A Network Tour of Data Science (NTDS)

EPFL December 8, 2017

LEARNING ON (GRAPHS

Michaél DEFFERRARD

Ecole Polytechnique Fédérale de Lausanne (EPFL)

Learning

Goal: learn the unknown function f.

y = f(x) = "cat"

Structured data

Why structure data?

» To incorporate additional information.
» To exploit spatial correlations.
» To decrease learning complexity by making geometric assumptions.

Data structured by Euclidean grids.

» 1D: sound, time-series.
» 2D: images.

» 3D: video, hyper-spectral images.

Naturally graph-structured data

Modeling versatility: graphs model heterogeneous pairwise relationships.

Examples of irregular / graph-structured data:
» Social networks: Facebook, Twitter.

» Biological networks: genes, molecules, brain connectivity.

» Infrastructure networks: energy, transportation, Internet, telephony.

O, 2E B P

RS OS5 =Y

QWL ®% @ @~

) .@@ ®, o p ¢ @
@ °9 el e "¢ (L

Social network Brain structure Telecommunication

Notation

G =(V,&, W): undirected and connected graph

V: set of |V| = n vertices
E: set of edges
W € R"*": weighted adjacency matrix

vV vV.v Y

Dj = >_; Wy diagonal degree matrix

Graph Laplacians (core operator to spectral graph theory):
» L=D—-W € R"": combinatorial
» L=1,- D Y2WD~'/2 € R": normalized

The problem

We have:
1. a data matrix X € RVxd,
2. a graph G represented by its Laplacian L € RVXN.

We want:
> to classify the graph G,
> to classify the vertices v,

> to classify the signals x € RV.

6/36

Types of graphs

Sample graph Feature graph

» Semi-supervised learning. » Reduce computations.

» Incorporate external » Incorporate external

information. information.
" e
(O document O word
citation o

~— hyper-link — similarity

. words .*./(\ . documents

Problems: signals, nodes or graphs classification (regression).

Using the structure

Extrinsic: embed the graph in an Euclidean space.

» Each node is represented by a vector.

> Use that embedding as additional features for a fully connected NN.

> Use a convolutional NN in the embedding space.
Possibly very high-dimensional!

Intrinsic: a Neural Net defined on graphically structured data.

» Exploit geometric structure for computational efficiency.

» Starting point: ConvNet, an intrinsic formulation for Euclidean grids.

ConvNets: architecture

Feature maps

-,
*., Output
e

Convolutions Subsampling Convolutions Subsampling Fully connected

Ingredients

1. Convolution (local)

N

Non-linearity (point-wise)

@

Down-sampling (global / local)

>

Pooling (local)

9/36

ConvNets: why?

ConvNets are extremely efficient at extracting meaningful statistical
patterns in large-scale and high-dimensional datasets.

They exploit the geometry.

Key properties

» Convolutional: translation invariance (stationarity).
» Localized: deformation stability & compact filters.

» Multi-scale: hierarchical features extracted by multiple layers.

ConvNets: feature extraction

Zeiler and Fergus 2014

Feature

Low-Level
—

Mid-Level
Feature

High-Level
— —

Feature
1Y

Trainable
Classifier

Figure: Features extracted from ImageNet.

Developed for data lying on Euclidean grids

All operations are well defined and computationally efficient:
1. Convolution — filter translation or fast Fourier transform (FFT).
2. Down-sampling — pick one pixel out of n.
3. Non-linearity — point-wise operation.
4. Pooling — summarize the receptive field.

[l

Image (2D) Video (3D) Sound (1D)

12 /36

ConvNets on graphs

Graphs vs Euclidean grids
» lrregular sampling.
» Weighted edges.

» No orientation (in general).

Challenges

1. Formulate convolution and
down-sampling on graphs.
2. Make them efficient!

13 /36

Graph Fourier basis
Shuman, Narang, Frossard, Ortega, and Vandergheynst 2013

L is symmetric and positive semidefinite — L = UAUT (EVD)

» Graph Fourier basis U = [u1, ..., u,] € R™"

A1 0
» Graph “frequencies” A = e R
0 An

0.2
0.1
0.0
-0.1
-0.2

eigenvector up eigenvector u; eigenvector u; eigenvector us eigenvector us eigenvector us eigenvector ug

14/36

Graph Fourier Transform
Shuman, Narang, Frossard, Ortega, and Vandergheynst 2013

» Graph signal x:)V — R seen as x € R”
» Transform: & = Fg{x} = UTx € R"
> Inverse: x = F; ' {x} = Uk = UUTx = x

x: signal in the vertex domain X: signal in the spectral domain

2

2
1
0

1
-1
-2 o

0 2 4 6 8 10 12 14
0.6 15
0.4
0.2 1.0
0.0
-0.2 0.5
-0.4
-0.6 0.0
0 2 4 6 8 10 12 14
0.2
0.1 1.0
0.0
-0.1 0.5
-0.2
-0.3 00
xTLx=1.03 :

0 2 4 6 8 10 12 14
laplacian's eigenvalues / graph frequencies

15 /36

Filtering with convolution on graphs
Shuman, Narang, Frossard, Ortega, and Vandergheynst 2013

