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Introduction

Data Science objective
Analyze and extract information for decision-making from large-scale and
high-dimensional datasets.

Machine Learning objective
Extand convolutional neural networks to graph-structured data.
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ConvNets are ubiquitous

First developed for Computer Vision [LeCun et al 98]
I Object recognition [Krizhevsky & Sutskever & Hinton 12]
I Image captioning [Karpathy & FeiFei 15]
I Image inpainting [Pathak & Efros et al 16]

Spreading outside CV
I Natural language processing
I Audio: sound & voice
I Autonomous agents (playing Atari or Go) 3 / 33
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Why are they good ?

ConvNets are extremely efficient at extracting meaningful statistical
patterns in large-scale and high-dimensional datasets.

Statistical assumptions
I Localization: compact filters for low complexity
I Stationarity: translation invariance
I Compositionality: analysis with a filterbank
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Architecture

Ingredients
1. Convolution
2. Non-linearity (ReLU)
3. Down-sampling
4. Pooling
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Feature extraction

Figure: Features extracted from ImageNet [Zeiler & Fergus 2013]
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Developed for data lying on Euclidean grids

All operations are well defined and computationally efficient:
1. Convolution → filter translation or fast Fourier transform (FFT)
2. Down-sampling → pick one pixel out of n

Image (2D) Video (3D) Sound (1D)
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Non-Euclidean Data

Modeling versatility: graphs model heterogeneous pairwise relationships

Examples of irregular / graph-structured data:
I Social networks: Facebook, Twitter.
I Biological networks: genes, molecules, brain connectivity.
I Infrastructure networks: energy, transportation, Internet, telephony.

Social network Brain structure Telecommunication
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Constructed graphs:
I Sample graph for e.g. semi-supervised learning.
I Feature graph to reduce computational complexity.

Alternative approach:
1. Embed nodes in an Euclidean space.
2. Use that embedding as features.

Reproduce the breakthrough of ConvNets beyond Computer Vision!
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ConvNets on Graphs

Challenges
I Formulate convolution and down-sampling on graphs.
I Make them efficient!

Contributions
I Generalizing ConvNets to general graph-structured data.
I Same computational complexity as classical ConvNets!

Tools
I Spectral graph theory for convolution on graphs.
I Balanced cut model for graph coarsening (sub-sampling).
I Graph pooling with binary tree structured coarsened graphs.
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Related Works 1/2

I Local Receptive Fields (Gregor and LeCun 2010; Coates and Ng 2011)
I Group features based upon similarity
I No weight-sharing / convolution / stationarity

I Spatial approaches
(Niepert, Ahmed, and Kutzkov 2016; Vialatte, Gripon, and Mercier 2016)

I Define receptive field / neighborhood
I Order nodes

I Geodesic CNNs on Riemannian manifolds (Masci et al. 2015)
I Generalization of CNNs to non-Euclidean manifolds
I Local geodesic system of polar coordinates to extract patches
I Tailored for geometry analysis and processing
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Related Works 2/2

I Graph Neural Networks (GNNs) (Scarselli et al. 2009)
I Propagate node representations until convergence (RNN on graphs)
I Representations used as features

I Diffusion-Convolutional Neural Networks (DCNNs)
(Atwood and Towsley 2015)

I Multiplication with powers (0 to H) of transition matrix
I Diffused features multiplied by weight vector of support H
I No pooling, followed by a fully connected layer

I Spectral Networks on Graphs (Bruna et al. 2013)
I First spectral definition
I Spline filter parametrization
I Agglomerative method for coarsening
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Definitions: Graph
Chung 1997

G = (V, E ,W ): undirected and connected graph

I V: set of |V| = n vertices
I E : set of edges
I W ∈ Rn×n: weighted adjacency matrix
I Dii =

∑
j Wij : diagonal degree matrix

Graph Laplacians (core operator to spectral graph theory):
I L = D −W ∈ Rn×n: combinatorial
I L = In − D−1/2WD−1/2: normalized
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Definitions: Graph Fourier Transform
Hammond, Vandergheynst, and Gribonval 2011

L is symmetric and positive semidefinite → L = UΛUT (EVD)

I Graph Fourier basis U = [u0, . . . , un−1] ∈ Rn×n

I Graph “frequencies” Λ =

λ1 0
. . .

0 λn

 ∈ Rn×n

Graph Fourier Transform
1. Graph signal x : V → R seen as x ∈ Rn

2. Transform: x̂ = FG{x} = UT x ∈ Rn

3. Inverse: x = Ux̂ = UUT x = x
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Definitions: Convolution on Graph
Hammond, Vandergheynst, and Gribonval 2011

Convolution theorem:

x ∗G g = U
(
UT g � UT x

)
= U

(
ĝ � UT x

)
Conveniently written as:

x ∗G g = U

ĝ(λ1) 0
. . .

0 ĝ(λn)

UT x

= Uĝ(Λ)UT x
= ĝ(L)x

15 / 33



ConvNets & Graphs
ConvNets on Graphs

Numerical Experiments

Related Works
Definitions
Learning Fast Localized Spectral Filters
Coarsening & Pooling

Spectral Filtering of Graph Signals

y = ĝθ(L)x = Uĝθ(Λ)UT x

Non-parametric filter:

ĝθ(Λ) = diag(θ), θ ∈ Rn

I Non-localized in vertex domain
I Learning complexity in O(n)
I Computational complexity in O(n2) (& memory)
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Polynomial Parametrization for Localized Filters

ĝθ(Λ) =
K−1∑
k=0

θkΛk , θ ∈ RK

I Value at j of gθ centered at i : (ĝθ(L)δi )j = (ĝθ(L))i,j =
∑

k θk(Lk)i,j

I dG(i , j) > K implies (LK )i,j = 0
(Hammond, Vandergheynst, and Gribonval 2011, Lemma 5.2)

I K -localized
I Learning complexity in O(K )
I Computational complexity in O(n2)
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Filter Localization
Shuman, Ricaud, and Vandergheynst 2016

Figure: Localization on regular Euclidean grid.

