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1 Executive Summary

This document describes the first prototype of the PAL system’s action
selection mechanisms developed during the first year of the project in work-
package 3.

The overall objective of the Work Package 3 is to personalize the be-
haviour of the PAL system (typically, the robot or its avatar) to each of its
users. The adaptation of the system’s behaviour to each user has two objec-
tives: 1) increasing the engagement of the user in the PAL system, and 2)
allowing the user to reach more effectively its personal goal(s) by adapting
to his/her preferences.

Following the workplan, during this first year of work, we have put in
place an action selection architecture, which allows us to experiment with
and combine different predictive user models (encompassing user charac-
teristics, preferences, level of skills or knowledge) and potential actions, in
order to rapidly personalize the behavior of the system to the needs of a
specific user.

This document first presents the state of the art of action selection and
personalisation approaches in human-robot interaction. In particular, this
review highlights the need for considering at the same time personalization
(to fit the user’s preferences) and adaptation (to follow the changes in the
user’s preferences over the time). Work package 3 aims to address both of
these features in a single action selection framework, which is using as in-
puts the desired goals and the user cognitive state that are determined by
modules in Work package 2 and the potential actions that are suggested by
the interaction module, developed in Work package 4. The first prototype of
this action selection module is based on the HAMMER architecture (Hierar-
chical Attentive Multiple Models for Execution and Recognition), developed
by Imperial College. This architecture is described in the first section of this
report, while subsequent sections detail the features of the implementation
we made for this deliverable, and how does it fit in the overall PAL system
architecture.

In the two last sections of this document, we describe the first two sets of
experiments that have been performed with this first prototype: 1) Valida-
tion of the implementation and 2) Stress test of the implementation. Based
on the presented results, we demonstrate that the architecture successfully
works with several concurrent models and manages to rapidly identify the
most accurate one. The results also show that our current implementation
of the architecture is able to simultaneously execute several thousands of
concurrent simple models per second allowing the system to consider a large
number of alternative actions without affecting the system reactiveness, even
if the computational complexity of the underlying models increase greatly.
These results demonstrate that this action selection architecture has the
computational power and efficiency required for use in the PAL Project.
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2 Role of personalized adaptive action selection in
PAL

Work Package 3 over the four years of the project will focus on the personal-
ization and adaptation over time of PAL actions to fit the child’s individual
preferences and needs. The core functionality includes an action selection
module (the topic of this deliverable), an action provision module, a senti-
ment mining module and a predictive user model. As the project progresses,
the user model will learn, based on an analysis of interaction patterns over
time, what specific actions are preferred and most effective for a particular
child to reach long-term goals set by modules developed in WP2. Learn-
ing takes into account interactions with PAL (WP4), usage statistics of
mHealth-Apps and PAL (WP5), multimodal behaviours of the individual
child (WP4), and usage context (WP2). The user model influences action
selection to reflect the child’s personalized needs, while the action selection
module integrates this information with high-level current and desired state
information provided by the cognitive affective simulation of the child from
WP2. Based on the current state of the child and context, the action se-
lection module can probe the child and select the behaviour that is most
likely to achieve the given goals in the given context. Over time, PAL learns
how to adapt based on the analysis of child activities with PAL and the
mHealth-Apps. The end result is that the system selects the most appropri-
ate action among the potential actions suggested by the modules in Work
Package 4, by taking into account the goals and information regarding the
user cognitive state provided by Work Package 2.
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3 Tasks, objectives, results

3.1 Planned work

The objectives of this first deliverable in the Work Package 3 were to provide
a first prototype of action selection. To reach this objective, our goals have
been:

• To review the current state of the art in action selection and person-
alisation in human robot interaction in order to see whether recent
advances in existing works would solve the challenges that we want to
face in the PAL Project.

• To evaluate the HAMMER architecture, developed by Imperial College
London, would be a suitable tool for the action selection module.

• To adapt the HAMMER architecture to the particular needs of the
PAL system, and examine potential ways that it can be used by other
modules in the PAL architecture. For example, one potential avenue
for integration would see the system taking as inputs the list of poten-
tial actions provided by the Natural Multimodal Interaction module
(WP4) and producing as output one of these potential actions back to
Interaction module as quickly as possible to allow reactive interaction
with the users. The action will be selected using both the desired goal
provided by WP2 and the user model of the individual child.

• To implement a first prototype of the action selection , based on the
HAMMER architecture. This first version of the module aims to be
generic and flexible enough to allow the integration of a large number
of different user models and to experiment with a large diversity of
algorithms. This will allow us to detect the more relevant data needed
to create a useful user model as well as elaborating the most efficient
methods to extract their effects on the personalization.

