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Abstract—The suggested method enables us to improve the 

accuracy of city planning data by matching it with exact 

cadastral data. The existing approaches do not work well in the 

case of partial equality of polygon boundaries. The main idea 

of the presented algorithm in this paper is based on defining 

correspondent segments of polygon boundaries and further 

replacing polygon boundary segments of the non-accurate 

layer by segments of the accurate data set, segments without 

pairs are rectified using ground control points. The resulting 

data contain parts of the accurate data set polygon boundaries, 

whereas the remaining elements are rectified according to the 

replaced boundary segments. A review implemented by 
specialists enables us to say, that the results are satisfactory. 
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I.  INTRODUCTION 

The same objects on a map, which are on an equal scale, 
could be presented with small differences because of a high 
diversity of data sources, organizations, users, or software. In 
an ideal situation, accurate geometries of exiting maps 
should be used for preparing new data sets or for updating. 
Usually, in the real world, new maps are digitized without 
respect to existing data sets.  In many cases, data are 
unavailable, or available with significant restrictions, 
because of legal, technical, or other reasons. Additionally, 
even if an accurate data set is freely available, people often 
do not want to spend time using an existing data set; in most 
cases they prefer to digitize new geometries on a satellite 
image or scanned map.  These data should be aligned using 
accurate data sets. This problem is especially sensitive for 
large-scale maps and plans [7]. 

Rectifying data using a set of ground control points is a 
popular way of improving the accuracy of a map [18]. The 
results of this approach are not satisfactory in many cases, 
because rectified objects could not be identical to directly 
measured accurate objects. Another possibility is based on 
defining correspondent objects on an accurate data set by 
geometry or attributes and replacing correspondent objects 
[15]. A serious problem with this approach follows from the 
fact that objects could be partially similar (e.g., segments of 
a polygon boundary are same, other parts are different). In 
contrast to existing approaches, the main idea presented in 
the paper, an algorithm is based on defining correspondent 
segments of polygon boundaries and further replacing 
polygon boundary segments of the non-accurate layer by 
segments of an accurate data set; segments without pairs are 

rectified by ground control points. The proposed algorithm 
could be applied for different polygon datasets with small 
boundary differences.  

The problem is described in the paper using cadastral and 
city planning maps. A cadastral map is a comprehensive 
register of the real estate boundaries of a country. Cadastral 
data are product using quality large-scale surveying with 
total station, Differential Global Positioning System devices 
or other surveying systems with centimeter precision. 
Normally, the precision of maps based on non-survey large-
scale data (e.g., satellite images) is lower. City planning data 
contain proposals for developing urban areas. Most city 
planning maps are developed by digitizing handmade maps, 
using space images. Almost all boundaries have small 
discrepancies in comparison to cadastral maps. It is very 
important to use exact boundaries or their segments on city 
planning data from a cadastral map. The approach described 
in the paper enables us to resolve the problem described. 

The developed method consists of several stages: 
converting polygon layers into topological data format; 
splitting polylines (polygon boundaries) into segments; 
defining corresponding maximal segments of polylines; 
moving segments of land-use boundaries without pairs on 
cadastral map boundaries and moving centroids of planning 
data polygons according to surrounding boundaries. 

This paper is structured as follows: the related work is 
considered in Section 2. The source datasets are described in 
Section 3. The process of defining initial variables is 
described in Section 4. The algorithm of defining 
correspondent polylines (main part of the approach) is 
presented in Section 5. The process of compiling of the final 
map is described in Section 6. The results are discussed in 
Section 7. 

II. RELATED WORK 

Discrepancy problems on digital maps can be resolved in 
different ways. Common shape matching techniques are 
currently used in the raster and vector fields, and sometimes 
in combination with each other. Several common techniques 
in the field of Shape Similarity or Pattern Recognition could 
be applied to the various needs of the matched objects and 
relevant research questions. 

Vector matching techniques can be divided into three 
main categories. 

