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Abstract

The tunable approximated explicit model predictive control (MPC) comes
with the benefits of real-time tunability without the necessity of solving the
optimization problem online. This paper provides a novel self-tunable control
policy that does not require any interventions of the control engineer during
operation in order to retune the controller subject to the changed working
conditions. Based on the current operating conditions, the autonomous tun-
ing parameter scales the control input using linear interpolation between the
boundary optimal control actions. The adjustment of the tuning parameter
depends on the current reference value, which makes this strategy suitable
for reference tracking problems. Furthermore, a novel technique for scal-
ing the tuning parameter is proposed. This extension provides to exploit
different ranges of the tuning parameter assigned to specified operating con-
ditions. The self-tunable explicit MPC was implemented on a laboratory
heat exchanger with nonlinear and asymmetric behavior. The asymmetric
behavior of the plant was compensated by tuning the controller’s aggressive-
ness, as the negative or positive sign of reference change was considered in
the tuning procedure. The designed self-tunable controller improved con-
trol performance by decreasing sum-of-squared control error, maximal over-
shoots/undershoots, and settling time compared to the conventional control
strategy based on a single (non-tunable) controller.
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Preprint submitted to Journal of Process Control June 3, 2024



1. Introduction

The current crisis of energy resources emphasizes the long-term goal of
achieving sustainable industrial production and optimal energy utilization.
Moreover, minimizing the energy utilization directly reduces the correspond-
ing CO2 emissions. Therefore, sustainable industrial production is focused
on the wide implementation of advanced control methods [1]. A recent sur-
vey on applied thermal engineering focused on energy saving and pollution
reduction from the industrial perspective is provided in [2], and references
therein.

The heat exchangers in their numerous variants are integrated into many
industrial plants as the heat transfer represents the crucial phenomena for
all thermal energy applications [3]. Simultaneously, the utility generation
for heating or cooling is energy-demanding. From the control viewpoint, the
controller design for the heat exchangers is a challenging task due to the
necessity to take into account the nonlinear and asymmetric behavior of the
device, i.e., different plant behavior when the temperature is increasing, in
contrast to the behavior when the temperature is decreasing, see [4].

A very common challenge in terms of the time-varying behavior of heat
exchangers is fouling. The authors in [5] focus on modeling the thermal
efficiency in a cross-flow heat exchanger using an artificial neural network,
which leads to a highly accurate model. In [6], the authors address the effect
of fouling by adjusting the parameters of the proportional–integral–derivative
(PID) controller.

Although the conventional and widely-used PID controllers are robust
and easy to tune, their control performance may not be sufficient. Vari-
ous extensions built above the well-tuned PID controller were developed to
compensate for the nonlinear and asymmetric behavior, often affected by
the additional impact of the uncertain parameters. Such widely-used con-
trol strategies include, e.g., the robust control [7], the gain-scheduling, and
adaptive control. In a recent study [8], the authors suggest to adjust the
controller online, based on a minimization of an objective function designed
to achieve the desired control performance. For the rigorous mathemati-
cal modeling and controller design methods in general, see [9], and for the
controller design tailored for the process control engineers see [10].

One of the promising control strategies addressing all these issues in an
optimal way came with the formation of the model predictive control (MPC),
e.g., see [11]. MPC provides optimal control input based on the minimiza-
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tion of a specified cost function while considering a model of the system.
Compared to linear quadratic controllers (LQR) [12], model predictive con-
trol also includes constraints on the control input or process variables [13],
and additional saturation is not necessary. Moreover, as the optimization
problem is solved in every control step, MPC represents a receding horizon
control policy [14], having a significant benefit mainly in the terms of distur-
bance rejection. The model predictive control was intensively investigated
in connection with heat exchangers. In [15], the authors developed a model
predictive control for a shell and tube heat exchanger. Four robust control
strategies were presented and compared in [16]. A two-level control struc-
ture was applied on a heat exchanger network in [17], where the low level
of control was ensured by MPC and the high level by a supervisory online
optimizer. The fast nonlinear MPC was designed to optimize the waste heat
recovery [18]. The multi-layer control designed in [19] designed the MPC in
the leader loop to optimize the thermal response to improved control perfor-
mance.

The applicability of model predictive control expanded with the paramet-
ric solution of the MPC optimization problem, known as explicit MPC [20].
As the MPC optimization problem is pre-solved offline, it does not need to
be solved in the online phase, i.e., in real-time control. Instead, a piece-wise
affine (PWA) control law is evaluated to apply the optimal control action
in each control step. The complexity of construction of the explicit MPC
controller grows exponentially with the number of considered constraints. If
the MPC design problem can be pre-solved explicitly offline, the consequent
reduced online computational complexity makes the explicit MPC more suit-
able for practical industrial implementation. Nevertheless, the explicit MPC
is not tunable in default as the conventional approach in [20] considers the
penalty matrices with fixed structure and values. The inability to tune the
explicit controller online can be a disadvantage due to varying operating
conditions when the different setups of the controllers are beneficial.

The possibility to tune the explicit MPC online came with the publish-
ing of [21]. The tuning parameter penalizing the control inputs became a
parameter, for which the optimal controller was precomputed. Nevertheless,
the application was limited only to linear cost functions of the optimization
problem. To satisfy the demands for often-used quadratic cost functions, the
approximated tunable explicit MPC was presented in [22]. The technique is
based on two explicit model predictive controllers which differ in the setup
of one penalty matrix. The two explicit MPCs provide upper and lower
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boundary optimal controllers. Based on the evaluation of the two boundary
control inputs, the tuned control input is calculated by linear interpolation.
The follow-up work [23] provided stability and recursive feasibility guaran-
tees by proper choice of the terminal penalty matrix and terminal set con-
straint [24]. Moreover, the strategy in [23] extends the tuning ability based
on any penalty matrix and not just the input penalty.

The idea of approximated tunable MPC with neural networks is presented
in [25]. To ensure the tuning property, the penalty matrices were included in
the training process. As a result, it was possible to tune the neural network-
based controller online, while mimicking the nearly optimal MPC. In [26], the
neural network-based tunable controller MPC was extended with a corrector
which steered the controller such that the constraints on the manipulated
and process variables were satisfied.

