
NetSci-X Tel Aviv, Israel January 18, 2017

Convolutional Neural Networks on Graphs
with Fast Localized Spectral Filtering

Michaël Defferrard
Swiss Federal Institute of Technology (EPFL)

Joint work with Xavier Bresson (EPFL) and
Pierre Vandergheynst (EPFL)

Structured data

Majority of data is naturally unstructured, but can be structured.

Why structure data ?
I To incorporate additional information.
I To regularize the learning process.
I To decrease learning complexity by making geometric assumptions.

Data structured by Euclidean grids.
I 1D: sound, time-series.
I 2D: images.
I 3D: video, hyper-spectral images.

2 / 25

Non-Euclidean data: natural graphs

Modeling versatility: graphs model heterogeneous pairwise relationships

Examples of irregular / graph-structured data:
I Social networks: Facebook, Twitter.
I Biological networks: genes, molecules, brain connectivity.
I Infrastructure networks: energy, transportation, Internet, telephony.

Social network Brain structure Telecommunication

3 / 25

Non-Euclidean data: constructed graphs

Sample graph
I Semi-supervised learning.
I Incorporate external

information.

Feature graph
I Reduce computations.
I Incorporate external

information.

word

similarity

documents

document

citation
hyper-link

words

4 / 25

Using the structure

Extrinsic: embed the graph in an Euclidean space.
I Each node is represented by a vector.
I Use that embedding as additional features for a fully connected NN.
I Use a convolutional NN in the embedding space.

Possibly very high-dimensional!

Intrinsic: a Neural Net working on graph-structured data.
I Exploit geometric structure for computational efficiency.
I Starting point: ConvNets, an intrinsic formulation for Euclidean

grids.

5 / 25

Why are ConvNets good ?

ConvNets are extremely efficient at extracting meaningful statistical
patterns in large-scale and high-dimensional datasets.

Because they make use of the underlying structure in the data.

Statistical assumptions
I Localization: compact filters for low complexity
I Stationarity: translation invariance
I Compositionality: analysis with a filterbank

6 / 25

ConvNets: architecture

Ingredients
1. Convolution
2. Non-linearity (ReLU)
3. Down-sampling
4. Pooling

7 / 25

Developed for data lying on Euclidean grids

All operations are well defined and computationally efficient:
1. Convolution → filter translation or fast Fourier transform (FFT).
2. Down-sampling → pick one pixel out of n.

Image (2D) Video (3D) Sound (1D)

8 / 25

ConvNets on graphs

Graphs vs Euclidean grids
I Irregular sampling.
I Weighted edges.
I No orientation (in general).

Challenges
1. Formulate convolution and

down-sampling on graphs.
2. Make them efficient!

9 / 25

Definitions: graph
Chung 1997

G = (V, E ,W): undirected and connected graph

I V: set of |V| = n vertices
I E : set of edges
I W ∈ Rn×n: weighted adjacency matrix
I Dii =

∑
j Wij : diagonal degree matrix

Graph Laplacians (core operator to spectral graph theory):
I L = D −W ∈ Rn×n: combinatorial
I L = In − D−1/2WD−1/2: normalized

10 / 25

Definitions: graph Fourier transform
Shuman, Narang, Frossard, Ortega, and Vandergheynst 2013

L is symmetric and positive semidefinite → L = UΛUT (EVD)

I Graph Fourier basis U = [u0, . . . , un−1] ∈ Rn×n

I Graph “frequencies” Λ =

λ1 0
. . .

0 λn

 ∈ Rn×n

Graph Fourier Transform
1. Graph signal x : V → R seen as x ∈ Rn

2. Transform: x̂ = FG{x} = UT x ∈ Rn

3. Inverse: x = Ux̂ = UUT x = x

11 / 25

Definitions: convolution on graphs
Shuman, Narang, Frossard, Ortega, and Vandergheynst 2013

Convolution theorem:

x ∗G g = U
(
UT g � UT x

)
= U

(
ĝ � UT x

)
Conveniently written as:

x ∗G g = U

ĝ(λ1) 0
. . .

0 ĝ(λn)

UT x

= Uĝ(Λ)UT x
= ĝ(L)x

12 / 25

Spectral filtering of graph signals

y = ĝθ(L)x = Uĝθ(Λ)UT x

Non-parametric filter:

ĝθ(Λ) = diag(θ), θ ∈ Rn

I Non-localized in vertex domain
I Learning complexity in O(n)
I Computational complexity in O(n2) (& memory)

13 / 25

Polynomial parametrization for localized filters
Shuman, Ricaud, and Vandergheynst 2016

ĝθ(Λ) =
K−1∑
k=0

θkΛk , θ ∈ RK

I Value at j of gθ centered at i : (ĝθ(L)δi)j = (ĝθ(L))i,j =
∑

k θk(Lk)i,j

I dG(i , j) > K implies (LK)i,j = 0
(Hammond, Vandergheynst, and Gribonval 2011, Lemma 5.2)

I K -localized
I Learning complexity in O(K)
I Computational complexity in O(n2)

14 / 25

Filter localization
Shuman, Ricaud, and Vandergheynst 2016

Figure: Localization on regular Euclidean grid.

