcoming area with only a few recent works”
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Definitions
Chung 1997

I G = (V, E ,W ): undirected and connected graph

I W ∈ Rn×n: weighted adjacency matrix

I Dii =
∑

j Wij : diagonal degree matrix

I x : V → R, x ∈ Rn: graph signal

I L = D −W ∈ Rn×n: combinatorial graph Laplacian

I L = In − D−1/2WD−1/2: normalized graph Laplacian

I L = UΛUT , U = [u0, . . . , un−1] ∈ Rn×n: graph Fourier basis

I x̂ = UT x ∈ Rn: graph Fourier transform
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Spectral Filtering of Graph Signals

y = gθ(L)x = gθ(UΛUT )x = Ugθ(Λ)UT x

Non-parametric filter:

gθ(Λ) = diag(θ)

I Non-localized in vertex domain
I Learning complexity in O(n)
I Computational complexity in O(n2) (& memory)
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Polynomial Parametrization for Localized Filters

gθ(Λ) =
K−1∑
k=0

θkΛk

I Value at j of gθ centered at i :
(gθ(L)δi )j = (gθ(L))i ,j =

∑
k θk(Lk)i ,j

I dG(i , j) > K implies (LK )i ,j = 0
(Hammond, Vandergheynst, and Gribonval 2011, Lemma 5.2)

I K -localized
I Learning complexity in O(K )
I Computational complexity in O(n2)
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Recursive Formulation for Fast Filtering

gθ(Λ) =
K−1∑
k=0

θkTk(Λ̃), Λ̃ = 2Λ/λmax − In

I Chebyshev polynomials: Tk(x) = 2xTk−1(x)− Tk−2(x)
with T0 = 1 and T1 = x

I Filtering: y = gθ(L)x =
∑K−1

k=0 θkTk(L̃)x
I Recurrence: y = gθ(L)x = [x̄0, . . . , x̄K−1]θ,

x̄k = Tk(L̃)x = 2L̃x̄k−1 − x̄k−2 with x̄0 = x and x̄1 = L̃x

I K -localized
I Learning complexity in O(K )
I Computational complexity in O(K |E|)
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Learning Filters

ys,j =
Fin∑
i=1

gθi,j (L)xs,i ∈ Rn

I xs,i : feature map i of sample s
I θi ,j : trainable parameters

(Fin × Fout vectors of Chebyshev coefficients)

Gradients for backpropagation:
I ∂E

∂θi,j
=

∑S
s=1[x̄s,i ,0, . . . , x̄s,i ,K−1]T ∂E

∂ys,j

I ∂E
∂xs,i

=
∑Fout

j=1 gθi,j (L) ∂E
∂ys,j

Overall cost of O(K |E|FinFoutS) operations
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Coarsening & Pooling
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I Coarsening: Graclus / Metis
I Normalized cut minimization

I Pooling: as regular 1D signals
I Satisfies parallel architectures like GPUs

I Activation: ReLU (or tanh, sigmoid)
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Training time (20NEWS)
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Chebyshev

Make CNNs practical for graph signals !

Spline: gθ(Λ) = Bθ (Bruna et al. 2013; Henaff, Bruna, and LeCun 2015)
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Convergence (MNIST)
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Faster convergence !
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Classification accuracy (MNIST)

Model Architecture Accuracy

Classical CNN C32-P4-C64-P4-FC512 99.33
Proposed graph CNN GC32-P4-GC64-P4-FC512 99.14

Table: Comparison to classical CNNs.

Comparable to classical CNNs and better than other parametrizations !

Accuracy

Architecture Non-Param Spline Chebyshev

GC10 95.75 97.26 97.48
GC32-P4-GC64-P4-FC512 96.28 97.15 99.14

Table: Comparison between spectral filters, K = 25.
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Further Research (1)

1. Numerical experiments on text documents

2. Alternative Parametrization
I Polynomial of the Laplacian
I Krylov subspace methods

3. Graph Coarsening
I Contraction-based schemes
I Kron reduction
I Algebraic Multigrid methods (AMG)
I Multi-level label propagation
I Multi-level graph embedding
I Spectral clustering
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Further Research (2)

4. Local Stationarity: verify the statistical assumptions

5. Initialization & Optimization

6. Filter Transfer

7. Anisotropic Filters

8. Supervised Graph Estimation

9. Time-varying Data

10. Comparison of all methods
11. Applications

I Rotation invariance for Computer Vision
I Topic Categorization on Wikipedia
I Collaborate for social & biological sciences
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Thanks

Feedbacks? Questions?
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