The paper [27] pushes the idea of tunable explicit MPC further and deals
with the issues of practical industrial-oriented implementation. In numerous
practical applications, the reference value of the controlled variable is changed
and acquires values from a wide range of operating conditions. The use of
different controller setups can help handle the plant’s nonlinear behavior.
The paper [27] presents a procedure of the self-tunable controller technique.
The controller’s aggressivity is tuned based on the difference between the
reference value and the steady state corresponding to the model linearization
point. In the context of MPC, the aggressiveness is associated with the setup
of the penalty matrices, as it determines the aggressiveness of the final control
input. In general, higher penalization of the controlled states or control error
in the cost function leads to more aggressive control actions. This process
is analogous to increasing the proportional gain in the PID controller. On
the contrary, higher penalization of the input variable leads to more sluggish
control, e.g., see [13]. In [27], the MPC tuning based on the distance from
the steady-state operating point represented a way how to compensate for
the system’s nonlinear behavior.

This work directly extends our results presented in [27], where the basic
principles of the self-tunable approximated explicit MPC were introduced.
In this paper, a novel method of self-tuning parameter setup is introduced.
Compared to [27], the self-tuning method is based on the size of the reference
step change. Moreover, the idea of further scaling of the tuning parameter
is elaborated. The interval of the values of the self-tuning parameter is split
at some certain value and each part of the interval corresponds to the spe-
cific operating conditions defined by the control engineer. In such a way,
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e.g., the system’s asymmetric behavior is compensated. Finally, to investi-
gate the benefits of the proposed approach, the proposed self-tuning control
policy was implemented to control a laboratory-scaled counter-current plate
heat exchanger. This work provides the control performance evaluation and
analysis using the self-tunable controller compared to the boundary explicit
MPCs.

The paper is organized as follows. First, the theoretical backgrounds are
presented in Section 2, where the explicit MPC, the approximated tunable
explicit MPC, and existing self-tunable methods are briefly elaborated. Then,
the novel proposed method of self-tunable procedure is explained in detail
in Section 3. Finally, the experimental results of the self-tuning controller
implementation on a heat exchanger are discussed in Section 4, followed by
the main conclusions in Section 5.

2. Theoretical backgrounds

In this section, the theoretical backgrounds necessary for the proposed
method are summarized. First, the explicit model predictive control is briefly
recalled. Next, the tunable technique of the approximated explicit model
predictive control is introduced. Finally, the ideas of a self-tunable technique
of the approximated explicit MPC are presented.

2.1. Explicit model predictive control

Explicit model predictive control [20] utilizes a parametric solution of
the model predictive control introducing its application range towards the
systems with fast dynamics. Moreover, the explicit solution enables pro-
viding rigorous analysis and certification of the closed-loop system stability,
constraints satisfaction, etc. As the explicit solution is available, real-time
solving of the optimization problem in every control step is omitted. As
this work deals with industrial-oriented implementation, let us consider the
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optimization problem in the following form:

min
u0,u1,...,uN−1

N−1∑
k=0

(
(yk − yref)

⊺Qy(yk − yref) + u⊺
kRuk + x⊺

I,kQIxI,k

)
(1a)

s.t. : x̃k+1 = Ã x̃k + B̃ uk, (1b)

yk = C̃ x̃k, (1c)

uk ∈ U , (1d)

yk ∈ Y , (1e)

x̃0 = θ, (1f)

k = 0, 1, . . . , N − 1, (1g)

where k denotes the step of the prediction horizon N . To obtain the offset-
free control results, the built-in integrator was included in the state-space
model, e.g., see [28]. The prediction model in Eq. (1b)–(1c) has the form of
augmented linear time-invariant (LTI) system for a given augmented state

matrix Ã ∈ Rnx̃×nx̃ , augmented input matrix B̃ ∈ Rnx̃×nu and augmented
output matrix C̃ ∈ Rny×nx̃ . Variables x̃ ∈ Rnx̃ , u ∈ Rnu , y ∈ Rny are
vectors of corresponding augmented system states, control inputs, and system
outputs, respectively. The sets U ⊆ Rnu , Y ⊆ Rny are convex polytopic sets
of physical constraints on inputs and outputs, respectively. These sets include
the origin in their strict interiors. The penalty matrix Qy ∈ Rny×ny , Qy ⪰ 0
penalizes the squared control error, i.e., the deviation between the controlled
output and output reference value yref . The matrix R ∈ Rnu×nu , R ≻ 0
penalizes the squared value of control inputs. The value of integrator is also
penalized in the cost function with the penalty matrix QI ∈ Rny×ny , QI ⪰ 0.
All the penalty matrices are considered to be diagonal due to the applicability
of the self-tunable explicit MPC approach. The parameter θ ∈ Θ in Eq. (1f)
represents the initial condition of the optimization problem for which it is
parametrically pre-computed.

The augmented model of the controlled system with the built-in integrator
in Eq. (1b)–(1c) is rewritten as follows:

x̃k+1 =

[
xk+1

xI,k+1

]
=

[
A 0

−TsC I

] [
xk

xI,k

]
+

[
B
I

]
uk, (2a)

yk =
[
C 0

] [ xk

xI,k

]
, (2b)
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where xI ∈ Rny is the integral of the control error, Ts denotes the sampling
time, and matrices A, B, C are the well-known state-space matrices that
form the augmented LTI model. As a consequence of this extension and
penalization in the cost function in Eq. (1a), not only the control error is
penalized, but also the integrated value, which leads to analogous offset-
free reference tracking results as incorporating an integral part in the PID
controller.

The parametric solution of the optimization problem of the quadratic
programming (QP) in Eq. (1) leads to the explicit solution in the form of
piecewise affine PWA control law defined above the domain consisting of r
critical regions:

u(θ) =


F1 θ + g1 if θ ∈ R1,
F2 θ + g2 else if θ ∈ R2,

...
Fr θ + gr else if θ ∈ Rr,

(3)

where Fi ∈ Rnu×nx and gi ∈ Rnu respectively are the slope and affine sec-
tion of the corresponding control law. The PWA function defined in Eq. (3)
is stored and recalled in the online phase, i.e., during the real-time con-
trol. Based on identifying the specific polytopic critical region Ri, where the
parameter θ belongs, the optimal control input is calculated based on the
associated control law in Eq. (3).

