
A Network Tour of Data Science (NTDS)
December 21, 2016

Deep Learning on Graphs
Learning beyond Euclidean Data

Michaël Defferrard
Swiss Federal Institute of Technology (EPFL)

Structured data

Majority of data is naturally unstructured, but can be structured.

Why structure data ?
I To incorporate additional information.
I To regularize the learning process.
I To decrease learning complexity by making geometric assumptions.

Data structured by Euclidean grids.
I 1D: sound, time-series.
I 2D: images.
I 3D: video, hyper-spectral images.

2 / 32

Non-Euclidean data: natural graphs

Modeling versatility: graphs model heterogeneous pairwise relationships

Examples of irregular / graph-structured data:
I Social networks: Facebook, Twitter.
I Biological networks: genes, molecules, brain connectivity.
I Infrastructure networks: energy, transportation, Internet, telephony.

Social network Brain structure Telecommunication

3 / 32

Non-Euclidean data: constructed graphs

Sample graph
I Semi-supervised learning.
I Incorporate external

information.

Feature graph
I Reduce computations.
I Incorporate external

information.

word

similarity

documents

document

citation
hyper-link

words

4 / 32

Using the structure: bridging graphs & neural networks

Extrinsic: embed the graph in an Euclidean space.
I Each node is represented by a vector.
I Use that embedding as additional features for a fully connected NN.
I Use a convolutional NN in the embedding space.

Possibly very high-dimensional!

Intrinsic: a Neural Net working on graph-structured data.
I Exploit geometric structure for computational efficiency.
I Starting point: ConvNets, an intrinsic formulation for Euclidean

grids.

5 / 32

ConvNets are ubiquitous
LeCun, Bengio, and Hinton 2015

First developed for Computer Vision
I Object recognition
I Image captioning
I Image inpainting

Spreading outside CV
I Natural language processing
I Audio: sound & voice
I Autonomous agents (playing Atari or Go)

6 / 32

Why are ConvNets good ?

ConvNets are extremely efficient at extracting meaningful statistical
patterns in large-scale and high-dimensional datasets.

Because they make use of the underlying structure in the data.

Statistical assumptions
I Localization: compact filters for low complexity
I Stationarity: translation invariance
I Compositionality: analysis with a filterbank

7 / 32

ConvNets: architecture

Ingredients
1. Convolution
2. Non-linearity (ReLU)
3. Down-sampling
4. Pooling

8 / 32

ConvNets: feature extraction
Zeiler and Fergus 2014

Figure: Features extracted from ImageNet

9 / 32

Developed for data lying on Euclidean grids

All operations are well defined and computationally efficient:
1. Convolution → filter translation or fast Fourier transform (FFT).
2. Down-sampling → pick one pixel out of n.

Image (2D) Video (3D) Sound (1D)

10 / 32

ConvNets on graphs

Graphs vs Euclidean grids
I Irregular sampling.
I Weighted edges.
I No orientation (in general).

Challenges
1. Formulate convolution and

down-sampling on graphs.
2. Make them efficient!

11 / 32

ConvNets on graphs: spatial approach
Niepert, Ahmed, and Kutzkov 2016

1. Define receptive field / neighborhood.
2. Order nodes.

12 / 32

ConvNets on graphs: spectral approach
Bruna, Zaremba, Szlam, and LeCun 2014; Henaff, Bruna, and LeCun 2015

I Spectral graph theory for convolution on graphs.
I Balanced cut model for graph coarsening (sub-sampling).

13 / 32

Definitions: graph
Chung 1997

G = (V, E ,W): undirected and connected graph

I V: set of |V| = n vertices
I E : set of edges
I W ∈ Rn×n: weighted adjacency matrix
I Dii =

∑
j Wij : diagonal degree matrix

Graph Laplacians (core operator to spectral graph theory):
I L = D −W ∈ Rn×n: combinatorial
I L = In − D−1/2WD−1/2: normalized

14 / 32

Definitions: graph Fourier transform
Shuman, Narang, Frossard, Ortega, and Vandergheynst 2013

L is symmetric and positive semidefinite → L = UΛUT (EVD)

I Graph Fourier basis U = [u0, . . . , un−1] ∈ Rn×n

I Graph “frequencies” Λ =

λ1 0
. . .

0 λn

 ∈ Rn×n

Graph Fourier Transform
1. Graph signal x : V → R seen as x ∈ Rn

2. Transform: x̂ = FG{x} = UT x ∈ Rn

3. Inverse: x = Ux̂ = UUT x = x

15 / 32

Definitions: convolution on graphs
Shuman, Narang, Frossard, Ortega, and Vandergheynst 2013

Convolution theorem:

x ∗G g = U
(
UT g � UT x

)
= U

(
ĝ � UT x

)
Conveniently written as:

x ∗G g = U

ĝ(λ1) 0
. . .

0 ĝ(λn)

UT x

= Uĝ(Λ)UT x
= ĝ(L)x

16 / 32

Spectral filtering of graph signals

y = ĝθ(L)x = Uĝθ(Λ)UT x

Non-parametric filter:

ĝθ(Λ) = diag(θ), θ ∈ Rn

I Non-localized in vertex domain
I Learning complexity in O(n)
I Computational complexity in O(n2) (& memory)

17 / 32

Polynomial parametrization for localized filters
Shuman, Ricaud, and Vandergheynst 2016

ĝθ(Λ) =
K−1∑
k=0

θkΛk , θ ∈ RK

I Value at j of gθ centered at i : (ĝθ(L)δi)j = (ĝθ(L))i,j =
∑

k θk(Lk)i,j

I dG(i , j) > K implies (LK)i,j = 0
(Hammond, Vandergheynst, and Gribonval 2011, Lemma 5.2)

I K -localized
I Learning complexity in O(K)
I Computational complexity in O(n2)

18 / 32

Filter localization
Shuman, Ricaud, and Vandergheynst 2016

Figure: Localization on regular Euclidean grid.

