
GEOProcessing 2015 : The Seventh International Conference on Advanced Geographic Information Systems, Applications, and Services

69

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-383-4

A Segmentation-based Approach for Improving the Accuracy of Polygon Data

Alexey Noskov and Yerach Doytsher
Mapping and Geo-Information Engineering

Technion – Israel Institute of Technology

Haifa, Israel
emails: {noskov, doytsher}@technion.ac.il

Abstract—The suggested method enables us to improve the

accuracy of city planning data by matching it with exact

cadastral data. The existing approaches do not work well in the

case of partial equality of polygon boundaries. The main idea

of the presented algorithm in this paper is based on defining

correspondent segments of polygon boundaries and further

replacing polygon boundary segments of the non-accurate

layer by segments of the accurate data set, segments without

pairs are rectified using ground control points. The resulting

data contain parts of the accurate data set polygon boundaries,

whereas the remaining elements are rectified according to the

replaced boundary segments. A review implemented by
specialists enables us to say, that the results are satisfactory.

Keywords-Polyline similarity; geometry matching; shape

descriptor; topology.

I. INTRODUCTION

The same objects on a map, which are on an equal scale,
could be presented with small differences because of a high
diversity of data sources, organizations, users, or software. In
an ideal situation, accurate geometries of exiting maps
should be used for preparing new data sets or for updating.
Usually, in the real world, new maps are digitized without
respect to existing data sets. In many cases, data are
unavailable, or available with significant restrictions,
because of legal, technical, or other reasons. Additionally,
even if an accurate data set is freely available, people often
do not want to spend time using an existing data set; in most
cases they prefer to digitize new geometries on a satellite
image or scanned map. These data should be aligned using
accurate data sets. This problem is especially sensitive for
large-scale maps and plans [7].

Rectifying data using a set of ground control points is a
popular way of improving the accuracy of a map [18]. The
results of this approach are not satisfactory in many cases,
because rectified objects could not be identical to directly
measured accurate objects. Another possibility is based on
defining correspondent objects on an accurate data set by
geometry or attributes and replacing correspondent objects
[15]. A serious problem with this approach follows from the
fact that objects could be partially similar (e.g., segments of
a polygon boundary are same, other parts are different). In
contrast to existing approaches, the main idea presented in
the paper, an algorithm is based on defining correspondent
segments of polygon boundaries and further replacing
polygon boundary segments of the non-accurate layer by
segments of an accurate data set; segments without pairs are

rectified by ground control points. The proposed algorithm
could be applied for different polygon datasets with small
boundary differences.

The problem is described in the paper using cadastral and
city planning maps. A cadastral map is a comprehensive
register of the real estate boundaries of a country. Cadastral
data are product using quality large-scale surveying with
total station, Differential Global Positioning System devices
or other surveying systems with centimeter precision.
Normally, the precision of maps based on non-survey large-
scale data (e.g., satellite images) is lower. City planning data
contain proposals for developing urban areas. Most city
planning maps are developed by digitizing handmade maps,
using space images. Almost all boundaries have small
discrepancies in comparison to cadastral maps. It is very
important to use exact boundaries or their segments on city
planning data from a cadastral map. The approach described
in the paper enables us to resolve the problem described.

The developed method consists of several stages:
converting polygon layers into topological data format;
splitting polylines (polygon boundaries) into segments;
defining corresponding maximal segments of polylines;
moving segments of land-use boundaries without pairs on
cadastral map boundaries and moving centroids of planning
data polygons according to surrounding boundaries.

This paper is structured as follows: the related work is
considered in Section 2. The source datasets are described in
Section 3. The process of defining initial variables is
described in Section 4. The algorithm of defining
correspondent polylines (main part of the approach) is
presented in Section 5. The process of compiling of the final
map is described in Section 6. The results are discussed in
Section 7.

II. RELATED WORK

Discrepancy problems on digital maps can be resolved in
different ways. Common shape matching techniques are
currently used in the raster and vector fields, and sometimes
in combination with each other. Several common techniques
in the field of Shape Similarity or Pattern Recognition could
be applied to the various needs of the matched objects and
relevant research questions.