• To conduct performance tests on the first prototype of the action se-
lection module.

The following section will detail the work and the results that have been
achieved during the first year of the project.
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3.2 Relation to the state-of-the-art

The purpose of Work Package 3 in the PAL project is to provide a personal-
ized and adaptive action selection framework, For the first year, in the form
of Deliverable 3.1, we present a first prototype algorithm for action selection.
On one side, the personalized aspect of the action selection implies the study
of inter-user variability in order to generate a user model which will allows
to personalize the interaction, based on personal preferences with respect
to, for example learning strategy, level of engagement and communication,
among others. On the other side, the adaptive aspect is more focused about
the changes needed to keep the interaction interesting and effective for a
particular user during the long-term usage with the framework, taking into
account the improvement of the knowledge or the preference changes of the
users, for instance.

Among recent works made toward personalization in human-robot inter-
actions, Karami et al [9] have used interaction traces (robot actions, users’
feedback among, etc.) in a restaurant ordering scenario to discover the de-
pendencies between user attributes (age, gender, diabetes, vegetarianism,
etc.) and contextual attributes (daytime, season, etc.) with the choices
from the menu. They have split the intention estimation problem (using a
Hidden Markov Model) and the decision making feature (using a Markov
Decision Process). However, the results are not personalized to a specific
individual but to a specific group of the population, influenced by contextual
informations. As the author point out, they cannot consider very personal
attributes, their system therefore can achieve a first good guess about the
interaction but will need to be tuned during it.

Baraka and Veloso citeBaraka2015 on the other hand tried to tackle the
dynamic modelling aspect, and have developed a personalized system for
user temporal preferences. Based on the learning of three user preferences
over time (”conservative”, ”consistent but fatigable”, ”erratic”) using hu-
man feedback they have studied the dynamic long-term user preferences, in
particular the aspect of boredom and appreciation for change or surprise
during repetitive interactions. However, these interactions are solely depen-
dent on the initial clustering of the user preference and cannot be changed
during the actual interactions.

More related to a tutoring application, Clabaugh et al. [1] used Learn-
ing Styles (LS) informations collected previously from parent and teacher
questionnaires about the child as method to differentiate between learners.
Tested with 31 preschool children in a Socially Assistive Robotics (SAR)
framework, using the NAO and a touch tablet, they have shown that LS is
an important factor to predict individuals’ performances in certain activities,
which might be used to select the ideally challenging ones.

However, an important aspect in tutoring application is actually that
the user will learn new skills and knowledge during time: such system need
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to be taken into account the progression of the learner to adapt the activi-
ties accordingly. Leyzberg et al. [10] developed a Bayesian network for skill
assessment using robot’s observations of the learner in a puzzle solving sce-
nario consisting of 4 successive games. The robot was able to pause the game
three times to provide a short lessons about solving strategies, specifically
design to help for one of the weakest skill of the user. They have shown a
significant improvement in puzzle solving time for participants who received
such personalized lessons as opposed to the one without or with random
lessons.

As we have shown, some works has been made in either on the per-
sonalization or on the adaptation aspect but a coherent system integrating
both of them is rare, especially for physical robotic platform. Tvarozek [13]
implemented a socially intelligent computer tutor in a simulated learning
environment in order to maintain the student motivation for a relatively
long period of time, balancing the action selecting between individual, so-
cial, cognitive and affective activities. It is an hybrid system, based on a
reinforcement learning approach enhanced with a Wizard of Oz guidance,
especially during the first encounter which reduce the need for an initial cor-
pus. It allows a quick construction of a user model and insurance coherent
action selection from the start, which will then be gradually optimized with
reinforcement learning through the interactions. However, because of the
initial Wizard of Oz guidance, this approach needs an expert agent in the
loop, implying a non-trivial human participation in the long term (i.e. each
time for a new user) for the project.

Another recent work is the Conscious-Emotional-Learning Tutoring Sys-
tem (CELTS) from Faghihi et al. [7] which is able to learn from past and
present events, at different levels (episodic, emotional and causal learning),
adapting its behaviour (e.g. give a direct solution or just an hint?) when
teaching how to operate a robotic arm. These learning allows in particular
to remember a specific mistake made by a precise user or remember positive
or negative sequences of interactions from past experience. However, the
system is only designed to optimise the learning for a unique task, instead
of providing different teaching activities according to the topic of the desired
difficulty.

One of the objectives of the action selection module current being de-
veloped in the work-package 3 is to allow both personalized and adaptive
action selection. This will be achieved by taking inspiration of the existing
works, presented previously, but also by investigating new approaches like
fusion and hierarchy of models, knowledge transfer across groups of children
or online data-efficient learning algorithms.
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3.3 Actual work performed

This section details the work that has been done on the development of the
first prototype of action selection. More precisely, the next section present
the HAMMER architecture, while the next section describe the principal
features of the implementation made for this deliverable. The two following
sections present the two first experiments that have been performed and
discuss the corresponding results.

