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Structured data

Majority of data is naturally unstructured, but can be structured.

Why structure data ?
I To incorporate additional information.
I To regularize the learning process.
I To decrease learning complexity by making geometric assumptions.

Data structured by Euclidean grids.
I 1D: sound, time-series.
I 2D: images.
I 3D: video, hyper-spectral images.
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Non-Euclidean data: natural graphs

Modeling versatility: graphs model heterogeneous pairwise relationships

Examples of irregular / graph-structured data:
I Social networks: Facebook, Twitter.
I Biological networks: genes, molecules, brain connectivity.
I Infrastructure networks: energy, transportation, Internet, telephony.

Social network Brain structure Telecommunication
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Non-Euclidean data: constructed graphs

Sample graph
I Semi-supervised learning.
I Incorporate external

information.

Feature graph
I Reduce computations.
I Incorporate external

information.

word

similarity

documents

document

citation
hyper-link

words
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Using the structure: bridging graphs & neural networks

Extrinsic: embed the graph in an Euclidean space.
I Each node is represented by a vector.
I Use that embedding as additional features for a fully connected NN.
I Use a convolutional NN in the embedding space.

Possibly very high-dimensional!

Intrinsic: a Neural Net working on graph-structured data.
I Exploit geometric structure for computational efficiency.
I Starting point: ConvNets, an intrinsic formulation for Euclidean

grids.
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ConvNets are ubiquitous
LeCun, Bengio, and Hinton 2015

First developed for Computer Vision
I Object recognition
I Image captioning
I Image inpainting

Spreading outside CV
I Natural language processing
I Audio: sound & voice
I Autonomous agents (playing Atari or Go)
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Why are ConvNets good ?

ConvNets are extremely efficient at extracting meaningful statistical
patterns in large-scale and high-dimensional datasets.

Because they make use of the underlying structure in the data.

Statistical assumptions
I Localization: compact filters for low complexity
I Stationarity: translation invariance
I Compositionality: analysis with a filterbank
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ConvNets: architecture

Ingredients
1. Convolution
2. Non-linearity (ReLU)
3. Down-sampling
4. Pooling

8 / 32



ConvNets: feature extraction
Zeiler and Fergus 2014

Figure: Features extracted from ImageNet
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Developed for data lying on Euclidean grids

All operations are well defined and computationally efficient:
1. Convolution → filter translation or fast Fourier transform (FFT).
2. Down-sampling → pick one pixel out of n.

Image (2D) Video (3D) Sound (1D)
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ConvNets on graphs

Graphs vs Euclidean grids
I Irregular sampling.
I Weighted edges.
I No orientation (in general).

Challenges
1. Formulate convolution and

down-sampling on graphs.
2. Make them efficient!
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ConvNets on graphs: spatial approach
Niepert, Ahmed, and Kutzkov 2016

1. Define receptive field / neighborhood.
2. Order nodes.
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ConvNets on graphs: spectral approach
Bruna, Zaremba, Szlam, and LeCun 2014; Henaff, Bruna, and LeCun 2015

I Spectral graph theory for convolution on graphs.
I Balanced cut model for graph coarsening (sub-sampling).
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Definitions: graph
Chung 1997

G = (V, E ,W ): undirected and connected graph

I V: set of |V| = n vertices
I E : set of edges
I W ∈ Rn×n: weighted adjacency matrix
I Dii =

∑
j Wij : diagonal degree matrix

Graph Laplacians (core operator to spectral graph theory):
I L = D −W ∈ Rn×n: combinatorial
I L = In − D−1/2WD−1/2: normalized
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Definitions: graph Fourier transform
Shuman, Narang, Frossard, Ortega, and Vandergheynst 2013

L is symmetric and positive semidefinite → L = UΛUT (EVD)

I Graph Fourier basis U = [u0, . . . , un−1] ∈ Rn×n

I Graph “frequencies” Λ =

λ1 0
. . .

0 λn

 ∈ Rn×n

Graph Fourier Transform
1. Graph signal x : V → R seen as x ∈ Rn

2. Transform: x̂ = FG{x} = UT x ∈ Rn

3. Inverse: x = Ux̂ = UUT x = x
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Definitions: convolution on graphs
Shuman, Narang, Frossard, Ortega, and Vandergheynst 2013

Convolution theorem:

x ∗G g = U
(
UT g � UT x

)
= U

(
ĝ � UT x

)
Conveniently written as:

x ∗G g = U

ĝ(λ1) 0
. . .

0 ĝ(λn)

UT x

= Uĝ(Λ)UT x
= ĝ(L)x
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Spectral filtering of graph signals

y = ĝθ(L)x = Uĝθ(Λ)UT x

Non-parametric filter:

ĝθ(Λ) = diag(θ), θ ∈ Rn

I Non-localized in vertex domain
I Learning complexity in O(n)
I Computational complexity in O(n2) (& memory)
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Polynomial parametrization for localized filters
Shuman, Ricaud, and Vandergheynst 2016

ĝθ(Λ) =
K−1∑
k=0

θkΛk , θ ∈ RK

I Value at j of gθ centered at i : (ĝθ(L)δi )j = (ĝθ(L))i,j =
∑

k θk(Lk)i,j

I dG(i , j) > K implies (LK )i,j = 0
(Hammond, Vandergheynst, and Gribonval 2011, Lemma 5.2)

I K -localized
I Learning complexity in O(K )
I Computational complexity in O(n2)
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Filter localization
Shuman, Ricaud, and Vandergheynst 2016

Figure: Localization on regular Euclidean grid.