Vector matching techniques can be divided into three
main categories.

A. Feature-based matching

This group of methods is based on an object's geometry
and shape. The degree of compatibility of objects is

GEOProcessing 2015 : The Seventh International Conference on Advanced Geographic Information Systems, Applications, and Services

70

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-383-4

determined by their geometry, size, or area. The process is
carried out by a structural analysis of a set of objects and
comparing whether similar structural analysis of the
candidates fits the objects of the other data set [2][13]. In
[15], comparison of objects is based on analysis of a contour
distribution histogram. A polar coordinates approach for
calculating the histogram is used. A method based on the
Wasserstein distance was published by Schmitzer et al. [6].
A special shape descriptor for defined correspondent objects
on raster images was developed by Ma and Longin [22].
Feature-based matching approaches do not allow for
resolving our problem, because they have been developed
mainly for single shapes; but, we can use them as part of our
approach.

B. Relational matching

This group of methods takes objects' relationships into
account. In [5], topological and spatial neighborly relations
between two data sets, preserved even after running
operations such as rotation or scale, were discovered. In
relational matching, the comparison of the object is
implemented with respect to a neighboring object. We can
verify the similarity of two objects by considering
neighboring objects. The problem of non-rigid shape
recognition is studied by Bronstein et al. [4]; the applicability
of diffusion distances within the Gromov-Hausdorff
framework [4] and the presence of topological changes have
been explored in this paper.

C. Attributes-based matching

Matching two data sets' objects by attributes could be
very effective if a similar data model is used. Two types of
attribute matching could be mentioned: Schema-based [11]
and Ontology-based. In [16], an approach based on both
types is presented. Attributes-based matching is a specific
group of approaches; it can only be applied efficiently in
special cases with special data. In most situations it is
ineffective.

The merging and fusion of heterogeneous databases has
been extensively studied, both spatially [10] and non-
spatially [19]. The Map conflation method is based on data
fusion algorithms; the aim of the process is to prepare a map
which is a combination of two or more maps (often for
updating an old map). Map conflation approaches have been
presented in [12][7][18].

Computer Vision algorithms are popular in the field of
data matching [17]. The Open Computer Vision (OpenCV)
framework [3] is widely used today; it provides a number of
"out-of-the-box" functions enabling us to detect and compare
objects and bindings for popular programming languages
(e.g., Python [9]). This makes the OpenCV framework very
useful for data-matching tasks. Delaunay Triangulation [14]
and Voronoi Polygons [1] are very useful techniques for
working with discrete vector data and neighbor analysis. We
should also note that in the practice - data is distributed in
non-topological formats (e.g., Shape File format) and
contains an embarrassment of data analysis, because of a
surplus number of objects, duplication of primitives, e.g.
polygon boundaries, unexpected gaps between objects etc.

We need to use one of the topological data formats presented
by Landa [21] to avoid these obstacles. Additionally, two
perspective methods could be used in GIS data matching to
reduce the time and computer resources required: Genetic
Algorithms [20] help to avoid Brute-force operations in
some cases; OpenCL technology [8] makes it possible to
split a process into a huge number of parallel threads on a
video card.

III. DATA SOURCE

For implementing and testing our approach, GIS data
provided by Survey of Israel have been used. They contain
cadastre and land-use city planning polygon shape files
covering a part of Harish (a town in the Haifa District of
Israel) (see Figure 1). From Figure 2, one can conclude that
transformation of lines would not yield positive results,
because the gaps are extremely variable - the curved parts of
lines consist of different numbers of vertices; thus, even with
correct parameters of transformation, the result would not be
satisfactory.

IV. DEFINING INITIAL VARIABLES

Source shape files have been converted to GRASS GIS 7
topological data format [21]. Data preparation can be divided
into 3 steps:

 Extracting polygon boundaries.

 Splitting polylines into a set of equidistant points.
We have decided to use 2 meters between points.
For depicting this parameter we will use the symbol
d in the paper.

 Calculating an array of distances between the nearest
points of two datasets. Setting of initial measures.

