
A Network Tour of Data Science (NTDS)

EPFL December 8, 2017

Learning on Graphs

Michaël Defferrard

École Polytechnique Fédérale de Lausanne (EPFL)

Learning

x = y = f (x) = "cat"

Goal: learn the unknown function f .

2 / 36

Structured data

Why structure data?
I To incorporate additional information.
I To exploit spatial correlations.
I To decrease learning complexity by making geometric assumptions.

Data structured by Euclidean grids.
I 1D: sound, time-series.
I 2D: images.
I 3D: video, hyper-spectral images.

3 / 36

Naturally graph-structured data

Modeling versatility: graphs model heterogeneous pairwise relationships.

Examples of irregular / graph-structured data:
I Social networks: Facebook, Twitter.
I Biological networks: genes, molecules, brain connectivity.
I Infrastructure networks: energy, transportation, Internet, telephony.

Social network Brain structure Telecommunication

4 / 36

Notation

G = (V, E ,W): undirected and connected graph

I V: set of |V| = n vertices
I E : set of edges
I W ∈ Rn×n: weighted adjacency matrix
I Dii =

∑
j Wij : diagonal degree matrix

Graph Laplacians (core operator to spectral graph theory):
I L = D−W ∈ Rn×n: combinatorial
I L = In −D−1/2WD−1/2 ∈ Rn: normalized

5 / 36

The problem

We have:
1. a data matrix X ∈ RN×d ,
2. a graph G represented by its Laplacian L ∈ RN×N .

We want:
I to classify the graph G,
I to classify the vertices v ,
I to classify the signals x ∈ RN .

6 / 36

Types of graphs

Sample graph
I Semi-supervised learning.
I Incorporate external

information.

Feature graph
I Reduce computations.
I Incorporate external

information.

word

similarity

documents

document

citation
hyper-link

words

Problems: signals, nodes or graphs classification (regression).
7 / 36

Using the structure

Extrinsic: embed the graph in an Euclidean space.
I Each node is represented by a vector.
I Use that embedding as additional features for a fully connected NN.
I Use a convolutional NN in the embedding space.

Possibly very high-dimensional!

Intrinsic: a Neural Net defined on graphically structured data.
I Exploit geometric structure for computational efficiency.
I Starting point: ConvNet, an intrinsic formulation for Euclidean grids.

8 / 36

ConvNets: architecture

Ingredients
1. Convolution (local)
2. Non-linearity (point-wise)
3. Down-sampling (global / local)
4. Pooling (local)

9 / 36

ConvNets: why?

ConvNets are extremely efficient at extracting meaningful statistical
patterns in large-scale and high-dimensional datasets.

They exploit the geometry.

Key properties
I Convolutional: translation invariance (stationarity).
I Localized: deformation stability & compact filters.
I Multi-scale: hierarchical features extracted by multiple layers.

10 / 36

ConvNets: feature extraction
Zeiler and Fergus 2014

Figure: Features extracted from ImageNet.

11 / 36

Developed for data lying on Euclidean grids

All operations are well defined and computationally efficient:
1. Convolution → filter translation or fast Fourier transform (FFT).
2. Down-sampling → pick one pixel out of n.
3. Non-linearity → point-wise operation.
4. Pooling → summarize the receptive field.

Image (2D) Video (3D) Sound (1D)

12 / 36

ConvNets on graphs

Graphs vs Euclidean grids
I Irregular sampling.
I Weighted edges.
I No orientation (in general).

Challenges
1. Formulate convolution and

down-sampling on graphs.
2. Make them efficient!

13 / 36

Graph Fourier basis
Shuman, Narang, Frossard, Ortega, and Vandergheynst 2013

L is symmetric and positive semidefinite → L = UΛUT (EVD)

I Graph Fourier basis U = [u1, . . . , un] ∈ Rn×n

I Graph “frequencies” Λ =

λ1 0
. . .