A. Feature-based matching 

This group of methods is based on an object's geometry 
and shape. The degree of compatibility of objects is 



GEOProcessing 2015 : The Seventh International Conference on Advanced Geographic Information Systems, Applications, and Services 

70 

Copyright (c) IARIA, 2015.    ISBN: 978-1-61208-383-4 

determined by their geometry, size, or area. The process is 
carried out by a structural analysis of a set of objects and 
comparing whether similar structural analysis of the 
candidates fits the objects of the other data set [2][13]. In 
[15], comparison of objects is based on analysis of a contour 
distribution histogram. A polar coordinates approach for 
calculating the histogram is used. A method based on the 
Wasserstein distance was published by Schmitzer et al. [6]. 
A special shape descriptor for defined correspondent objects 
on raster images was developed by Ma and Longin [22]. 
Feature-based matching approaches do not allow for 
resolving our problem, because they have been developed 
mainly for single shapes; but, we can use them as part of our 
approach. 

B. Relational matching 

This group of methods takes objects' relationships into 
account. In [5], topological and spatial neighborly relations 
between two data sets, preserved even after running 
operations such as rotation or scale, were discovered. In 
relational matching, the comparison of the object is 
implemented with respect to a neighboring object. We can 
verify the similarity of two objects by considering 
neighboring objects. The problem of non-rigid shape 
recognition is studied by Bronstein et al. [4]; the applicability 
of diffusion distances within the Gromov-Hausdorff 
framework [4] and the presence of topological changes have 
been explored in this paper. 

C. Attributes-based matching 

Matching two data sets' objects by attributes could be 
very effective if a similar data model is used. Two types of 
attribute matching could be mentioned: Schema-based [11] 
and Ontology-based. In [16], an approach based on both 
types is presented. Attributes-based matching is a specific 
group of approaches; it can only be applied efficiently in 
special cases with special data. In most situations it is 
ineffective. 

The merging and fusion of heterogeneous databases has 
been extensively studied, both spatially [10] and non-
spatially [19].  The Map conflation method is based on data 
fusion algorithms; the aim of the process is to prepare a map 
which is a combination of two or more maps (often for 
updating an old map).  Map conflation approaches have been 
presented in [12][7][18]. 

Computer Vision algorithms are popular in the field of 
data matching [17].  The Open Computer Vision (OpenCV) 
framework [3] is widely used today; it provides a number of 
"out-of-the-box" functions enabling us to detect and compare 
objects and bindings for popular programming languages 
(e.g., Python [9]). This makes the OpenCV framework very 
useful for data-matching tasks.  Delaunay Triangulation [14] 
and Voronoi Polygons [1] are very useful techniques for 
working with discrete vector data and neighbor analysis. We 
should also note that in the practice - data is distributed in 
non-topological formats (e.g., Shape File format) and 
contains an embarrassment of data analysis, because of a 
surplus number of objects, duplication of primitives, e.g. 
polygon boundaries, unexpected gaps between objects etc. 

We need to use one of the topological data formats presented 
by Landa [21] to avoid these obstacles. Additionally, two 
perspective methods could be used in GIS data matching to 
reduce the time and computer resources required: Genetic 
Algorithms [20] help to avoid Brute-force operations in 
some cases; OpenCL technology [8] makes it possible to 
split a process into a huge number of parallel threads on a 
video card. 

III. DATA SOURCE 

For implementing and testing our approach, GIS data 
provided by Survey of Israel have been used. They contain 
cadastre and land-use city planning polygon shape files 
covering a part of Harish (a town in the Haifa District of 
Israel) (see Figure 1). From Figure 2, one can conclude that 
transformation of lines would not yield positive results, 
because the gaps are extremely variable - the curved parts of 
lines consist of different numbers of vertices; thus, even with 
correct parameters of transformation, the result would not be 
satisfactory. 

IV. DEFINING INITIAL VARIABLES  

Source shape files have been converted to GRASS GIS 7 
topological data format [21]. Data preparation can be divided 
into 3 steps: 

 Extracting polygon boundaries. 

 Splitting polylines into a set of equidistant points. 
We have decided to use 2 meters between points. 
For depicting this parameter we will use the symbol 
d in the paper.  