Several initial measures need to be calculated. Maximal
distance (Dmax) between the nearest points of two datasets
and maximal standard deviation (σmax) have been calculated.
To calculate these parameters we need to create a list of 100
percentiles. Then we implement a loop from the first to the
last percentile on the list. Dmax equals percentile i and σmax
equals the double standard deviation of distance in the
interval between percentiles number i and 100 if the
standard deviation of distances between percentiles i-1 and i
is more then 1. We calculate tail parameter (t) as follows: t=
Dmax//d. Tail defines a starting or ending segment of
polyline which could be ignored.

We have developed a special shape descriptor (S),
partially based on the descriptor presented in (Ma et al.,
2011). The descriptor measures the similarity of polylines.
Polylines are more similar if S is larger.

S=∑(exp(-(log10(1+dists_a)-log10(1+dists_b))2)+
exp(-(angles_a-angles_b)2))/matrix_size2

In Equation, 1 means matrix of ones, log10 - logarithm
with base 10, dists_a – matrix of distances between all pairs
of points laid on polyline a. dists_b – matrix of distances
between all pairs of points laid on polyline b. If the number
of points of a line is k, then matrix size is k×k. angles_a and

GEOProcessing 2015 : The Seventh International Conference on Advanced Geographic Information Systems, Applications, and Services

71

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-383-4

angles_b are matrices of angles in radians between all pairs
of points of lines a and b, correspondingly.

A list containing pairs of point sets has been prepared,
where all points laid on line A are closest to points laid on
line B of another dataset. For each element of the list, two
shape descriptors of tails with t number of points have been
calculated and collected into a list of shape descriptors of
tails. St_min, St_max – minimal and maximal elements of
the list. Also, we use maximal tail standard deviation of point
distances (σt), and its (maximal tail) maximal value –
σt_max.

The list of initial variables has been calculated:
Dmax=10.21, σmax=2.31,t=10.21//2=5, St_min=0,
St_max=0.25.

Figure 1. Source data: land-use city planning (color background) and

cadastre (black outline) maps.

Figure 2. Positional discrepancies of city planning (color lines) and

cadastre (black lines) datasets.

V. DEFINING CORRESPONDING LINES OF DATASETS

To define corresponding lines, we have developed a
special descriptor based on several measures: distances
between points, standard deviation of distances, shape
descriptor. Figure 3 depicts the main idea – using
equidistant points on a polyline to detect corresponding
polylines, or segments of polylines. In the figure, a polyline
of cadastral data set with nearest polylines of a city planning
map are presented.

Figure 3. Equidistant points used to calculate similarity of polylines

and polylines’ segments. Red line – city planning dataset, black – cadastre.

The algorithm for line pairs searching is presented in
pseudo code in Figure 4. An explanation follows the listing.

Figure 4. Searching for equal polylines or polylines’ segments.

Foreach idA,idB in get_ids_of_closest_lines(){
 Pts_A = get_points(‘city planning’,idA)
 Pts_B = get_points(‘cadastre’,idB)
 If min(len(Pts_A),len(Pts_B)) > tail {
 Foreach segm in get_segments(Pts_A,Pts_B){
 Pts_A_segm=segm[‘Pts_A’]
 Pts_B_segm=segm[‘ Pts_B’]
 Result_line_pair=find_pair(Pts_A_segm,Pts_B_segm) } }}
Function find_pair(PtsA,PtsB) {
 If (distance(PtsA[0],PtsB[0]) >
 distance(PtsA[0], PtsB[-1])){
 PtsA=reverse(PtsA) }
 Length=min(len(PtsA), len(PtsB))
 Global_measures=[]
 Foreach l in reverse([tail,…,length]){
 Local_measures=[]
 Foreach i in [0,…,len(PtsA)-tail]{
 Foreach j in [0,…,len(PtsB)-tail]{
 cur_measure=Calc_measures(PtsA,PtsB,i,j,l)
 if (cur_measure[0]<max_stand_dev and
 cur_measure[1]<max_distance){
 Local_measures.append(cur_measure)} } }
 Global_measures
.append(Find_local_indicator(Local_measures))
 If Global_measures and (l==length or
len(Global_measures)>tail){
 Gen_desc_list=[calculate_global_indicator(cur) for cur in
 Global_measures]
 If max(Gen_desc_list[:-tail])> max(Gen_desc_list[-tail:]){
 Return
Global_measures[index_of_maximal(Gen_desc_list)]} }}
Function Calc_measures(PtsA,PtsB,i,j,l){
 cur_PtsA= PtsA[i:i+l]
 cur_PtsB= PtsB[j:j+l]
 dists=Distances(cur_PtsA,cur_PtsB)
 Return [stand_dev(dists),max(dists),
 min(dists),delta_x,delta_y,
 get_max_stddev_of_tailes(cur_PtsA,cur_PtsB),
 get_min_shape_descr_of_tails(cur_PtsA,cur_PtsB),
 get_shape_descriptor(cur_PtsA,cur_PtsB),
 i, j, l]}