0 λn

 ∈ Rn×n

eigenvector u0 eigenvector u1 eigenvector u2 eigenvector u3 eigenvector u4 eigenvector u5 eigenvector u6

0.2
0.1

0.0
0.1
0.2

0.6
0.4
0.2

0.0
0.2
0.4

14 / 36

Graph Fourier Transform
Shuman, Narang, Frossard, Ortega, and Vandergheynst 2013

I Graph signal x : V → R seen as x ∈ Rn

I Transform: x̂ = FG{x} = UT x ∈ Rn

I Inverse: x = F−1G {x} = Ux̂ = UUT x = x

xTLx = 371.53

x: signal in the vertex domain

0 2 4 6 8 10 12 14
0

1

2

x: signal in the spectral domain

xTLx = 16.41 0 2 4 6 8 10 12 14
0.0

0.5

1.0

1.5

xTLx = 1.03 0 2 4 6 8 10 12 14
laplacian's eigenvalues / graph frequencies

0.0

0.5

1.0

2
1

0
1
2

0.6
0.4
0.2

0.0
0.2
0.4
0.6

0.3
0.2
0.1

0.0
0.1
0.2

15 / 36

Filtering with convolution on graphs
Shuman, Narang, Frossard, Ortega, and Vandergheynst 2013

Convolution theorem: y = x ∗G g = U
(
UT g � UT x

)
= U

(
ĝ � UT x

)
y = x ∗G g = U

ĝ(λ0) 0
. . .

0 ĝ(λn−1)

UT x = Uĝ(Λ)UT x = ĝ(L)x

yTLy = 367.18

y = g(L) 10: localized on sensor

0 2 4 6 8 10 12 14
0.0

0.5

1.0

g() = exp(0
max)

g(): filter defined in the spectral domain

0 20 40 60 80 100
0

5

10
y = g(L) 50: localized on ring graph

yTLy = 6.83 0 2 4 6 8 10 12 14
0.0

0.5

1.0

g() = exp(5
max)

0 20 40 60 80 100
0

1

2

yTLy = 0.00 0 2 4 6 8 10 12 14
: laplacian's eigenvalues / graph frequencies

0.0

0.5

1.0

g() = exp(100
max)

0 20 40 60 80 100
0.0

0.2

0.4

0
1
2
3
4
5
6
7
8

0.2
0.4
0.6
0.8
1.0
1.2
1.4

0.115
0.120
0.125
0.130
0.135
0.140

16 / 36

Learning

I Ideal unknown function: y = f (x).

I Parametrized approximation: y ≈ fθ(x), where θ are the parameters.

I Learning a function: minθ E (y, fθ(x)).

I Example of energy/loss/objective: E (y, x) = ‖y− x‖22

I In our case, f is graph filtering: f (x) = ĝθ(L)x

I Learning by gradient descent (and backpropagation).

θt+1 = θt − ∂E
∂θ

= θt − ∂E
∂f

∂f
∂θ

→ we want a differentiable function f !

17 / 36

Spectral filtering of graph signals
Non-parametric filter, can learn all possible filters:

ĝθ(Λ) = diag(θ), θ ∈ Rn

0 2 4 6 8 10 12 14
: laplacian's eigenvalues / graph frequencies

0.0

0.2

0.4

0.6

0.8

1.0

g(
):

fil
te

r r
es

po
ns

e

g() = exp(5
max)

I Non-localized in vertex domain
I Learning complexity in O(n)
I Computational complexity in O(n2) (& memory)

Variation: a smooth function such as ĝθ(Λ) = Bθ where B is the cubic
spline basis (Bruna, Zaremba, Szlam, and LeCun 2014).

18 / 36

Polynomial parametrization
Shuman, Ricaud, and Vandergheynst 2016

ĝθ(Λ) =
K−1∑
k=0

θkΛk , θ ∈ RK

I Can learn all K -localized filters.
I Distributed computing: only need access to the K -neighborhood.