Note, many other formulations of the optimization problems for the ex-
plicit MPC design were formulated mainly in terms of the definition of the
cost functions in Eq. (1a). Also, the incremental (velocity) formulation of
the state-space model is common, but leads to further extension of the vec-
tor of parameters θ, and therefore also the complexity of the explicit MPC
controller increases. Another option for offset-free tracking is introducing
disturbance modeling and estimation. For such an overview see, e.g,. [29]

2.2. Tunable explicit model predictive control

The aggressivity of the controller and the whole nature of the control is
influenced by appropriate fine-tuning of the penalty matrices in the optimiza-
tion problem in Eq. (1). When the multi-parametric QP (mp-QP) problem
is precomputed offline to obtain the corresponding parametric solution, it is
not possible to tune the controller afterward without trading off a significant
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increase in the controller complexity or the performance loss. As the oper-
ating conditions and requirements on controller setup may differ throughout
the control, the ability to adjust the controller’s aggressivity can be very
beneficial.

The idea of approximated tunable explicit MPC comes from the work
[22], where the control action is calculated based on linear interpolation be-
tween two boundary control actions. These control actions result from eval-
uating two boundary explicit MPCs. The boundary explicit controllers are
constructed by solving the optimization problem having the same structure
and setup, except for one of the penalty matrices – the tuned one. Based
on the specific control application, any penalty matrix can be chosen as
the tuned parameter, i.e., this approach is applicable for any penalty ma-
trix. The boundary penalty matrices follow the assumptions on the penalty
matrices from Section 2.1 and are diagonal matrices such that λi,L ≤ λi,U,
∀i = 1, . . . , s, where λ denotes the vector of eigenvalues of the penalty ma-
trix, s is the rank of the tuned penalty matrix, and L, U denote the lower
and upper boundary setup, respectively.

Let us consider the penalty matrices in the cost function in Eq. (1a). The
penalty matrices are scaled in the following way:

R(k) = (1− ρ(k))RL + ρ(k)RU, (4a)

QI(k) = (1− ρ(k))QI,L + ρ(k)QI,U, (4b)

Qy(k) = (1− ρ(k))Qy,L + ρ(k)Qy,U, (4c)

where ρ represents the tuning parameter such that 0 ≤ ρ ≤ 1 holds. Based
on the rules in Eq. (4), it is possible to choose online any controller setup
from the lower to the upper boundary of the tuned matrix. From the imple-
mentation point of view, it is preferred to tune just a single penalty matrix,
i.e., to store only two controllers corresponding to the boundary values of
the selected penalty matrix. To determine which penalty matrix in Eq. (4)
should be tuned, it is suggested to judge the control performance by system-
atic tuning of all the penalty matrices. Systematic tuning involves selecting
a specific penalty matrix and observing the control results by gradually in-
creasing or decreasing the diagonal elements of the matrix. This process is
then repeated for the remaining penalty matrices in a similar manner.

When the tuning parameter ρ is determined based on the current control
conditions, the approximated optimal control action is evaluated using the
two optimal controllers. Based on the boundary control actions, the interpo-
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lated, i.e., tuned control action is calculated using the convex combination:

u(k) = (1− ρ(k))uL(k) + ρ(k)uU(k), (5)

where uL and uU denote the optimal control actions from the lower and upper
boundary controller, respectively. The online tuning of the controller comes
with the cost of storing and evaluating two explicit controllers. Nevertheless,
the ability to tune the controller may be more important in many practical
applications.

The concept of explicit MPC tuning is applicable to a wide class of MPC
design formulations, based on the current specific needs. Without loss of
generality, hereafter, let us consider the penalty matrices of the cost function
in Eq. (1a), as it is necessary to satisfy offset-free reference tracking.

Remark 2.1. If the asymptotic stability and recursive feasibility guarantees
are required, the reader is referred to follow the instructions from [23]. In
order to satisfy these requirements, the study introduces a procedure for com-
puting the common terminal penalty and terminal set for the two boundary
controllers.

Remark 2.2. Not only Eq. (5) needs to be chosen for interpolation of the
control input. Another way of tuning of the control input can be using some
nonlinear relation for the interpolation.

2.3. Self-tunable explicit model predictive control

The advantage of a tunable controller brings a question of how to design
the logic of setting the tuning parameter ρ. In this section, the idea of
online self-tuning is summarized [27]. The concept of self-tuning provides the
possibility to adjust the aggressiveness of the controller without the necessity
to intervene and tune the penalty matrices during control.

The need for real-time controller tuning often arises from tracking a time-
varying piece-wise constant (PWC) reference. The work [27] focuses on ad-
justing the penalty matrix when the reference value is changed. The further
the reference value is from the steady state, the more aggressively the con-
troller is tuned. The idea behind the suggested scaling lies in compensation
for the nonlinear behavior of the system.

Consider a single-input and single-output (SISO) system or a system with
completely decoupled pairs of the control inputs and the system outputs.
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Then, the procedure of tuning the controller is based on evaluating the dif-
ferent operating points between the current value of the reference and the
system steady-state value. This deviation is considered to scale the value of
control action. First, the maximal admissible absolute value of the reference
is defined. Analogous to the reference trajectory preview concept of MPC
design, this value can be determined based on the general knowledge of the
expected future reference values. Another suggestion is to set the maximal
deviation dmax based on the constraints on system outputs:

dmax = max(|ymin|, ymax), (6)

where the symbol |.|, hereafter, denotes the element-wise absolute value, ymin

and ymax are respectively lower and upper bound on the output variable in
the deviation form, i.e., zero (origin) corresponds to the system steady-state
value. Using the information about the maximal possible deviation dmax,
the tuning parameter ρ can be calculated as the ratio between the current
reference value and the maximal deviation:

ρ(k) =
|yref(k)|
dmax

. (7)

Based on Eq. (7), the property 0 ≤ ρ ≤ 1 holds, as |yref | ≤ dmax. As a con-
sequence, the parameter ρ represents a way how to normalize the deviation
from the steady-state value and is exploited to scale the control action or,
implicitly, to tune the aggressiveness of the controller.

Note that the reference value must be reachable from the operating range
to ensure that 0 ≤ ρ ≤ 1 holds. Otherwise, the interpolated control action
would be the “extrapolation” leading to the loss of guarantees on the input
or state constraints satisfaction, etc.

When considering tuning the control action based on Eq. (5), a higher
value of tuning parameter ρ leads to approaching the upper boundary con-
troller and vice versa. When tuning, e.g., the matrix Qy penalizing the
control error, a higher ratio ρ would lead to more aggressive control actions.
When operating with the reference value close to the system steady-state
value, the parameter ρ decreases and the control profiles become sluggish.