Figure: Localization on graph with (ĝθ(L)δi )j = (ĝθ(L))i,j .

19 / 32



Recursive formulation for fast filtering
Hammond, Vandergheynst, and Gribonval 2011

ĝθ(Λ) =
K−1∑
k=0

θkTk(Λ̃), Λ̃ = 2Λ/λmax − In

I Chebyshev polynomials: Tk(x) = 2xTk−1(x)− Tk−2(x)
with T0 = 1 and T1 = x

I Filtering: y = ĝθ(L)x =
∑K−1

k=0 θkTk(L̃)x
I Recurrence: y = ĝθ(L)x = [x̄0, . . . , x̄K−1]θ,

x̄k = Tk(L̃)x = 2L̃x̄k−1 − x̄k−2 with x̄0 = x and x̄1 = L̃x

I K -localized
I Learning complexity in O(K )
I Computational complexity in O(K |E|) (same as classical ConvNets!)
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Learning filters
Defferrard, Bresson, and Vandergheynst 2016

ys,j =
Fin∑
i=1

ĝθi,j (L)xs,i ∈ Rn

I xs,i : feature map i of sample s
I θi,j : trainable parameters

(Fin × Fout vectors of Chebyshev coefficients)

Gradients for backpropagation:
I ∂E

∂θi,j
=
∑S

s=1[x̄s,i,0, . . . , x̄s,i,K−1]T ∂E
∂ys,j

I ∂E
∂xs,i

=
∑Fout

j=1 gθi,j (L) ∂E
∂ys,j

Overall cost of O(K |E|FinFoutS) operations
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Coarsening & Pooling
Defferrard, Bresson, and Vandergheynst 2016
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I Coarsening: Graclus / Metis
I Approximate normalized cut minimization.

I Pooling: as regular 1D signals
I Binary tree structured coarsened graphs.
I Satisfies parallel architectures like GPUs.

I Activation: ReLU, LeakyReLU, maxout, tanh, sigmoid.
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Graph ConvNet architecture
Defferrard, Bresson, and Vandergheynst 2016

Classification
Fully connected 

layers

Feature extraction: feature maps
Convolutional layers

Input graph signals
e.g. bags of words

Output signals
e.g. labels / 

classes

Graph signal filtering
1. Convolution

2. Non-linear activation

Graph coarsening
1. Sub-sampling

2. Pooling
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MNIST: revisiting Euclidean ConvNets
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MNIST: classification accuracy

Model Architecture Accuracy
Classical CNN C32-P4-C64-P4-FC512 99.33
Proposed graph CNN GC32-P4-GC64-P4-FC512 99.14

Comparison to classical CNNs.

Comparable to classical ConvNets!

Isotropic filters → rotation invariance
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20NEWS: structuring documents with a feature graph
Defferrard, Bresson, and Vandergheynst 2016

training data
corpus of N

train
 documents

discriminative words
e.g. 20NEWS: 65k discriminative

words for 1M unique words

testing data
corpus of N

test
 documents
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System output
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20NEWS: graph quality

word2vec
bag-of-words pre-learned learned approximate random

67.50 66.98 68.26 67.86 67.75

Accuracies of GC32 with different graph constructions on 20NEWS.

Architecture 8-NN on 2D Euclidean grid random
GC32 97.40 96.88
GC32-P4-GC64-P4-FC512 99.14 95.39

Classification accuracies with different graph constructions on MNIST.
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20NEWS: training time
Defferrard, Bresson, and Vandergheynst 2016
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Chebyshev

Make CNNs practical for graph signals !

Spline: ĝθ(Λ) = Bθ where B is the cubic spline basis
(Bruna, Zaremba, Szlam, and LeCun 2014)
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Application: semi-supervised learning
Kipf and Welling 2016

I Problem: Semi-supervised classification.
I Architecture: two graph convolutional layers.
I Filters: first-order approximation, i.e. K = 1.
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Application: time-varying graph signals
Seo, Defferrard, Bresson, and Vandergheynst 2016

Stack a RNN on top of a graph ConvNet.

Encoder	input	Sequence

Decoder	output	Sequence
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LSTM+CNN, 5x5 filters
LSTM+GCNN, K=3
LSTM+GCNN, K=5
LSTM+GCNN, K=7
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Conclusion

1. Non-Euclidean data.
2. Extrinsic vs intrinsic formulation.
3. Intrinsic: spatial vs spectral formulation.
4. Efficient formulations are important for Machine Learning!
5. Some results showing versatility of modeling with graphs.

Further research
I Model definition
I Applications
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Thanks for attending NTDS

and

Merry Christmas!
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