P vs NP

Frank Vega

Joysonic, Belgrade, Serbia
vega.frank@gmail.com

Abstract. P versus NP is considered as one of the most important open
problems in computer science. This consists in knowing the answer of the
following question: Is P equal to NP? We prove P is not equal to NP when
the empty string is taken as a symbol.

Keywords: Complexity classes - Completeness - Polynomial time - Graph
- Circuit.

1 Introduction

The P versus NP problem is a major unsolved problem in computer science
[1]. This is considered by many to be the most important open problem in the
field [1]. It is one of the seven Millennium Prize Problems selected by the Clay
Mathematics Institute to carry a US$1,000,000 prize for the first correct solution
[1]. It was essentially mentioned in 1955 from a letter written by John Nash to
the United States National Security Agency [1]. However, the precise statement
of the P = NP problem was introduced in 1971 by Stephen Cook in a seminal
paper [1].

In 1936, Turing developed his theoretical computational model [6]. The de-
terministic and nondeterministic Turing machines have become in two of the
most important definitions related to this theoretical model for computation [6].
A deterministic Turing machine has only one next action for each step defined
in its program or transition function [6]. A nondeterministic Turing machine
could contain more than one action defined for each step of its program, where
this one is no longer a function, but a relation [6]. Another relevant advance in
the last century has been the definition of a complexity class. A language over
an alphabet is any set of strings made up of symbols from that alphabet [3].
A complexity class is a set of problems, which are represented as a language,
grouped by measures such as the running time, memory, etc [3].

The set of languages decided by deterministic Turing machines within time
f is an important complexity class denoted TIME(f(n)) [6]. In addition, the
complexity class NTIM E(f(n)) consists in those languages that can be decided
within time f by nondeterministic Turing machines [6]. The most important
complexity classes are P and NP. The class P is the union of all languages in
TIME(nF) for every possible positive fixed constant k [6]. At the same time,
NP consists in all languages in NTIM E(n*) for every possible positive fixed
constant k [6]. NP is also the complexity class of languages whose solutions

may be verified in polynomial time [6]. The biggest open question in theoretical
computer science concerns the relationship between these classes: Is P equal
to NP? In 2012, a poll of 151 researchers showed that 126 (83%) believed the
answer to be no, 12 (9%) believed the answer is yes, 5 (3%) believed the question
may be independent of the currently accepted axioms and therefore impossible
to prove or disprove, 8 (5%) said either do not know or do not care or don’t
want the answer to be yes nor the problem to be resolved [5].

2 Theory

Let X be a finite alphabet with at least two elements, and let X* be the set of
finite strings over X' [2]. A Turing machine M has an associated input alphabet
X [2]. For each string w in X* there is a computation associated with M on
input w [2]. We say that M accepts w if this computation terminates in the
accepting state, that is M(w) = “yes” [2]. Note that M fails to accept w either
if this computation ends in the rejecting state, that is M(w) = “no”, or if the
computation fails to terminate [2].

The language accepted by a Turing machine M, denoted L(M), has an as-
sociated alphabet Y’ and is defined by:

L(M)={we X" : M(w) = “yes”}.

We denote by ¢/ (w) the number of steps in the computation of M on input w
[2]. For n € N we denote by Tis(n) the worst case run time of M; that is:

Ty (n) = maz{ty(w) : we X"}

where X™ is the set of all strings over X of length n [2]. We say that M runs in
polynomial time if there is a constant k such that for all n, Ths(n) < n* +k [2].
In other words, this means the language L(M) can be accepted by the Turing
machine M in polynomial time. Therefore, P is the complexity class of languages
that can be accepted in polynomial time by deterministic Turing machines [3].
A verifier for a language L is a deterministic Turing machine M, where:

L=A{w: M(w,c) = “yes” for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial
time verifier runs in polynomial time in the length of w [2]. A verifier uses
additional information, represented by the symbol ¢, to verify that a string w is
a member of L. This information is called certificate. N P is also the complexity
class of languages defined by polynomial time verifiers [6].

A function f : X* — X* is a polynomial time computable function if some
deterministic Turing machine M, on every input w, halts in polynomial time with
just f(w) on its tape [2]. Let {0,1}* be the infinite set of binary strings, we say
that a language L; C {0,1}* is polynomial time reducible to a language Lo C

{0,1}*, written L; <, Lo, if there is a polynomial time computable function
f:{0,1}* — {0, 1}* such that for all z € {0,1}*:

x € Ly if and only if f(x) € Lo.

An important complexity class is NP—complete [4]. A language L C {0,1}* is
NP-complete if

— L e NP, and
— L' <, L for every L' € NP.

If L is a language such that L' <, L for some L' € NP-complete, then L is
NP-hard [3]. Moreover, if L € NP, then L € NP-complete [3].

HAMILTON-PATH is an important NP—complete problem [4]. An instance
of the language HAMILTON-PATH is a graph G = (V, E) where V is the set of
vertices and E is the set of edges, each edge being an ordered pair of vertices [4].
We say (u,v) € E is an edge in a graph G = (V, E) where u and v are vertices.
For a graph G = (V, E) a simple path in G is a sequence of distinct vertices
< g, V1, V2, ..., 0 > such that (v;_1,v;) € E for i = 1,2,...,k [3]. A Hamilton
path is a simple path of the graph which contains all the vertices of the graph.
The problem HAMILTON-PATH asks whether a graph has a Hamilton path [4].