Figure: Localization on graph with (ĝθ(L)δi )j = (ĝθ(L))i,j .
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Recursive Formulation for Fast Filtering

ĝθ(Λ) =
K−1∑
k=0

θkTk(Λ̃), Λ̃ = 2Λ/λmax − In

I Chebyshev polynomials: Tk(x) = 2xTk−1(x)− Tk−2(x)
with T0 = 1 and T1 = x

I Filtering: y = ĝθ(L)x =
∑K−1

k=0 θkTk(L̃)x
I Recurrence: y = ĝθ(L)x = [x̄0, . . . , x̄K−1]θ,

x̄k = Tk(L̃)x = 2L̃x̄k−1 − x̄k−2 with x̄0 = x and x̄1 = L̃x

I K -localized
I Learning complexity in O(K )
I Computational complexity in O(K |E|)
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Learning Filters

ys,j =
Fin∑
i=1

ĝθi,j (L)xs,i ∈ Rn

I xs,i : feature map i of sample s
I θi,j : trainable parameters

(Fin × Fout vectors of Chebyshev coefficients)

Gradients for backpropagation:
I ∂E

∂θi,j
=
∑S

s=1[x̄s,i,0, . . . , x̄s,i,K−1]T ∂E
∂ys,j

I ∂E
∂xs,i

=
∑Fout

j=1 gθi,j (L) ∂E
∂ys,j

Overall cost of O(K |E|FinFoutS) operations
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Coarsening & Pooling
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I Coarsening: Graclus / Metis
I Normalized cut minimization

I Pooling: as regular 1D signals
I Satisfies parallel architectures like GPUs

I Activation: ReLU (or tanh, sigmoid)
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Architecture

Classification
Fully connected 

layers

Feature extraction: feature maps
Convolutional layers

Input graph signals
e.g. bags of words

Output signals
e.g. labels / 

classes

Graph signal filtering
1. Convolution

2. Non-linear activation

Graph coarsening
1. Sub-sampling

2. Pooling
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MNIST
20NEWS
Application: Semi-supervised learning
Application: Recurrent Neural Nets

Revisiting Euclidean ConvNets
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Classification accuracy

Model Architecture Accuracy

Classical CNN C32-P4-C64-P4-FC512 99.33
Proposed graph CNN GC32-P4-GC64-P4-FC512 99.14

Table: Comparison to classical CNNs.

Comparable to classical CNNs and better than other parametrizations !

Isotropic filters → rotation invariance

Accuracy

Architecture Non-Param Spline Chebyshev

GC10 95.75 97.26 97.48
GC32-P4-GC64-P4-FC512 96.28 97.15 99.14

Table: Comparison between spectral filters, K = 25.
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Convergence
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Faster convergence !
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Documents as graph signals

training data
corpus of N

train
 documents

discriminative words
e.g. 20NEWS: 65k discriminative

words for 1M unique words

testing data
corpus of N

test
 documents

bus

path

car
time

light

age

bus

car
time

age

politics
economics
sciences
religions

Classes

System output
manually labelled

System
input

Signals
normalized bags of words

Nodes
Dictionary

Weighted edges
Embedding word 

similarity
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Classification accuracies

Model Accuracy
Linear SVM 65.90
Multinomial Naive Bayes 68.51
Softmax 66.28
FC2500 64.64
FC2500-FC500 65.76
GC32 68.26

Table: Accuracies of the proposed graph CNN and other methods on 20NEWS.
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Graph Quality

word2vec
bag-of-words pre-learned learned approximate random

67.50 66.98 68.26 67.86 67.75

Classification accuracies of GC32 with different graph constructions on
20NEWS.

Architecture 8-NN on 2D Euclidean grid random

GC32 97.40 96.88
GC32-P4-GC64-P4-FC512 99.14 95.39

Classification accuracies with different graph constructions on MNIST.
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Training time
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Make CNNs practical for graph signals !

Spline: ĝθ(Λ) = Bθ where B is the cubic spline basis (Bruna et al. 2013)

29 / 33



ConvNets & Graphs
ConvNets on Graphs

Numerical Experiments

MNIST
20NEWS
Application: Semi-supervised learning
Application: Recurrent Neural Nets

Semi-supervised learning
Kipf and Welling 2016

I Semi-supervised classification.
I Architecture: two graph convolutional layers
I First-order filters, i.e. K = 1.
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Recurrent Neural Nets
Seo, Defferrard, Bresson and Vandergheynst 2016
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LSTM+CNN, 5x5 filters
LSTM+GCNN, K=3
LSTM+GCNN, K=5
LSTM+GCNN, K=7
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Conclusion

Contributions
I Generalization of ConvNets to graph-structured data.
I Definition of fast and localized spectral filters on graphs.
I Same learning and computational complexities as classical ConvNets

while being universal to any graph.

Further research
I Model definition
I Applications

Future applications
I Social networks (Facebook, Twitter)
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I Paper: Defferrard, Bresson and Vandergheynst, Convolutional
Neural Networks on Graphs with Fast Localized Spectral Filtering,
NIPS, 2016.

I Code: https://github.com/mdeff/cnn_graph

Thanks Questions?
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