Remark 2.3. In general, the parameter dmax is a vector, as it depends on
the size of the system outputs. If dmax is scalar, the parameter ρ is scalar as
well and can be directly utilized to scale the control action. If multiple outputs
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are controlled, it is suggested to calculate the tuning parameter based on the
maximal ratio as follows:

ρ(k) = max

(
|yref(k)|
dmax

)
. (8)

Note that the relations in Eq. (7) and Eq. (8) operate with the absolute
value of the reference. It is not taken into account whether the reference value
changed upwards or downwards with respect to the system steady-state value
placed in the origin, i.e., whether the inequality ∆ref(k) = yref(k)− yref(k −
1) > 0 holds or ∆ref(k) < 0. As many plants have nonlinear behavior with
an asymmetric nature (different behavior when the process variable is rising
or decreasing), the positivity or negativity of the reference change could
be considered in the controller self-tuning procedure to improve the control
performance.

3. Methodology

This section extends the ideas of self-tunable explicit MPC in order to
improve control performance. First, a different way of tuning parameter
calculation is introduced. Furthermore, an extended self-tunable technique
is presented to scale the tuning parameter for industrial-oriented applications,
when it is beneficial to exploit a specific range of the tuning parameter in
different operating conditions.

3.1. Tuning parameter based on the size of reference change

The approach of self-tunable explicit MPC in [27] suggested tuning based
on the current reference value distance from the steady state. The aim is
to compensate for the nonlinear behavior of a system when using a simple
linear prediction model. This work provides also another useful way of the
real-time evaluation of the tuning parameter ρ based on the size of reference
change. When different sizes of reference step changes are made and the
behavior of the closed-loop system is varying, it can be beneficial to include
the size of the reference step change in the tuning procedure.

In this approach, the aggressivity is adjusted based on the ratio between
the reference step change and the maximal reference step change that can be
realized during the control operation:

ρ(k) =
|∆ref(k)|
∆max

, (9)
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where ∆ref(k) = yref(k)− yref(k − 1) is the size of the reference step change.
The denominator of Eq. (9) is changed as well. In contrast to the maximal
deviation from the steady state in Section 2.3, this approach introduces ∆max

as the maximal possible reference step change. Analogously to the original
approach, the maximal reference step can be set based on the general knowl-
edge of the expected future reference values, i.e., ∆max = ∥∆ref(k)∥∞,∀k ≥ 0.
Another option is to exploit the information about the system constraints
and set the parameter ∆max according to Eq. (6).

Note, only the absolute value of ∆ref and ∆max are considered in this
procedure to ensure ρ ≥ 0.

In Eq. (9), it is suggested to increase the value of tuning parameter ρ
with increasing value of reference step change. Note, in this work, the larger
value of the tuning parameter leads to adding more weight on the penalty
matrices associated with the upper boundary controller, see Eq. (4). If the
opposite logic of controller tuning is requested, it is possible to adapt the
tuning such that

R(k) = ρ(k)RL + (1− ρ(k))RU, (10)

QI(k) = ρ(k)QI,L + (1− ρ(k))QI,U, (11)

Qy(k) = ρ(k)Qy,L + (1− ρ(k))Qy,U, (12)

hold. This change leads to adding more weight to the lower boundary con-
troller with the increasing value of the tuning parameter ρ.

Remark 3.1. The tuning parameter ρ should be updated only when the ref-
erence changes. Updating the tuning parameter in the control steps when
∆ref = 0 would lead to using tuning parameter ρ with zero value, i.e., the
control input would correspond to one boundary controller and would not be
scaled.

3.2. Self-tunable technique for systems with asymmetric behavior

This paper provides a further extension of the self-tuning method pro-
posed in [27]. The suggested technique of tuning is suitable, e.g., for systems
with asymmetric behavior, but can be used in any application, where “sim-
ple” tuning in the whole range of tuning parameter ρ is not sufficient.

The proposed self-tuning method is based on splitting the interval of the
tuning parameter ρ in order to utilize different parts of the interval in different
operating conditions. Instead of the original value of tuning parameter ρ,
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the adjusted tuning parameter ρ̃ is then utilized to scale the control input
according to Eq. (5).

Definition 3.1 (Decision function). For a given interval of tuning parameter
ρ, 0 ≤ ρ ≤ 1, let ρs, 0 < ρs < 1 be a boundary value splitting the interval
into two parts. Let γ : R → R be an arbitrary function such that 0 ≤ γ ≤ 1
holds. Then the decision function γ is constructed to assign its value either
γ ≤ ρs or γ ≥ ρs.

Various decision functions γ can be considered. In this work, the decision
functions according to Eq. (8) and Eq. (9) are suggested, while Eq. (9) was
implemented in the experimental case study.

Definition 3.2 (Scaling of the tuning parameter). Given the value of tuning
parameter ρ, 0 ≤ ρ ≤ 1, the splitting value of the tuning parameter interval
ρs, 0 < ρs < 1, and the value of the decision function γ, 0 ≤ γ ≤ 1. Then
the scaling of the tuning parameter ρ̃ is given by:

ρ̃ =

{
ρ ρs if γ ∈ ⟨0, ρs⟩,

ρ (1− ρs) + ρs, else if γ ∈ ⟨ρs, 1⟩.
(13)

Remark 3.2. The introduction of splitting the tuning parameter ρ̃ into the
tuning intervals in (13) is not limited only to two intervals. If the nature of
the controlled plant would benefit from splitting the operating range into more
intervals, e.g., when the plant operates in the multiple steady-states values,
then these intervals are simply determined by the corresponding values of ρs,i
for each part of the interval. Next, the tuning rules in (13) are adopted in
an analogous way.

The following outcomes result from Eq. (13).