I K -localized
I Learning complexity in O(K)
I Computational complexity in O(n2)

19 / 36

Filter localization
Hammond, Vandergheynst, and Gribonval 2011, Lemma 5.2

I Value at j of gθ centered at i : (ĝθ(L)δi)j = (ĝθ(L))i,j =
∑

k θk(Lk)i,j

I dG(i , j) > K implies (LK)i,j = 0

0 5 10 15 20
0

5

10

15

20

L0
0 5 10 15 20

0

5

10

15

20

L1
0 5 10 15 20

0

5

10

15

20

L2
0 5 10 15 20

0

5

10

15

20

L3
0 5 10 15 20

0

5

10

15

20

L4

||W0||0 = 0 edges

|L0 6| > 0

||W1||0 = 40 edges

|L1 6| > 0

||W2||0 = 62 edges

|L2 6| > 0

||W3||0 = 108 edges

|L3 6| > 0

||W4||0 = 122 edges

|L4 6| > 0

20 / 36

Filter localization
Shuman, Ricaud, and Vandergheynst 2016

Figure: Localization on regular Euclidean grid.

Figure: Localization on graph with (ĝθ(L)δi)j = (ĝθ(L))i,j .

21 / 36

Recursive formulation with Chebyshev polynomials
Hammond, Vandergheynst, and Gribonval 2011

ĝθ(Λ) =
K−1∑
k=0

θkTk(Λ̃), Λ̃ = 2λ−1n Λ− In

Chebyshev polynomials: Tk(x) = 2xTk−1(x)− Tk−2(x)
with T0 = 1 and T1 = x

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

T n
(x

)

Chebyshev polynomials of the first kind

T_0
T_1
T_2
T_3
T_4

22 / 36

Recursive formulation with Chebyshev polynomials

y = ĝθ(L)x =
K−1∑
k=0

θkTk(L̃)x , L̃ = 2λ−1n L− In

Recurrence: y = ĝθ(L)x = [x̄0, . . . , x̄K−1]θ
x̄k = Tk(L̃)x = 2L̃x̄k−1 − x̄k−2

x̄0 = x
x̄1 = L̃x

I K -localized
I Learning complexity in O(K)
I Computational complexity in O(K |E|) (same as classical ConvNets!)

23 / 36

Learning filters
Defferrard, Bresson, and Vandergheynst 2016

ys,j =
Fin∑
i=1

ĝθi,j (L)xs,i ∈ Rn

I xs,i : feature map i of sample s
I θi,j : trainable parameters

(Fin · Fout vectors of K Chebyshev coefficients)

Gradients for backpropagation:
I ∂E

∂θi,j
=
∑S

s=1[x̄s,i,0, . . . , x̄s,i,K−1]T ∂E
∂ys,j

I ∂E
∂xs,i

=
∑Fout

j=1 gθi,j (L) ∂E
∂ys,j

Overall cost of O(K |E|FinFoutS) operations, |E| ∝ n for sparse graphs

24 / 36

Coarsening
Defferrard, Bresson, and Vandergheynst 2016

Input graph: |V| = 64, |E| = 303

0 5 10 15 20 25 30

0

10

20

30

40

50

60

Coarsening matrix C 64 × 32 Coarsened graph: |V| = 32, |E| = 222

I Inherently combinatorial problem.
I Can be done as pre-processing.
I Greedy node merging with Graclus / Metis (very fast).

25 / 36

Pooling
Defferrard, Bresson, and Vandergheynst 2016

0

1

5
6

4

8
10

9 0 1 2

0

3
2

4
5

0
1

2
2 3 4 51

0 4 51 8 92 3 7 11

7 11

32
1 0

6 10

Pooling as any regular 1D signal
I Node order does not matter → arrange them for local access.
I Nodes at multiple levels are ordered as a tree.
I Satisfies parallel architectures like GPUs.