 Calculating an array of distances between the nearest 
points of two datasets. Setting of initial measures. 

Several initial measures need to be calculated. Maximal 
distance (Dmax) between the nearest points of two datasets 
and maximal standard deviation (σmax) have been calculated. 
To calculate these parameters we need to create a list of 100 
percentiles. Then we implement a loop from the first to the 
last percentile on the list. Dmax equals percentile i and  σmax  
equals  the double standard deviation of distance in the 
interval between percentiles number i and 100  if the 
standard deviation of distances between percentiles i-1 and i 
is more then 1. We calculate tail parameter (t) as follows: t= 
Dmax//d. Tail defines a starting or ending segment of 
polyline which could be ignored. 

We have developed a special shape descriptor (S), 
partially based on the descriptor presented in (Ma et al., 
2011). The descriptor measures the similarity of polylines. 
Polylines are more similar if S is larger. 

S=∑(exp(-(log10(1+dists_a)-log10(1+dists_b))2)+    
exp(-(angles_a-angles_b)2 )  )/matrix_size2 

In Equation, 1 means matrix of ones, log10  - logarithm 
with base 10, dists_a – matrix of distances between all pairs 
of points laid on polyline a. dists_b – matrix of distances 
between all pairs of points laid on polyline b. If the number 
of points of a line is k, then matrix size is k×k. angles_a and 
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angles_b are matrices of angles in radians between all pairs 
of points of lines a and b, correspondingly. 

A list containing pairs of point sets has been prepared, 
where all points laid on line A are closest to points laid on 
line B of another dataset. For each element of the list, two 
shape descriptors of tails with t number of points have been 
calculated and collected into a list of shape descriptors of 
tails. St_min, St_max – minimal and maximal elements of 
the list. Also, we use maximal tail standard deviation of point 
distances (σt), and its (maximal tail) maximal value – 
σt_max. 

The list of initial variables has been calculated: 
Dmax=10.21, σmax=2.31,t=10.21//2=5, St_min=0, 
St_max=0.25. 

 
Figure 1.  Source data: land-use city planning (color background) and 

cadastre (black outline) maps. 

 
Figure 2.  Positional discrepancies of city planning (color lines) and 

cadastre (black lines) datasets. 

V. DEFINING CORRESPONDING LINES OF DATASETS 

To define corresponding lines, we have developed a 
special descriptor based on several measures: distances 
between points, standard deviation of distances, shape 
descriptor.  Figure 3 depicts the main idea – using 
equidistant points on a polyline to detect corresponding 
polylines, or segments of polylines. In the figure, a polyline 
of cadastral data set with nearest polylines of a city planning 
map are presented.  

 
Figure 3.  Equidistant points used to calculate similarity of polylines 

and polylines’ segments. Red line – city planning dataset, black – cadastre. 

The algorithm for line pairs searching is presented in 
pseudo code in Figure 4. An explanation follows the listing. 

Figure 4.  Searching for equal polylines or polylines’ segments. 