Lemma 3.2.1. Given control law in (3), its approximation given by the
convex combination in (5), and given scaled tuning parameter ρ̃ according to
Definition 3.2. Then the control action approximated into the form:

u(k) = (1− ρ̃(k))uL(k) + ρ̃(k)uU(k), (14)

preserves the closed-loop system stability and recursive feasibility of the orig-
inal control law in (3).
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Proof. It has been proven [23] that for the asymptotic stable and recursive
feasible pair of control inputs (uL, uU), the approximated control law in (3)
preserves these properties for any ρ satisfying 0 ≤ ρ ≤ 1, see Theorem 3.6
in [23]. It remains to prove that for any value of the scaled tuning parameter
ρ̃ according to the Definition 3.2 the same results hold. The rest of the proof
of Lemma 3.2.1 consists of two parts corresponding to each particular rule
in (13).
First, it is proved that the Lemma 3.2.1 holds for any γ ≤ ρs. Substituting
a lower bound ρ = 0 into (13) leads to ρ̃ = 0. For the upper bound value of
ρ = 1, from (13) holds ρ̃ = ρs < 1. Next, for any value 0 < ρ < 1 evaluation
of the linear rule in (13) leads to the convex combination, i.e., 0 < ρ̃ < ρs
holds. Therefore, any value of ρ̃ satisfies 0 ≤ ρ̃ ≤ ρs < 1. As a consequence,
according to the Theorem 3.6 in [23], the asymptotic stability and recursive
feasibility of the control law in (14) are preserved.
Secondly, it is proved that the Lemma 3.2.1 holds also for any γ ≥ ρs.
Substituting a lower bound ρ = 0 into (13) leads to ρ̃ = ρs. For the upper
bound value of ρ = 1, from (13) holds ρ̃ = 1. Next, for any value 0 < ρ < 1
evaluation of the linear rule in (13) leads to the convex combination, i.e.,
ρs < ρ̃ < 1 holds. Therefore, any value of ρ̃ satisfies ρs ≤ ρ̃ ≤ 1. As a
consequence, according to the Theorem 3.6 in [23], the asymptotic stability
and recursive feasibility of the control law in (14) are preserved.

Remark 3.3. The Lemma 3.2.1 can be extended subject to the multiple in-
tervals in an analogous way following the Remark 3.2.

The advantage of the proposed method remains in the self-tuning of the
controller as in the approach from Section 2.3. Nevertheless, it is required to
appropriately determine the splitting value of the tuning parameter ρs and
assign the parts of the interval to the associated operating conditions.

Remark 3.4. Note, the suggested scaling method is suitable also for online
MPC, as the optimization problem is solved in every control step. Therefore,
it is possible to include the controller tuning in the procedure of computing
the optimal control input.

For a detailed insight into the proposed control technique, the procedure
of self-tuning evaluation is depicted in Figure 1.

From the point of computational complexity, the proposed tuning proce-
dure does not lead to any significantly demanding mathematical operations.
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Figure 1: Scheme of the self-tuning control evaluation.

Simple algebraic operations in Eq. (9) and Eq. (13) are evaluated. Note, the
overall control strategy still comes with the cost of storing and evaluating
two explicit controllers.

4. Results and discussion

In this section, the results of the proposed self-tuning method are analyzed
by an experimental implementation. The self-tuning strategy utilizes tuning
parameter calculation based on the size of reference change (Section 3.1)
and the scaling of tuning parameter based on splitting the interval of the
parameter and assigning the interval parts to specific operating conditions
(Section 3.2).

The plant on which the control was implemented and analyzed is a
laboratory-scaled counter-current liquid-to-liquid plate heat exchanger Arm-
field Process Plant Trainer PCT23 [30], see Figure 2. The schematic of the
plant is depicted in Figure 3. The heat exchanger is 90mm wide, 103mm
long, and 160mm high. The heat exchange is performed between the cold
medium (water) and the hot medium (water). The cold medium as well as
the heating medium are transported to the heat exchanger by two peristaltic
pumps with flexible tubing from silicon rubber. The flow rate of the cold
medium is constant, while the aim of control is to track the reference value
of the outlet cold medium temperature. Therefore, the controlled variable
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Figure 2: Laboratory heat exchanger Armfield Process Plant Trainer PCT23: cold
medium pump (1), heating medium pump (2), cold medium tanks (3), heater for heat-
ing medium (4), heat exchanger (5).

is the cold medium temperature T at the outlet of the heat exchanger. The
inlet cold medium temperature was constant during the whole control, i.e.,
TC = 19◦C. The temperature of the heated cold medium in the outlet stream
was measured by the type K thermocouple. The associated manipulated vari-
able is the voltage U corresponding to the power of the pump feeding the heat
exchanger by the hot medium. The voltage is within the range of [0 − 5]V
normalized into the relative values in percentage. The maximal voltage 5V
or 100% corresponds to volumetric flow rate 11.5ml s−1. For further technical
specifications of the laboratory heat exchanger, the reader is referred to [30].
As heat exchange is a nonlinear and asymmetric process [10], this heat ex-
changer represents a suitable candidate for the presented controller tuning
strategy. The corresponding illustrative scheme of the implemented closed-
loop control setup is in Figure 6, where the “Self-tuning” block substitutes
the more detailed scheme of the tuning procedure in Figure 1.

The system was identified by experimental identification. The aim was
to work with linear nominal model in MPC optimization problem to de-
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Figure 3: Scheme of Armfield PCT23. Heat exchanger (I), peristaltic pump for cold
medium (II), peristaltic pump for heating medium (III), tank for cold medium (IV), heater
for heating medium (V), temperature sensors (T – controlled temperature, TC – cold
outlet cold medium temperature, TH – heating medium temperature), and electric power
for maintaining the temperature of the heating medium (W).

crease the numerical complexity. To avoid plant-model mismatch in order
to ensure offset-free tracking, either disturbance observer or built-in inte-
grator (Eq. (1)) can be employed. Due to the ease of implementation, in
this work, the built-in integrator was considered. The system was identified
based on several measured step responses. The step changes were performed
in the whole range of admissible values of manipulated variable and every
step response was identified by transfer function. It was possible to identify
every step response as a first-order system, while the nominal gain and time
constant are respectively K = 0.24 ◦C and τ = 5.7 s. Finally, the nominal
transfer function was converted to the state-space model. The matrices of
the discrete-time state-space model of the plant are

A =
[
0.839

]
, B =

[
0.039

]
, C =

[
1
]
, (15a)

considering the sampling time Ts = 1 s. To respect the physical limitations
of the operating conditions, the constraints are considered in the terms of
control inputs

−15% ≤ u ≤ 65%, (16)

where the variable u represents the control inputs in the deviation form.
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The values of the heated cold medium temperature and voltage of the heating
medium pump corresponding to zero steady states are respectively T s = 35 ◦C
and U s = 35%. Therefore, the physical constraints on the manipulated
variable are actually

20% ≤ U ≤ 100%. (17)

As the controlled system is naturally stable even if the maximal or mini-
mal value of the manipulated variable is constantly applied, the constraints
on the controlled variable in Eq. (1e) could be omitted. On the other hand,
unbounded states/outputs lead to higher memory consumption, because cov-
ering the whole possible range of parameters requires more critical regions.
Therefore, the “redundant” constraints on the system outputs were included
in order to reduce the number of critical regions and the overall memory
footprint of the explicit controllers. The output constraints were set as:

−15 ◦C ≤ y ≤ 20 ◦C. (18)

The constraints in Eq. (18) are equal to physical temperature as follows:

20 ◦C ≤ y ≤ 55 ◦C, (19)

which corresponds to the range of temperature values which are achievable
in the considered laboratory conditions and setup.