Convolution theorem: y =xxgg=U (UTg®@ UTx) = U (g ® U'x)
&(o) 0
y=x%gg=U UTx = Ug(NUTx = g(L)x
0 é(An—l)

¥ =§(L)810: localized on sensor g(A): filter defined in the spectral domain y =g(L)8so: localized on ring graph
Ire 10 10
7
g 0A
5 J(A) = I
2 05 9(A) exp(,‘m) 5
3
2
1 0.0
0 0
0 20 40 60 80 100
MF1.4 1.0
12
1.0 2
0.8 05
0.6
0.4 !
0.2 0.0 .
0 2 4 6 8 10 12 14 0 20 40 60 80 100
o140 o
0.135
0.130 §(2) = exp(FA2) o4
0125 05 g P
0120 02
0115 g9
Ty = 0.0
y'ly=000 o 2 4 6 8 10 12 14 0 20 40 60 80 100

At laplacian's eigenvalues / graph frequencies

Learning

> Ideal unknown function: y = f(x).

» Parametrized approximation: y = fy(x), where 0 are the parameters.
> Learning a function: ming E(y, fy(x)).

» Example of energy/loss/objective: E(y,x) = ||y — x||3

> In our case, f is graph filtering: f(x) = gp(L)x

» Learning by gradient descent (and backpropagation).

_OE _ . OEOf

t+1 _ gt _ Y=
o =0 00 of 00

— we want a differentiable function f!

17 /36

Spectral filtering of graph signals
Non-parametric filter, can learn all possible filters:

g@(/\) = dlag(a)a 0 eR"

[
o

G(A): filter response

0 2 4 6 8 10 12 14
A: laplacian's eigenvalues / graph frequencies

» Non-localized in vertex domain
> Learning complexity in O(n)
» Computational complexity in O(n?) (& memory)

Variation: a smooth function such as gy(A) = B where B is the cubic
spline basis (Bruna, Zaremba, Szlam, and LeCun 2014).

18 /36

Polynomial parametrization
Shuman, Ricaud, and Vandergheynst 2016

Can learn all K-localized filters.

v

v

Distributed computing: only need access to the K-neighborhood.

K-localized

v

v

Learning complexity in O(K)

v

Computational complexity in O(n?)

19/36

Filter localization
Hammond, Vandergheynst, and Gribonval 2011, Lemma 5.2

» Value at j of gy centered at it (8o(L)d;); = (&o(L))ij = d_p Ok(LX)i)
> dg(i,j) > K implies (L¥);; =0

0 Lt 12 3 L4
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

|L6¢] > 0 |L166] >0 |L266] > 0 |L366] > 0
® 0 06 0 o ® J R
oo o000 r b > ‘
o000 o0 [> ‘ >
o000 o0 > ‘
o000 o0 > °

|W||o =0 edges |IWY||o = 40 edges |IW2||o = 62 edges |IW3||o = 108 edges 1|W#]|o = 122 edges

Filter localization
Shuman, Ricaud, and Vandergheynst 2016

- v v

Figure: Localization on regular Euclidean grid.

Figure: Localization on graph with (g9(L)d;); = (80(L))i ;-

Recursive formulation with Chebyshev polynomials
Hammond, Vandergheynst, and Gribonval 2011

2o(N) = 0kTi(A), A=22'A-1I,
0

PN
-

x
Il

Chebyshev polynomials: Ty (x) = 2xTy_1(x) — Tk—2(x)
with To =1and T; = x

Chebyshev polynomials of the first kind

1.00
0.75
0.50
0.25
z
= 0.00
-0.25 — T0
0.50 r
e — T2
~0.75 — T3
— T4
-1.00
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

22 /36

Recursive formulation with Chebyshev polynomials

K-1

y =8o(L)x = Z aka(Z)X, [= 2)\;1L — 1,
k=0

Recurrence: vy = gy(L)x = [Xo, ..., Xk—1]0

X = Tk(Z)X = 2[)_(/(,1 — Xy_2
)_(0 =X

)_(1:I_X

» K-localized
» Learning complexity in O(K)

» Computational complexity in O(K|£|) (same as classical ConvNets!)

23/36

Learning filters
Defferrard, Bresson, and Vandergheynst 2016

Fin
Yej = &,,(L)x; €R"
i=1

> xs ;: feature map i of sample s

> 0;;: trainable parameters
(Fin - Four vectors of K Chebyshev coefficients)

Gradients for backpropagation:

O9E S = s . T JE
> 89,-,1' = 25:1[){571707 .. 7X57’7K_1 ays,j

9E F OE
> % Zjlult ge/',j(L) dys

Overall cost of O(K|E|FinFoutS) operations,

E| « n for sparse graphs

24 /36

Coarsening
Defferrard, Bresson, and Vandergheynst 2016

Input graph: |V| =64, |E| =303

Coarsening matrix C € g% *32 Coarsened graph: |V| =32, |E| =222
0

ety
20 ¢ \ "'/ i =

0 5 10152025 30

» Inherently combinatorial problem.