Figure: Localization on graph with (ĝθ(L)δi)j = (ĝθ(L))i,j .

15 / 25

Recursive formulation for fast filtering
Hammond, Vandergheynst, and Gribonval 2011

ĝθ(Λ) =
K−1∑
k=0

θkTk(Λ̃), Λ̃ = 2Λ/λmax − In

I Chebyshev polynomials: Tk(x) = 2xTk−1(x)− Tk−2(x)
with T0 = 1 and T1 = x

I Filtering: y = ĝθ(L)x =
∑K−1

k=0 θkTk(L̃)x
I Recurrence: y = ĝθ(L)x = [x̄0, . . . , x̄K−1]θ,

x̄k = Tk(L̃)x = 2L̃x̄k−1 − x̄k−2 with x̄0 = x and x̄1 = L̃x

I K -localized
I Learning complexity in O(K)
I Computational complexity in O(K |E|) (same as classical ConvNets!)

16 / 25

Coarsening & Pooling
Defferrard, Bresson, and Vandergheynst 2016

0

1

5
6

4

8
10

9 0 1 2

0

3
2

4
5

0
1

2
2 3 4 51

0 4 51 8 92 3 7 11

7 11

32
1 0

6 10

I Coarsening: Graclus / Metis
I Approximate normalized cut minimization.

I Pooling: as regular 1D signals
I Binary tree structured coarsened graphs.
I Satisfies parallel architectures like GPUs.

I Activation: ReLU, LeakyReLU, maxout, tanh, sigmoid.
17 / 25

Graph ConvNet architecture
Defferrard, Bresson, and Vandergheynst 2016

Classification
Fully connected

layers

Feature extraction: feature maps
Convolutional layers

Input graph signals
e.g. bags of words

Output signals
e.g. labels /

classes

Graph signal filtering
1. Convolution

2. Non-linear activation

Graph coarsening
1. Sub-sampling

2. Pooling

18 / 25

MNIST: revisiting Euclidean ConvNets

19 / 25

MNIST: classification accuracy

Model Architecture Accuracy
Classical CNN C32-P4-C64-P4-FC512 99.33
Proposed graph CNN GC32-P4-GC64-P4-FC512 99.14

Table: Comparison to classical ConvNets.

Comparable to classical ConvNets,
and better than other parametrizations !

Accuracy
Architecture Non-Param Spline Chebyshev
GC10 95.75 97.26 97.48
GC32-P4-GC64-P4-FC512 96.28 97.15 99.14

Table: Comparison between spectral filters, K = 25.

20 / 25

20NEWS: structuring documents with a feature graph
Defferrard, Bresson, and Vandergheynst 2016

training data
corpus of N

train
 documents

discriminative words
e.g. 20NEWS: 65k discriminative

words for 1M unique words

testing data
corpus of N

test
 documents

bus

path

car
time

light

age

bus

car
time

age

politics
economics
sciences
religions

Classes

System output
manually labelled

System
input

Signals
normalized bags of words

Nodes
Dictionary

Weighted edges
Embedding word

similarity

21 / 25

20NEWS: classification accuracies

Model Accuracy
Linear SVM 65.90
Multinomial Naive Bayes 68.51
Softmax 66.28
FC2500 64.64
FC2500-FC500 65.76
GC32 68.26

Table: Accuracies of the proposed graph CNN and other methods on 20NEWS.

22 / 25

20NEWS: training time
Defferrard, Bresson, and Vandergheynst 2016

2000 4000 6000 8000 10000 12000
number of features (words)

0

200

400

600

800

1000

1200

1400

ti
m

e
 (

m
s)

Non-Param / Spline

Chebyshev

Make CNNs practical for graph signals !

Spline: ĝθ(Λ) = Bθ where B is the cubic spline basis
(Bruna, Zaremba, Szlam, and LeCun 2014)

23 / 25

Conclusion

Contributions
I Generalization of ConvNets to graph-structured data.
I Definition of fast and localized spectral filters on graphs.
I Same learning and computational complexities as classical ConvNets

while being universal to any graph.

Tools
I Spectral graph theory for convolution on graphs.
I Balanced cut model for graph coarsening (sub-sampling).
I Coarsened graphs organized as binary tree for fast pooling.

Further research
I Model definition
I Applications

24 / 25

I Paper: Defferrard, Bresson and Vandergheynst, Convolutional
Neural Networks on Graphs with Fast Localized Spectral Filtering,
NIPS, 2016.

I Code: https://github.com/mdeff/cnn_graph

Thanks Questions?

25 / 25

https://arxiv.org/abs/1606.09375
https://arxiv.org/abs/1606.09375
https://github.com/mdeff/cnn_graph