The penalty matrices of the problem in Eq. (1) were systematically tuned,
and the corresponding control setup was implemented on the laboratory heat
exchanger for each setup of the considered explicit MPC controllers. First,
the tuning procedure aimed to determine which penalty matrix is the most
suitable for real-time tuning. The most relevant was the penalty matrix Qy as
the tuning is directly associated with a reference value, which takes place in
the calculation of the tuning factor ρ. Moreover, the tuning of Qy preserved
a satisfactory control performance. Next, the boundary values of the tunable
matrix Qy were tuned until the following limit values were determined based
on the measured closed-loop control data: Qy,L = 100 and Qy,U = 1000. The
built-in integrator was penalized with the fixed penalty matrixQI = 1 and the
control input with the fixed penalty matrix R = 10. The prediction horizon
N was set to 20 control steps. The explicit model predictive controllers were
constructed in MATLAB R2020b using the Multi-Parametric Toolbox 3 [31].

The explicit MPC corresponding to the penalty matrix Qy,U contains
1 680 critical regions, and the explicit MPC with the penalty matrix Qy,L
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Figure 4: Polytopic partition of the upper boundary explicit MPC.

contains 409 critical regions. The corresponding polytopic partitions can be
seen in Figure 4 for the upper boundary controller and Figure 5 for the lower
boundary controller.

The designed explicit model predictive controllers were implemented to
track a time-varying PWC reference. For the initial 200 seconds, the reference
temperature was the steady-state value. After that, the reference changed
its value twice upwards and twice downwards. The reference changes also
acquired different sizes in order to examine the proposed tuning method as
it is dependent on the size of the reference step change. Specifically, the
reference temperature values were Tref = 35 ◦C, 45 ◦C, 50 ◦C, 45 ◦C, 35 ◦C.

Besides the control design of two boundary explicit MPCs, it was neces-
sary to keep the temperature of the heating medium constant. The heating
medium was transported back to the heater after leaving the heat exchanger,
i.e., the volume of the heating medium was recycled during the whole oper-
ation. The temperature of the heating medium was maintained on the value
70 ◦C with a simple proportional controller with proportional gain P = 20.
The control input from the proportional controller was the electric power
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Figure 5: Polytopic partition of the lower boundary explicit MPC.

which could acquire the values in the range [0− 2] kW and was also normal-
ized to percentage.

The control profiles generated for both considered boundary control se-
tups are compared in Figure 9 for the controlled variable, and in Figure 10 for
the control inputs. Note, the constructed explicit MPC controller computed
control inputs to respect the constraints on the control inputs and they need
not be truncated afterward.

An interesting phenomenon can be observed while tracking the third refer-
ence value, i.e., Tref = 50 ◦C. Although the steady-state values of temperature
have the same value, the values of the manipulated variable are different. To
check the correctness of the results, the measurements were performed mul-
tiple times and led to the same behavior. Also, the inlet temperatures of the
cold and heating medium were checked to exclude the effect of a disturbance.
Regarding the temperature of the cold medium, due to the limited hardware
interface, it was not possible to measure the data continuously, store them,
and plot the trajectory in a Figure. Nevertheless, the temperature of the
cold medium was manually checked multiple times during the experiment
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and was constant.
Regarding the temperature of the heating medium, the corresponding

trajectories of the temperature can be seen in Figure 11, and the electric
power, i.e., the corresponding manipulated variable, can be seen in Figure 12.
Note that the legends correspond to the specific setup of MPC, but the
temperature of the heating medium was controlled with a simple P controller
with the same proportional gain in every control scenario.

It can be seen that the temperature of the heating medium remains rel-
atively constant during the whole control, except for the undershoots in the
scenario with upper boundary MPC, i.e., blue trajectory. The undershoots
can be easily associated with the trajectory of the voltage on the pump dosing
the heating medium (and ultimately the heating medium flow rate). As the
upper boundary MPC calculated “aggressive” control inputs, the increased
flow rate of the heating medium led to a slight decline in the heating medium
temperature. After approximately 100 seconds, the heating medium warmed
up to the reference value, i.e., TH,ref = 70◦C and remained constant within
the accuracy of the temperature sensor. It can be seen that although the
temperature of the heating medium is constant and identical for all control
scenarios (MPC setups), the value of the voltage on the pump dosing the
heating medium is not the same when tracking the temperature Tref = 50◦C.
Therefore, the same conditions were fulfilled for all control scenarios.

The reason for this behavior could be explained by the peak of the manip-
ulated variable associated with the upper boundary controller at time 800 s,
see Figure 10, blue. After approximately 100 s, the value of the manipulated
variable dropped and settled at a value lower than the value associated with
the lower boundary controller, see Figure 10, red. This is a consequence of
the heat accumulated inside the heat exchanger plates, and therefore, less
heating medium was necessary to heat the cold medium. This phenomenon
does not happen when tracking the reference value Tref = 45 ◦C, which origi-
nates in the nonlinear nature of the heat transfer process. When working in
a higher temperature range, the gain of the heat transfer process decreases,
and the sensitivity to changes in the heating medium flow is lower. Therefore,
even different flow rates of the heating medium lead to the same temperature
at the outlet.

The trajectories in Figure 9 show the asymmetric nature of controlling
the plant of plate heat exchanger mainly when observing the overshoots and
undershoots. When applying the control inputs associated with the lower
boundary penalty matrix Qy,L in Eq. (1a), significant undershoots are present

21



Figure 6: Scheme of the implemented closed-loop control setup, where “eMPC” denotes
explicit MPC.

when tracking the reference downwards, i.e., when the reference change is
negative. On the contrary, when implementing the controller associated with
Qy,U in Eq. (1a), the undershoots are negligible, but significant overshoots
can be seen when tracking the reference upwards, see Figure 9, blue.