Figure: Localization on graph with (ĝθ(L)δi)j = (ĝθ(L))i,j .

19 / 32

Recursive formulation for fast filtering
Hammond, Vandergheynst, and Gribonval 2011

ĝθ(Λ) =
K−1∑
k=0

θkTk(Λ̃), Λ̃ = 2Λ/λmax − In

I Chebyshev polynomials: Tk(x) = 2xTk−1(x)− Tk−2(x)
with T0 = 1 and T1 = x

I Filtering: y = ĝθ(L)x =
∑K−1

k=0 θkTk(L̃)x
I Recurrence: y = ĝθ(L)x = [x̄0, . . . , x̄K−1]θ,

x̄k = Tk(L̃)x = 2L̃x̄k−1 − x̄k−2 with x̄0 = x and x̄1 = L̃x

I K -localized
I Learning complexity in O(K)
I Computational complexity in O(K |E|) (same as classical ConvNets!)

20 / 32

Learning filters
Defferrard, Bresson, and Vandergheynst 2016

ys,j =
Fin∑
i=1

ĝθi,j (L)xs,i ∈ Rn

I xs,i : feature map i of sample s
I θi,j : trainable parameters

(Fin × Fout vectors of Chebyshev coefficients)

Gradients for backpropagation:
I ∂E

∂θi,j
=
∑S

s=1[x̄s,i,0, . . . , x̄s,i,K−1]T ∂E
∂ys,j

I ∂E
∂xs,i

=
∑Fout

j=1 gθi,j (L) ∂E
∂ys,j

Overall cost of O(K |E|FinFoutS) operations

21 / 32

Coarsening & Pooling
Defferrard, Bresson, and Vandergheynst 2016

0

1

5
6

4

8
10

9 0 1 2

0

3
2

4
5

0
1

2
2 3 4 51

0 4 51 8 92 3 7 11

7 11

32
1 0

6 10

I Coarsening: Graclus / Metis
I Approximate normalized cut minimization.

I Pooling: as regular 1D signals
I Binary tree structured coarsened graphs.
I Satisfies parallel architectures like GPUs.

I Activation: ReLU, LeakyReLU, maxout, tanh, sigmoid.
22 / 32

Graph ConvNet architecture
Defferrard, Bresson, and Vandergheynst 2016

Classification
Fully connected

layers

Feature extraction: feature maps
Convolutional layers

Input graph signals
e.g. bags of words

Output signals
e.g. labels /

classes

Graph signal filtering
1. Convolution

2. Non-linear activation

Graph coarsening
1. Sub-sampling

2. Pooling

23 / 32

MNIST: revisiting Euclidean ConvNets

24 / 32

MNIST: classification accuracy

Model Architecture Accuracy
Classical CNN C32-P4-C64-P4-FC512 99.33
Proposed graph CNN GC32-P4-GC64-P4-FC512 99.14

Comparison to classical CNNs.

Comparable to classical ConvNets!

Isotropic filters → rotation invariance

25 / 32

20NEWS: structuring documents with a feature graph
Defferrard, Bresson, and Vandergheynst 2016

training data
corpus of N

train
 documents

discriminative words
e.g. 20NEWS: 65k discriminative

words for 1M unique words

testing data
corpus of N

test
 documents

bus

path

car
time

light

age

bus

car
time

age

politics
economics
sciences
religions

Classes

System output
manually labelled

System
input

Signals
normalized bags of words

Nodes
Dictionary

Weighted edges
Embedding word

similarity

26 / 32

20NEWS: graph quality

word2vec
bag-of-words pre-learned learned approximate random

67.50 66.98 68.26 67.86 67.75

Accuracies of GC32 with different graph constructions on 20NEWS.

Architecture 8-NN on 2D Euclidean grid random
GC32 97.40 96.88
GC32-P4-GC64-P4-FC512 99.14 95.39

Classification accuracies with different graph constructions on MNIST.

27 / 32

20NEWS: training time
Defferrard, Bresson, and Vandergheynst 2016

2000 4000 6000 8000 10000 12000
number of features (words)

0

200

400

600

800

1000

1200

1400

ti
m

e
 (

m
s)

Non-Param / Spline

Chebyshev

Make CNNs practical for graph signals !

Spline: ĝθ(Λ) = Bθ where B is the cubic spline basis
(Bruna, Zaremba, Szlam, and LeCun 2014)

28 / 32

Application: semi-supervised learning
Kipf and Welling 2016

I Problem: Semi-supervised classification.
I Architecture: two graph convolutional layers.
I Filters: first-order approximation, i.e. K = 1.

29 / 32

Application: time-varying graph signals
Seo, Defferrard, Bresson, and Vandergheynst 2016

Stack a RNN on top of a graph ConvNet.

Encoder	input	Sequence

Decoder	output	Sequence

In
pu
t

gt
Pr
ed
ic
tio
n

0 2 4 6 8 10 12 14
#epoch

3500

4000

4500

5000

5500

6000

v
a
lid

a
ti

o
n
 c

ro
ss

-e
n
tr

o
p
y

LSTM+CNN, 5x5 filters
LSTM+GCNN, K=3
LSTM+GCNN, K=5
LSTM+GCNN, K=7

30 / 32

Conclusion

1. Non-Euclidean data.
2. Extrinsic vs intrinsic formulation.
3. Intrinsic: spatial vs spectral formulation.
4. Efficient formulations are important for Machine Learning!
5. Some results showing versatility of modeling with graphs.

Further research
I Model definition
I Applications

31 / 32

Thanks for attending NTDS

and

Merry Christmas!

32 / 32