GEOProcessing 2015 : The Seventh International Conference on Advanced Geographic Information Systems, Applications, and Services

72

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-383-4

The pseudo-function gets_the ‘id’s_of_closest_lines ()
and returns a pair of neighboring lines’ ids, points which are
closest. Usually, for one line A, several pairs of ids can be
defined (idA1-idB1, idA1-idB2,..). All id pairs are
processed. Pts_A – points of a city planning dataset are
situated on a line with id idA, Pts_B – points of line idB
(cadastral map). The pseudo function gets_segments (Pts_A,
Pts_B) and splits lines into segments at intervals where the
distance between nearest points is more than Dmax. In the
first line of the pseudo function - finding_pairs (PtsA,PtsB) -
we test distances from start point of line A to start and end
points of line B. If start-start distance is more than start-end,
we invert the order of points in line A. Then we set l,i,j
variables: l – length of line, i - number of starting point on
line A, j - number of starting point on line B. The function
Calc_measures (PtsA, PtsB, i, j, l) and calculates a set of
parameters (standard deviation of distances, shape descriptor,
minimal shape descriptor of line tails, minimal and maximal
distance between points). This enables us to define similarity
of line A segment from i to i+l and for line B - from j to j+l.
Variables i and j which define the optimal segment (pseudo
function Find_local_optimal (Local_measures)) have been
found for each possible length l using (2).

Loc_Ind=(d-Dmax)/(-Dmax)+(s-St_max)/(St_max-St_min)

The meaning of parameters in (2): d – maximal distance
between points of lines A and B for (l,i,j), s - minimal tail
shape descriptor. In this step we have a Global_measures list
containing elements which correspond to some l and contain
measures of line segments with maximal indicator Loc_Ind
derived from the list (Local_measures) with variable (i,j).
This process is illustrated in Figure 5 and 6 (segment length
is 20 meters). The next stage is defining optimal segment
length. In the previous stage we defined optimal segments i,j
for some length l by calculating local indicator Loc_Ind. To
define optimal segment length we use global indicator
G_Ind; its formula is presented as (3).

G_Ind=((σt-σmax)/(-σmax))+(d-Dmax)/(-Dmax)+
+(s-St_max)/(St_max-St_min))∙2+(1-l)/whole_segment_length

In the Equation, σt means maximal standard deviation of
point distances of line segments’ tails; for more details see
Section 4 and (2). The resulting optimal line length is
defined by maximal global indicator G_Ind. The process is
illustrated in Figures 7 and 8.

It is obvious that optimal segment length is 41 meters
(element with maximal G_Ind, according to Figure 8).

Figure 5. Segment of line A (city planning) – green; segment of line

B (cadastre) – blue. Start and end point of the most similar line segments

are red points (i=6,j=6, Loc_ind=0.86); blue points – i=2, j=1,
Loc_Ind=0.026.

Figure 6. Plot of indicator Loc_Ind: X axis – i, Y axis - j.

Figure 7. Segment of line A (city planning) – green; segment of line

B (cadastre) – blue. Nodes of the most similar line segments with different

lengths of segment: red points – l=41,i=5,j=5,G_Ind=2.35; green points –

l=10,i=5,j=5 G_Ind=1.69; blue points – l=43,i=3,j=3 G_Ind=1.64.