These main experimental observations established the base for the strat-
egy of controller self-tuning. The strategy follows the ideas summarized in
Section 3. Utilizing the nature of the boundary controller with the penalty
matrix Qy,L is preferred when the reference changes upwards. Therefore, in
these operating conditions, the tuning factor is scaled in the first part of the
whole interval, i.e., closer to the lower bound. On the contrary, tuning the
controller closer to the upper boundary controller associated with Qy,U is
preferred for negative reference step changes. Therefore, in these operating
conditions, the tuning factor is scaled above the splitting value ρs, i.e., closer
to the upper bound. The splitting value of the tuning parameter was chosen
simply in the middle of the interval, i.e., ρs = 0.5. The remaining parame-
ter that needed to be set was the maximal admissible size of the reference
step change ∆max, which was determined to 15 ◦C as the investigated range
of controlled temperature was [35 − 50] ◦C. Based on the aforementioned
parameters and real-time information about the current reference change,
the tuning factor was updated during control. The evolution of the scaled
tuning factor ρ̃ can be seen in Figure 7. When the positive reference changes
are tracked, the tuning factor is scaled below the splitting value ρs. On the
contrary, when the reference changes are negative, the tuning factor is scaled
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Figure 7: Evolution of the scaled tuning factor ρ̃ during real-time control. When tracking
positive reference changes, the tuning factor is scaled below the splitting value ρs (200 –
1 400 s). On the contrary, when the reference changes are negative, the tuning factor is
scaled above the splitting value ρs (1 400 – 2 600 s).

above the splitting value ρs.
The setup of the tuning factor can be associated with tuning of the penalty

matrix Qy according to Eq. (4c). The evolution of the penalty matrix Qy

during control is depicted in Figure 8. Note, the penalty matrix evolution in
Figure 8 does not correspond to tuning of the optimal MPC, but serves for
a deeper insight into the association of the interpolated control inputs with
the optimal explicit MPC setup.

The control input is applied to the system each second, so there is a pos-
sible concern regarding the speed at which two explicit MPCs are evaluated.
By analyzing the computational speed, it was concluded that the approx-
imate control input can be generated in an average time of 0.01 seconds,
which is 100 times faster than the sampling time.

The control results of the self-tunable technique compared to the bound-
ary controllers can be seen in Figure 9 for the controlled variable, and in Fig-
ure 10 for the manipulated variable. It can be seen that the tuned controller
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Figure 8: Evolution of the penalty matrix Qy during real-time control. When tracking
positive reference changes, the controller is tuned to operate closer to the lower boundary
matrix Qy,L (200 – 1 400 s). On the contrary, when the reference changes are negative, the
controller is tuned to operate closer to the lower boundary matrix Qy,U (1 400 – 2 600 s).
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Figure 9: Explicit MPC: Controlled variable trajectory for two boundary controllers and
the tuned one. The solid lines represent the controlled temperature T and the dashed line
represents the reference value.

combined the benefits of the two boundary controllers. The overshoots and
undershoots were reduced, as in the first half of control the penalty matrix Qy

acquired value from the first half of the penalty interval. When tracking the
reference with negative step change, the penalty matrix acquired the values
from the second half of the interval, i.e., closer to the upper bound Qy,U. The
similarity with the boundary controllers can be seen also on the manipulated
variable profiles. Note, the constraints on the input variable were satisfied as
they were scaled using linear interpolation based on the boundary controllers
which are constructed considering the input constraints.

The control performance was also investigated quantitatively. Table 1
summarizes the evaluated control performance criteria computed for the
two boundary controllers and the self-tuned controller. The control per-
formance is evaluated for each reference step change separately. The consid-
ered quality criteria are: sum-of-squared control error SSE, maximal over-
shoot/undershoot σmax and the settling time tϵ for 5%-neighbourhood of the
reference temperature Tref . To provide better readability of the computed
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Figure 10: Explicit MPC: Manipulated variable trajectory for two boundary controllers
and the tuned one. The solid lines represent the voltage U and the dashed lines represent
the constraints.

Figure 11: Auxiliary P controller: The trajectory of heating medium temperature control.
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Figure 12: Auxiliary P controller: The trajectory of electric power controlling the heating
medium temperature.

results in Table 1, the best values, i.e., the minimum values, are emphasized
using a bold font style.

Table 1: Control performance criteria.

Reference step change Qy SSE [◦C2 s] σmax [%] tϵ [s]

35 ◦C → 45 ◦C
1000 714 33.5 16.5
100 867 16.7 12.5

self-tuned 678 15.2 9.5

45 ◦C → 50 ◦C
1000 365 47.2 5
100 606 23.3 26.5

self-tuned 248 19.1 9.5

50 ◦C → 45 ◦C
1000 245 18.9 6.5
100 398 79.6 31

self-tuned 186 24.6 6.5

45 ◦C → 35 ◦C
1000 1 024 18.4 22.5
100 1 402 41.9 90

self-tuned 967 16.5 18.5

27



As can be seen in Table 1, the real-time self-tuning of the explicit MPC
controller helped to improve two to three criteria when tracking each refer-
ence value. The relative improvement in the percentage, denoted by δ, of
using the self-tunable controller is summarized in Table 2 for each reference
step change separately. The values were computed as the difference between
two criteria values corresponding to the optimal and self-tunable MPC, re-
ferred to the self-tunable MPC. The negative numbers represent deterioration
of the specific performance criterion in the corresponding reference tracking.

Table 2: Relative improvement of the control performance using the self-tunable explicit
MPC controller.

Comparison with Qy setup δ SSE [%] δσmax [%] δtϵ [%]

35 ◦C → 45 ◦C
1000 5 121 74
100 28 10 32

45 ◦C → 50 ◦C
1000 47 147 −47
100 144 22 179

50 ◦C → 45 ◦C
1000 32 −23 0
100 114 224 377

45 ◦C → 35 ◦C
1000 6 12 22
100 45 154 386

Average
1000 23 64 12
100 83 102 244

Compared to the considered non-self-tunable controllers, the control tra-
jectories and the evaluated quality criteria confirmed the improved control
performance for the reference tracking control problem of the heat exchanger
with the non-linear and asymmetric behavior. Implementing a self-tunable
explicit MPC controller leads to improved control performance in the most
analyzed quality criteria, see Table 2. In average, the control performance cri-
teria improved compared to the upper and lower boundary MPC respectively
as follows: the squared-error-based criterion (SSE) reduced by 23% and 83%,
the maximal overshoot/undershoot σmax reduced by 64% and 102%, and the
settling time tϵ reduced by 12% and 244%.