Foreach idA,idB in get_ids_of_closest_lines(){  
    Pts_A     = get_points(‘city planning’,idA)  
    Pts_B =     get_points(‘cadastre’,idB) 
    If min(len(Pts_A),len(Pts_B)) > tail { 
       Foreach segm in get_segments(Pts_A,Pts_B){ 
           Pts_A_segm=segm[‘Pts_A’]  
           Pts_B_segm=segm[‘ Pts_B’]  
           Result_line_pair=find_pair(Pts_A_segm,Pts_B_segm)   } }} 
Function find_pair(PtsA,PtsB) {  
   If (distance(PtsA[0],PtsB[0]) >  
     distance(PtsA[0], PtsB[-1])){ 
     PtsA=reverse(PtsA)   } 
   Length=min(len(PtsA), len(PtsB))  
   Global_measures=[ ] 
   Foreach l in reverse([tail,…,length]){ 
     Local_measures=[ ] 
     Foreach i in [0,…,len(PtsA)-tail]{  
       Foreach j in [0,…,len(PtsB)-tail]{  
          cur_measure=Calc_measures(PtsA,PtsB,i,j,l) 
          if (cur_measure[0]<max_stand_dev and  
               cur_measure[1]<max_distance){ 
             Local_measures.append(cur_measure)} } } 
     Global_measures 
.append(Find_local_indicator(Local_measures)) 
     If Global_measures and (l==length or 
len(Global_measures)>tail){ 
        Gen_desc_list=[calculate_global_indicator(cur) for cur in                     
                                   Global_measures]   
        If max(Gen_desc_list[:-tail])> max(Gen_desc_list[-tail:]){ 
            Return 
Global_measures[index_of_maximal(Gen_desc_list)]} }} 
Function Calc_measures(PtsA,PtsB,i,j,l){ 
   cur_PtsA= PtsA[i:i+l] 
   cur_PtsB= PtsB[j:j+l] 
   dists=Distances(cur_PtsA,cur_PtsB) 
   Return [stand_dev(dists),max(dists), 
     min(dists),delta_x,delta_y, 
    get_max_stddev_of_tailes(cur_PtsA,cur_PtsB), 
    get_min_shape_descr_of_tails(cur_PtsA,cur_PtsB), 
    get_shape_descriptor(cur_PtsA,cur_PtsB), 
    i, j, l]}        
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The pseudo-function gets_the ‘id’s_of_closest_lines () 
and returns a pair of neighboring lines’ ids, points which are 
closest. Usually, for one line A, several pairs of ids can be 
defined (idA1-idB1, idA1-idB2,..). All id pairs are 
processed. Pts_A – points of a city planning dataset are 
situated on a line with id idA, Pts_B – points of line idB 
(cadastral map). The pseudo function gets_segments (Pts_A,
Pts_B) and splits lines into segments at intervals where the 
distance between nearest points is more than Dmax.  In the 
first line of the pseudo function - finding_pairs (PtsA,PtsB) - 
we test distances from start point of line A to start and end 
points of line B. If start-start distance is more than start-end, 
we invert the order of points in line A. Then we set l,i,j 
variables: l – length of line, i - number of starting point on 
line A, j  - number of starting point on line B. The function 
Calc_measures (PtsA, PtsB, i, j, l) and calculates a set of 
parameters (standard deviation of distances, shape descriptor, 
minimal shape descriptor of line tails, minimal and maximal 
distance between points). This enables us to define similarity 
of line A segment from i to i+l and for line B - from j to j+l. 
Variables i and j  which define the optimal segment (pseudo 
function Find_local_optimal (Local_measures)) have been 
found for each possible length l using (2). 

Loc_Ind=(d-Dmax)/(-Dmax)+(s-St_max)/(St_max-St_min)        

The meaning of parameters in (2): d – maximal distance 
between points of lines A and B for (l,i,j), s - minimal tail 
shape descriptor. In this step we have a Global_measures list 
containing elements which correspond to some l and contain 
measures of line segments with maximal indicator Loc_Ind 
derived from the list (Local_measures) with variable (i,j). 
This process is illustrated in Figure 5 and 6 (segment length 
is 20 meters). The next stage is defining optimal segment 
length. In the previous stage we defined optimal segments i,j 
for some length l by calculating local indicator Loc_Ind. To 
define optimal segment length we use global indicator 
G_Ind; its formula is presented as (3). 

G_Ind=((σt-σmax)/(-σmax))+(d-Dmax)/(-Dmax)+              
+(s-St_max)/(St_max-St_min))∙2+(1-l)/whole_segment_length 

In the Equation, σt means maximal standard deviation of 
point distances of line segments’ tails; for more details see 
Section 4 and (2). The resulting optimal line length is 
defined by maximal global indicator G_Ind. The process is 
illustrated in Figures 7 and 8.  

It is obvious that optimal segment length is 41 meters 
(element with maximal G_Ind, according to Figure 8). 