26 / 36

Graph ConvNet architecture
Defferrard, Bresson, and Vandergheynst 2016

Classification
Fully connected layers

Feature extraction
Convolutional layers

Input graph signals
e.g. bags of words

Output signals
e.g. labels

Graph signal filtering
1. Convolution

2. Non-linear activation

Graph coarsening
3. Sub-sampling
4. Pooling

27 / 36

Structuring documents with a feature graph
Defferrard, Bresson, and Vandergheynst 2016

training data
corpus of N

train
 documents

discriminative words
e.g. 20NEWS: 65k discriminative

words for 1M unique words

testing data
corpus of N

test
 documents

bus

path

car
time

light

age

bus

car
time

age

politics
economics
sciences
religions

Classes

System output
manually labelled

System
input

Signals
normalized bags of words

Nodes
Dictionary

Weighted edges
Embedding word

similarity

28 / 36

Various applications

I Transductive learning
[Kipf and Welling 2016; Manessi, Rozza, and Manzo 2017]

I Quantum Chemistry
[Duvenaud et al. 2015; Gilmer, Schoenholz, Riley, Vinyals, and Dahl 2017]

I High Energy Physics
I Computer Graphics [Monti, Boscaini, et al. 2016; Yi, Su, Guo, and Guibas

2016; Wang, Gan, Zhang, and Shui 2017; Simonovsky and Komodakis 2017]
I Community detection [Bruna and Li 2017]
I Brain analysis

[Ktena et al. 2017; Parisot et al. 2017; Anirudh and Thiagarajan 2017]
I Matrix completion for recommendation

[Monti, Bronstein, and Bresson 2017]
I Neural machine translation

[Bastings, Titov, Aziz, Marcheggiani, and Sima’an 2017]
I Link prediction and entity classification in knowledge bases

[Schlichtkrull et al. 2017]
29 / 36

Time Series

0 20 40 60 80
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

0
1
2
3

I Sensors: temperature, wind, pressure, body signals, etc.
I Stock market
I Text (series of discrete symbols, i.e. words)
I Network activity: energy, transportation, communication, brain

30 / 36

Recurrent Neural Networks & LSTM
Figures by Colah, 2015

31 / 36

Recurrent Graph Convolutional Network
Seo, Defferrard, Bresson, and Vandergheynst 2016

1D signals
I ht = tanh(Wx xt + Whht−1)
I yt = Wht

I State stored in hidden units

Graph signals
I ht = tanh(Wx ∗G xt +Wh∗Ght−1)
I yt = W ∗G ht

I State stored locally on the nodes

I Graph filtering x as y = [x̄0, . . . , x̄K−1]θ is a weighted sum of
diffused versions x̄ of x .

I Data exchanged locally around the K -neighborhood.
I Reduces to independent signals if K = 1 or graph has no edge.

32 / 36

Real data: Wikipedia

signal
processing

filters

FIR

IIR

time
series

calculus
Goal: structured times series forecasting

I Anomaly / event detection
I Regulation & Control
I Generative process understanding

Wikipedia network & signals
I Nodes: articles
I Edges: hyper-links
I Signals: number of hits per hour

100 101 102 103 104 105 106

#edges

100

101

102

103

104

105

106

#n
od

es

33 / 36

Structured Time Series

Oct Nov Dec Jan
2015

Feb Mar Apr May Jun
100

101

102

103

104

105

#v
ie

w
s

pe
r

ho
ur

Charlie_Hebdo (2251390)

Oct Nov Dec Jan
2015

Feb Mar Apr May Jun
101

102

103

104

105

#v
ie

w
s

pe
r

ho
ur

Charlie_Hebdo_shooting (44969225)

34 / 36

Conclusion

Instead of engineering feature extractors (filters), learn them.

I Graph are versatile tools to structure real data.
I Neural networks are the most effective ML algorithm today.

35 / 36

References
I Paper: Defferrard, Bresson and Vandergheynst, Convolutional

Neural Networks on Graphs with Fast Localized Spectral Filtering,
NIPS, 2016.

I Code: https://github.com/mdeff/cnn_graph

I Paper: Seo, Defferrard, Bresson and Vandergheynst, Structured
Sequence Modeling with Graph Convolutional Recurrent Networks,
arXiv, 2017.

I Code: https://github.com/youngjoo-epfl/gconvRNN

36 / 36

https://arxiv.org/abs/1606.09375
https://arxiv.org/abs/1606.09375
https://github.com/mdeff/cnn_graph
https://arxiv.org/abs/1612.07659
https://arxiv.org/abs/1612.07659
https://github.com/youngjoo-epfl/gconvRNN