Figure 8. Plot of indicator G_ind: X axis – segment length (in

meters), Y axis – G_Ind.

VI. COMPILING A FINAL MAP

At this point, we have the pairs of corresponding
segments. Some segments are overlapped; to resolve
conflicts, a special parameter was developed:

 P= (l-min_len)/range_len+σ/(- σmax)

where, l is length of line of one of the lines in a line pair,
min_len – minimal length of line of all line pairs, range_len
– range of length of all line pairs. A line pair with maximal
P will be saved, others will be removed. The process is
shown in Figure 9.

GEOProcessing 2015 : The Seventh International Conference on Advanced Geographic Information Systems, Applications, and Services

73

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-383-4

After removing overlapping line pairs, we can use a
correspondent line segment of the cadastral dataset instead of
the city-planning dataset.

The lines and line segments of the city-planning dataset
without the corresponding lines of the cadastral dataset have
been moved. Delta X and delta Y have been calculated as
average delta X and delta Y of neighboring nodes of line
pairs. Unclosed boundaries of polygons have been closed by
moving nodes of an unclosed line to the nearest node of a
neighboring line (see Figure 10). Centroids of polygons of
the city-planning dataset have been moved according to
average delta X and delta Y of those boundaries weighted by
lengths.

Figure 9. Overlaped line pairs: red line pair – P=1.23, green line pair

– P=1.09 . Green line pair will be removed.

Figure 10. Moving segments without pairs and closing boundaries:

green – lines that do not have pairs in cadastral dataset, blue – moved green

lines, red – closing boundary by moving nodes, black – cadastral pair of
city-planning line segments.

VII. RESULTS AND CONCLUSION

Results are presented in Figure 11 and Figure 12. We can
conclude that most line segments have been taken from the
cadastral dataset; others have been transformed to
correspond with cadastral polyline segments. The result
looks satisfactory; the final map is holistic and does not
contain significant deficiencies. In the future, we need to test
the approach with more datasets and different parameters, to
compare with other approaches, to reduce calculation speed
(the execution currently requires about one hour, too long for
such a small dataset), and to investigate the reasons for
deficiencies and unexpected geometries on the final map.

An approach for improving the accuracy of polygons’
data is presented. The land-use city planning dataset
locations have been corrected according to the cadastral
dataset. The polylines’ segments along the polygons have
been split by equidistant points. Analysis has been performed
using statistics based on the points of the neighboring
polylines of the two datasets. A set of parameters has been
used: shape descriptor of polyline segments, standard
deviation of point distances, minimal and maximal point
distances, standard deviation of segment tails, etc. A set of
correspondent polyline segments has been found using
special indicators, which enables us to find optimal segments
from the list of polyline segments with different length and
starting point. The polyline segments of the city planning
data with similar/identical parameters to the segments of the
cadastral data were linked to these segments (defining

counterpart segments). Segments without a counterpart have
been transformed.

To implement the approach, we used Python 2.7
programming language (with numpy, scipy and matplotlib
additional libraries), GRASS GIS 7.1, and Debian
GNU/Linux 8 operating system.

Figure 11. Results. Extent 1. Red – land-use city planning dataset,

black – cadastral dataset. Upper – original data, lower –result.

GEOProcessing 2015 : The Seventh International Conference on Advanced Geographic Information Systems, Applications, and Services

74

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-383-4

ACKNOWLEDGEMENT

This research was supported by the Survey of Israel as a
part of Project 2019317. The authors would like to thank the
Survey of Israel for providing the financial support and data
for the purpose of this research.

Figure 12. Results. Extent 2. Red – land-use city planning dataset,

black – cadastral dataset. Upper – original data, lower –result.

REFERENCES

[1] F. Aurenhammer, “Voronoi diagrams—a survey of a
fundamental geometric data structure,” ACM Computing
Surveys (CSUR), vol. 23(3), 1991, pp. 345-405.

[2] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and
object recognition using shape contexts,” IEEE Trans. on

Pattern Analysis and Machine Intelligence, 24(4), 2002, pp.
509—522.