 
Figure 5.  Segment of line A (city planning) – green; segment of line 

B (cadastre) – blue. Start and end point of the most similar line segments 

are red points (i=6,j=6, Loc_ind=0.86); blue points – i=2, j=1, 
Loc_Ind=0.026.  

 
Figure 6.  Plot of indicator Loc_Ind: X axis – i, Y axis - j. 

 
Figure 7.  Segment of line A (city planning) – green; segment of line 

B (cadastre) – blue. Nodes of the most similar line segments with different 

lengths of segment: red points – l=41,i=5,j=5,G_Ind=2.35; green points – 

l=10,i=5,j=5 G_Ind=1.69; blue points – l=43,i=3,j=3 G_Ind=1.64. 

 
Figure 8.  Plot of indicator G_ind: X axis – segment length (in 

meters), Y axis – G_Ind. 

VI. COMPILING A FINAL MAP 

At this point, we have the pairs of corresponding 
segments. Some segments are overlapped; to resolve 
conflicts, a special parameter was developed: 

             P= (l-min_len)/range_len+σ/(- σmax)

where, l is length of line of one of the lines in a line pair, 
min_len – minimal length of line of all line pairs, range_len 
– range of length of  all line pairs. A line pair with maximal 
P will be saved, others will be removed. The process is 
shown in Figure 9. 
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After removing overlapping line pairs, we can use a 
correspondent line segment of the cadastral dataset instead of 
the city-planning dataset. 

The lines and line segments of the city-planning dataset 
without the corresponding lines of the cadastral dataset have 
been moved. Delta X and delta Y have been calculated as 
average delta X and delta Y of neighboring nodes of line 
pairs. Unclosed boundaries of polygons have been closed by 
moving nodes of an unclosed line to the nearest node of a 
neighboring line (see Figure 10). Centroids of polygons of 
the city-planning dataset have been moved according to 
average delta X and delta Y of those boundaries weighted by 
lengths. 

 
Figure 9.  Overlaped line pairs: red line pair – P=1.23, green line pair 

– P=1.09 . Green line pair will be removed. 

 

Figure 10.  Moving segments without pairs and closing boundaries: 

green – lines that do not have pairs in cadastral dataset, blue – moved green 

lines, red – closing boundary by moving nodes, black – cadastral pair of 
city-planning line segments. 

VII. RESULTS AND CONCLUSION 

Results are presented in Figure 11 and Figure 12. We can 
conclude that most line segments have been taken from the 
cadastral dataset; others have been transformed to 
correspond with cadastral polyline segments. The result 
looks satisfactory; the final map is holistic and does not 
contain significant deficiencies. In the future, we need to test 
the approach with more datasets and different parameters, to 
compare with other approaches, to reduce calculation speed 
(the execution currently requires about one hour, too long for 
such a small dataset), and to investigate the reasons for 
deficiencies and unexpected geometries on the final map. 

An approach for improving the accuracy of polygons’ 
data is presented. The land-use city planning dataset 
locations have been corrected according to the cadastral 
dataset. The polylines’ segments along the polygons have 
been split by equidistant points. Analysis has been performed 
using statistics based on the points of the neighboring 
polylines of the two datasets. A set of parameters has been 
used: shape descriptor of polyline segments, standard 
deviation of point distances, minimal and maximal point 
distances, standard deviation of segment tails, etc. A set of 
correspondent polyline segments has been found using 
special indicators, which enables us to find optimal segments 
from the list of polyline segments with different length and 
starting point. The polyline segments of the city planning 
data with similar/identical parameters to the segments of the 
cadastral data were linked to these segments (defining 

counterpart segments). Segments without a counterpart have 
been transformed. 

To implement the approach, we used Python 2.7 
programming language (with numpy, scipy and matplotlib 
additional libraries), GRASS GIS 7.1, and Debian 
GNU/Linux 8 operating system. 

 

 

Figure 11.  Results. Extent 1. Red – land-use city planning dataset, 

black – cadastral dataset. Upper – original data, lower –result. 
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Figure 12.  Results. Extent 2. Red – land-use city planning dataset, 

black – cadastral dataset. Upper – original data, lower –result. 
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