In general, utilizing the proposed controller with a scalable aggressive-
ness according to the operating conditions leads to higher accuracy (lower
SSE), lower value of the overshoots (reduced σmax), and faster achieving the
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reference value (decreased tϵ).
Obviously, if there exists a well-tuned “universal” controller that satis-

fies the requirements on the control performance in the whole range of the
considered operating conditions, then the implementation of the self-tuning
procedure is out of scope for such control application. Nevertheless, in nu-
merous practical situations, using only one controller with a constant setup
leads to poor or just “satisfactory” control results, i.e., the reference value
is achieved, but with worse control performance, e.g., leading to high over-
shoots or settling times. When working on our laboratory case study, a set
of different setups of penalty matrices was investigated. In every control sce-
nario, the setup was beneficial only in some working conditions (tracking the
reference upwards or downwards). Therefore, the closed-loop control per-
formance is improved by introducing the benefits of the self-tuning method
based on the two boundary MPC controllers.

Note that this strategy relies on a proper design of the two boundary
controllers. In case a non-negligible disturbance occurs, both boundary con-
trollers should be able to solve a disturbance rejection problem as the final
value of the manipulated variables is interpolated between them. To address
the impact of the disturbances directly in constructing the MPC controller
design, a robust MPC strategy should be considered, e.g., see [32]. Any
robust MPC design method leads to conservative control actions as some
portion of the performance is sacrificed to compensate for the impact of the
disturbances. Nevertheless, if it is possible to obtain the explicit (multi-
parametric) solution of the robust explicit MPC offline, then the same self-
tuning procedure is applicable to interpolate between the control actions from
the robust controllers.

5. Conclusions

This paper deals with the experimental implementation and analysis of
the novel self-tunable approximated explicit model predictive control method
and provides a strategy for an effective self-tuning controller design. Based
on the current value of the piece-wise constant reference, the tuning pa-
rameter is scaled using linear interpolation. The previously published work
related to the self-tunable explicit MPC suggested tuning based on the dis-
tance of the reference value from the system steady-state value. This paper
presents a novel perspective idea of self-tuning based on the size of reference
step change. The self-tuning algorithm aims to compensate for the nonlin-
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ear behavior of the controlled system. The self-tuning parameter is updated
whenever the reference changes. The tuning value is calculated as the ratio
between the size of the reference change and the maximal admissible size
of the reference change, which is specified before operation. Another novel
contribution addresses the challenging control problem of asymmetric sys-
tem behavior by splitting the interval of the self-tuning parameter into two
ranges, while both intervals are assigned to different operating conditions.
The proposed method is implemented on a laboratory-scaled heat exchanger
with nonlinear and asymmetric behavior. The asymmetry makes the plant
a suitable candidate to analyze the benefits of splitting the interval of the
tuning parameter. The decision criterium is negativity or positivity of ref-
erence change. When the reference changed upwards, the control input was
tuned in the first part of the interval and approached the boundary controller
associated with the lower bound on the selected penalty matrix. On the con-
trary, when the reference changed downwards, the control input was tuned
to approach the control input from the boundary controller with the upper
bound on the penalty matrix.

To properly investigate the control results, the control performance was
also judged quantitatively using a set of quality criteria. The self-tunable
control approach outperformed the conventional control strategy handling
just a single controller, i.e., non-tunable controller. In average, the control
performance criteria improved compared to the upper and lower boundary
MPC respectively as follows: the squared-error-based criterion (SSE) reduced
by 23% and 83%, the maximal overshoot/undershoot σmax reduced by 64%
and 102%, and the settling time tϵ reduced by 12% and 244%.

The approach of the self-tunable technique was successfully implemented
on a SISO system but can also be extended to multivariable systems by
utilizing only a single value of the tuning parameter ρ to interpolate the values
of every control input. It is suggested in Eq. (8) that the tuning parameter ρ
can be calculated as the maximal value of all the tuning parameters computed
for every output reference. However, this is straightforward to implement
only for decoupled systems. If there are strong interactions between the
system states, the self-tunable technique is challenging to design. In such
a case, it is necessary to include expert knowledge about the system state
interactions, and the resulting value of the tuning parameter ρ could be
computed, e.g., as a weighted average of the individual tuning parameters.
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Nomenclature

Symbols

A system state matrix

Ã augmented system state matrix
B system input matrix

B̃ augmented system input matrix
C system output matrix

C̃ augmented system output matrix
dmax maximal deviation from the steady-state value
F slope of the affine control law
g section of the affine control law
I identity matrix
k step of the prediction horizon
K system gain, ◦C
N prediction horizon
nu size of system inputs
ny size of system outputs
nx̃ size of augmented system states
P proportional gain of proportional controller
Qx penalty matrix of the built-in integrator
Qx,L lower bound on the penalty matrix of the built-in integrator
Qx,U upper bound on the penalty matrix of the built-in integrator
Qy penalty matrix of the control error
Qy,L lower bound on the penalty matrix of the control error
Qy,U upper bound on the penalty matrix of the control error
R penalty matrix of system inputs
RL lower bound on the penalty matrix of system inputs
RU upper bound on the penalty matrix of system inputs
R critical region
R Euclidean space of real numbers
t time, s
tϵ settling time, s
T temperature, ◦C
TC cold medium temperature, ◦C
TH heating medium temperature, ◦C
TH,ref heating medium reference temperature, ◦C
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Tref reference temperature, ◦C
Ts sampling time, s
T s steady state of temperature, ◦C
u control inputs
uL control inputs associated with the lower boundary controller
uU control inputs associated with the upper boundary controller
U voltage, %
U s steady state of voltage, %
U set of control inputs
W electric power, %
x system states
x̃ augmented system states
xI system states corresponding to the built-in integrator
y system outputs
ymax maximal value of system outputs
ymin minimal value of system outputs
yref reference value of system outputs
Y set of system outputs
0 zero matrix

5.1. Greek letters
δ relative improvement, %
∆max maximal size of the reference change, ◦C
∆ref size of the reference change, ◦C
ρ tuning factor
ρ̃ scaled tuning factor
ρs splitting value of the tuning factor
σmax maximal overshoot, %
τ system time constant, s
θ parameter of optimization problem
Θ set of parameter values
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Abbreviations
eMPC explicit model predictive control
LTI linear time-invariant (system)
LQR linear-quadratic regulator
MPC model predictive control
mp-QP multi-parametric quadratic programming (problem)
PID proportional–integral–derivative (controller)
PWA piece-wise affine (function)
PWC piece-wise constant (function)
QP quadratic programming (problem)
SISO single-input and single-output (system)
SSE sum-of-squared error
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