[3] G. Bradski and A. Kaehler, “Learning OpenCV: Computer
vision with the OpenCV library,” O'Reilly Media, Inc, 2008.

[4] A. Bronstein, R. Kimmel, M. Mahmoudi, and G. Sapiro, “A
Gromov-Hausdorff framework with diffusion geometry for
topologically-robust non-rigid shape matching,” International
Journal of Computer Vision, vol. 89(2-3), 2010, pp. 266-286.

[5] X. Chen, “Spatial relation between uncertain sets,”
International archives of Photogrammetry and remote sensing,
vol. 31(B3), Vienna, 1996, pp. 105-110.

[6] Schmitzer, Bernhard, and S. Christoph, "Object segmentation
by shape matching with Wasserstein modes," Energy
Minimization Methods in Computer Vision and Pattern
Recognition, Springer Berlin Heidelberg, 2013.

[7] S. Filin and Y. Doytsher, “The detection of corresponding
objects in a linear-based map conflation,” Surveying and land
information systems, vol. 60(2), 2000, pp. 117-127.

[8] B. Gaster, L. Howes, D. Kaeli, P. Mistry, and D. Schaa,
“Heterogeneous Computing with OpenCL: Revised
OpenCL1,” Newnes, 2012.

[9] J. Howse, “OpenCV Computer Vision with Python,” Packt
Publishing Ltd, 2013.

[10] C. Parent and S. Spaccapietra, “Database integration: the key
to data interoperability,” Advances in Object-Oriented Data
Modeling, M. P. Papazoglou, S. Spaccapietra, Z. Tari (Eds.),
The MIT Press, 2000.

[11] E. Rahm and P. Bernstein, “A survey of approaches to
automatic schema matching,” The International Journal on
Very Large Data Bases (VLDB), vol. 10(4), 2001, pp. 334–
350.

[12] A. Saalfeld, “Conflation-automated map compilation,”
International Journal of Geographical Information Science
(IJGIS), vol. 2 (3), 1988, pp. 217–228.

[13] E. Safra, , Y. Kanza, Y. Sagiv, C. Beeri, and Y. Doytsher,
“Ad-hoc matching of vectorial road networks,” International
Journal of Geographical Information Science, iFirst, 2012, pp.
1–40, ISSN: 1365-8816, ISSN: 1362-3087.

[14] J. Shewchuk, “Triangle: Engineering a 2D quality mesh
generator and Delaunay triangulator,” Applied computational
geometry towards geometric engineering, Springer Berlin
Heidelberg,1996, pp. 203-222.

[15] X. Shu and X. Wu. “A novel contour descriptor for 2D shape
matching and its application to image retrieval”, Image and
vision Computing, vol. 29.4, 2011, pp. 286-294.

[16] P. Shvaiko and J. Euzenat, “A survey of schema-based
matching approaches,” Journal on Data Semantics IV,
Springer Berlin Heidelberg, 2005, pp. 146-171.

[17] C. Steger, M. Ulrich, and C. Wiedemann, Machine vision
algorithms and applications, Weinheim: wiley-VCH, 2008,
pp. 1-2.

[18] V. Walter and D. Fritsch, “Matching spatial data sets: a
statistical approach,” International Journal of Geographical
Information Science (IJGIS), vol. 13 (5), 1999, pp. 445–473.

[19] G. Wiederhold, “Mediation to deal with heterogeneous data
sources,” Interoperating Geographic Information System,
1999, pp. 1–16.

[20] I. Wilson, J.M. Ware, and J.A. Ware, “A genetic algorithm
approach to cartographic map generalisation” Computers in
Industry, vol. 52(3), 2003, pp. 291-304.

[21] M. Landa, “GRASS GIS 7.0: Interoperability improvements,”
GIS Ostrava, Jan. 2013, pp.21-23.

[22] T. Ma and J. Longin, "From partial shape matching through
local deformation to robust global shape similarity for object
detection," Computer Vision and Pattern Recognition
(CVPR), IEEE Conference on. IEEE, 2011, pp. 1441-1448.