Another NP-complete problem is CIRCUIT-SAT [4]. A Boolean circuit is an
acyclic graph C = (V, E), where the nodes V = {1,...,n} are called the gates of
C'. We can assume that all edges are of the form (4, j) where ¢ < j. All nodes in the
graph have in-degree (number of incoming edges) equal to 0, 1 and 2. Also, each
gate i € V has a sort ¢(i) associated with it, where c(i) € {true, false, \,V,—
YU{zy,2g,...}. If c(i) € {true, false} U{x1,z2,...}, then the in-degree of 7 is 0,
that is, 4 must have no incoming edges. Gates with no incoming edges are called
the inputs of C. If ¢(i) =—, then 7 has in-degree one. If ¢(7) € {A,V}, then the
in-degree of 7 must be two. Finally, node n (the largest numbered gate in the
circuit, which necessarily has no outgoing edges), is called the output gate of the
circuit. Let X (C) be the set of all Boolean variables that appear in the circuit
C (that is, X(C) = {z € X : ¢(i) = z for some gate i in C}). We say that a
truth assignment 7' is appropriate for C' if it is defined for all the variables in
X(C). The problem CIRCUIT-SAT asks whether a given circuit C has a truth
assignment T, appropriate to C, such that C(T) = true. Consider, however,
the same problem for circuits with no variable gates. This problem, known as
CIRCUIT-VALUE, obviously has a polynomial time algorithm [6].

On the other hand, FXP is the complexity class of languages that can
be accepted in exponential time by deterministic Turing machines [3]. NEX P
is the complexity class of languages defined by exponential time verifiers [6].
NEXP—-complete is also defined under polynomial time reductions but each prob-
lem is in NEXP. One of the most important problems related to circuits and
graph is SUCCINCT-HAMILTON-PATH. A succinct representation of a graph
with 2 x n — 1 nodes is a Boolean circuit C' with 2 x b input gates where n = 2°
is a power of two [6]. The graph represented by C, denoted G, is defined as
follows: The nodes of G¢ are {0,1,2,...,2 x n — 1}. And (4,7) is an edge of

Gc¢ if and only if C accepts the binary representations of the b-bits integers
i, j as inputs [6]. The problem SUCCINCT-HAMILTON-PATH is now this:
Given the succinct representation C' of a graph G¢ with 2 x n — 1 nodes, does
G¢ have a Hamilton path? The problem SUCCINCT-HAMILTON-PATH is in
NEXP-complete [6].

3 Results

Definition 1. CIRCUIT-HAMILTON
Instance: A Boolean circuit C and a graph G = (V, E).
Question: Does G have a Hamilton path where C is a succinct representation

of G?
Theorem 1. CIRCUIT-HAMILTON € NP.

Proof. We can check whether a simple path in G is a Hamilton path in poly-
nomial time since HAMILTON-PATH € N P. Moreover, we can check in poly-
nomial time whether G has 2 x n — 1 nodes where n = 2 is a power of two.
Furthermore, we can measure whether the size of C' is upper bounded by b* for a
“feasible” positive integer k. Finally, we can verify in polynomial time whether
every ordered pair of vertices (u,v) complies with (u,v) € E if and only if C
accepts the binary representations of the b-bits integers u, v as inputs.

Definition 2. We define a coding k to be a mapping from X to X (not nec-
essarily one-to-one) [6]. If © = o1 ...0,, we define k(x) = k(o). ..k(0n) [6].
Finally, if L C X* is a language, we define k(L) = {x(z) : = € L} [6].

Definition 3. ENCODE-CIRCUIT-HAMILTON
Instance: A string k(C) where C is a Boolean circuit and a graph G = (V, E).
Question: Does G have a Hamilton path where C' is a succinct representation
of G?

K 1s a one-to-one mapping defined as k(0) = + and k(1) = —.
Theorem 2. ENCODE-CIRCUIT-HAMILTON € NP.

Proof. ENCODE-CIRCUIT-HAMILTON is in N P, because we can evaluate in
polynomial time £~ on x(C) to obtain C and CIRCUIT-HAMILTON is in NP.

Theorem 3. If we take the empty string € as a symbol, then we obtain:
k' (ENCODE-CIRCUIT-HAMILTON) = SUCCINCT-HAMILTON-PATH
where £ is a coding defined as k'(+) =0, '(—) =1, K'(1) = € and k'(0) = €.

Proof. The string x(C)G encoded in £’ is Ce...e, but Ce... is equal to the
Boolean circuit C' because the empty string e complies with ee = e.

Theorem 4. P is not closed under codings when we take the empty string as a
symbol.

Proof. If P is closed under codings and we take the empty string as a symbol,
then SUCCINCT-HAMILTON-PATH would be P. However, there is not any
NEXP—-complete in P due to the Hierarchy Theorem.

Theorem 5. P # NP when we take the empty string as a symbol.

Proof. P is closed under codings if and only if P = NP [6]. Hence, we prove
P # NP when we assume the empty string is a symbol.

References

1. Aaronson, S.: P Z NP. Electronic Colloquium on Computational Complexity, Re-
port No. 4 (2017)

2. Arora, S., Barak, B.: Computational complexity: a modern approach. Cambridge
University Press (2009)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
The MIT Press, 3rd edn. (2009)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. San Francisco: W. H. Freeman and Company, 1 edn. (1979)

5. Gasarch, W.L: Guest column: The second P = NP poll. ACM SIGACT News 43(2),
53-77 (2012)
6. Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)