» Can be done as pre-processing.

> Greedy node merging with Graclus / Metis (very fast).

25/36

Pooling

Defferrard, Bresson, and Vandergheynst 2016

Pooling as any regular 1D signal

» Node order does not matter — arrange them for local access.
» Nodes at multiple levels are ordered as a tree.

» Satisfies parallel architectures like GPUs.

26 /36

Graph ConvNet architecture

Defferrard, Bresson, and Vandergheynst 2016

Input graph signals > Feature extraction > Classification » Output signals

Fully connected layers

e.g. bags of words Convolutional layers e.g. labels

0= <A< Ay ® TT7=7 Graph coarsening
. . * 3. Sub-sampling
Graph signal filtering Y ® 4. Pooling
1. Convolution \+/(\.
2. Non-linear activation [

27 /36

Structuring documents with a feature graph
Defferrard, Bresson, and Vandergheynst 2016

discriminative words @)
e.9. 20NEWS: 65k discriminative O Nodes
words for 1M unique words o o Dictionary

set Vo of My = |Vo| nodes
Weighted edges’

age
QO time
O
O
System
input
Embedding word

similarity »
set of edges Fo (J
weight matrix Wy € RMoxMo * >
o

training data
corpus of N documents

Classes
politics
economics
sciences
religions

e e "
System output P
manually labelled —_—

(J .
labels y € RNuain e . Signals
E E [] (] ,. normalized bags of words
e
°

signals X = {w;}}L, € RV*Mo
testing data N = Nuzain + Niost

corpus of N, documents

Various applications

» Transductive learning
[Kipf and Welling 2016; Manessi, Rozza, and Manzo 2017]

» Quantum Chemistry
[Duvenaud et al. 2015; Gilmer, Schoenholz, Riley, Vinyals, and Dahl 2017]

» High Energy Physics

> Computer Graphics [Monti, Boscaini, et al. 2016; Yi, Su, Guo, and Guibas
2016; Wang, Gan, Zhang, and Shui 2017; Simonovsky and Komodakis 2017]

» Community detection [Bruna and Li 2017]

» Brain analysis
[Ktena et al. 2017; Parisot et al. 2017; Anirudh and Thiagarajan 2017]

» Matrix completion for recommendation
[Monti, Bronstein, and Bresson 2017]

» Neural machine translation
[Bastings, Titov, Aziz, Marcheggiani, and Sima'an 2017]

» Link prediction and entity classification in knowledge bases
[Schlichtkrull et al. 2017

29 /36

Time Series

> Sensors: temperature, wind, pressure, body signals, etc.

» Stock market

» Text (series of discrete symbols, i.e. words)

» Network activity: energy, transportation, communication, brain

30/36

Recurrent Neural Networks & LSTM

Figures by Colah, 2015

®

!

- ® ® ®)
:

31/36

Recurrent Graph Convolutional Network
Seo, Defferrard, Bresson, and Vandergheynst 2016

1D signals Graph signals
> hy = tanh(Wth + Whht_]_) > hy = tanh(WX*gxt—&— Wh*ght—l)
> yr = Why > yr = Wkg hy
» State stored in hidden units > State stored locally on the nodes
» Graph filtering x as y = [Xo, ..., Xk—1]0 is a weighted sum of

diffused versions x of x.

v

Data exchanged locally around the K-neighborhood.

v

Reduces to independent signals if K = 1 or graph has no edge.

Real data: Wikipedia

Goal: structured times series forecasting
calculus

time signal
Series processing

» Anomaly / event detection

» Regulation & Control

) > Generative process understanding
filters

Wikipedia network & signals
» Nodes: articles
» Edges: hyper-links
» Signals: number of hits per hour

0 Ll
100 10t 102 103 104 108 106
#edges

33/36

Structured Time Series

Charlie_Hebdo (2251390)

108
104
5
2108
o}
a
g
3 102
£
o AR I 0
Oct Nov Dec Jan Feb Mar Apr May Jun
2015
108 Charlie_Hebdo_shooting (44969225)
104

#views per hour
=
o
2

102

Oct Nov Dec Jan Feb Mar Apr May Jun
2015

34/36

Conclusion

Instead of engineering feature extractors (filters), learn them.

» Graph are versatile tools to structure real data.
» Neural networks are the most effective ML algorithm today.

35/36

References

Paper: Defferrard, Bresson and Vandergheynst, Convolutional
Neural Networks on Graphs with Fast Localized Spectral Filtering,
NIPS, 2016.

Code: https://github.com/mdeff/cnn_graph
Paper: Seo, Defferrard, Bresson and Vandergheynst, Structured
Sequence Modeling with Graph Convolutional Recurrent Networks,

arXiv, 2017.

Code: https://github.com/youngjoo-epfl/gconvRNN

36

36

https://arxiv.org/abs/1606.09375
https://arxiv.org/abs/1606.09375
https://github.com/mdeff/cnn_graph
https://arxiv.org/abs/1612.07659
https://arxiv.org/abs/1612.07659
https://github.com/youngjoo-epfl/gconvRNN