3.3.1 The HAMMER architecture

The HAMMER architecture is a versatile parallel distributed hierarchical
architecture for action selection developed at Imperial College London [5, 2,
3].

The main component of the HAMMER architecture consists in an In-
verse Model (see Fig. 1) paired with a Forward Model (see Fig. 2)[6, 4].
The Inverse Model suggests an action, which is expected to lead the system
(e.g., a robot) from its current state to the target state (or at least closer).
This suggested action is then fed into the Forward Model, which predicts the
next state of the agent after the execution of the action. The predicted state
can then be sent back to the Inverse Model to allow it to adjust the param-
eters of the action and the difference between the predicted state and the
target state can also be used as a reinforcement signal by the Inverse model
to improve the quality of its suggestions. When the suggested action is ac-
tually performed by the system, the difference between the actual reached
state and the prediction is used to update the confidence value of the pair
of models. The predicted state can then be used as an input state of the
Inverse model in order to make long term predictions by calling sequentially
the pair of models.

target state   [optional] 

actioncurrent

state
Inverse

Model

Figure 1: Inverse Model. The role of an inverse model is to suggest an
action that will lead the system from its current state to (or closer) the
target state.

One of the main properties of HAMMER is to run in parallel several
pairs of inverse and forward models (see Fig. 3). Each of these pairs selects
an action and predicts the next state and competes against the other pairs in
the selection process: only the action suggested by the pair with the highest
confidence, as defined above. and which is predicted to lead the system
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current state   [optional] 

action predicted
next state

Forward
Model

Figure 2: Forward Model. The role of a forward model is to predict the
next state of the system based on the current state and the intended action.

closer to the target state is selected by the architecture and executed on
by the system. The consequences of this action are measured and used to
update the confidence of all the model pairs, for example by considering
the distance between the actual state and the states predicted by the model
pairs. Based on the updated confidence values and on the new state of the
system, the prediction of the model pairs are recomputed and the next action
is selected. This process repeats until the system reaches the desired state.
In the case the desired state is not reachable, the HAMMER architecture
aims to bring the user as close as posible to this state until a more realistic
target is defined by the health professionals.
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Figure 3: Overview of the HAMMER architecture.

The HAMMER architecture does not impose any constraints on the type
of models employed (as long as they follow the same input/output flow) and
each pair of models can use different types of models. This property allows
the architecture to rely on an heterogeneous set of models that compete
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in the action selection phase. This aspect of HAMMER is similar to the
mixture of experts (or boosting), which is a technique commonly used in
supervised learning. It has been proved that the average accuracy of the
”council of experts” is better that the average accuracy of its members [8].
This heterogeneous set of models also allows the architecture to personalise
the action selection according to the specificities of the system. Indeed, if
only a subset of models is relevant with the current situation, the HAMMER
architecture will rapidly disregard the other models and focus only on the
actions suggested by the pairs of models with a high confidence.

The HAMMER architecture can also observe the decisions made by an
agent and can increase the confidence of each model pair accordingly to the
similitude between the states predicted by the models and the actual states
reached by the agent. Thanks to this behaviour, the architecture can work
as an imitation learning algorithm, which is able to reproduce the choices of
the observed agent by selecting the model pair with the highest confidence.

This architecture also allows to combine the predictions of the different
pairs of models into other pairs of models. This additional set of pairs
corresponds to an higher level of hierarchy which are typically involved in
long terms predictions or advanced goals. For instance, the pairs of model
from the higher level of hierarchy would select the interaction that should
be triggered by the agent (the ”what”, e.g. proposing a quizz for the user to
increase its knowledge), while the pairs from the lower levels will determine
the parameters (the ”how”, e.g. the topic of the quizz and the difficulty of
the questions). In more complex scenarios, several levels of hierarchy can
be considered.

The versatility and flexibility of HAMMER make this architecture par-
ticularly suitable for the action selection module that will be used in the
PAL system. In particular, this architecture will allow the PAL system to
both personalize its behaviour according to the child (inter subject vari-
ability) and to adapt to its progress (intra subject changes). Indeed, the
heterogeneous set of models will allows the system to rapidly select the
most promising models for the current user of the system, while the inter-
nal feedbacks within each pair of models will allows them to adapt to the
changes in the user’s preferences. Conceptually, the HAMMER architecture
can be readily adapted to fit in the PAL system. The main modification has
been to substitute the inverse models by the list of action proposition that
is provided by the Natural Multimodal Interaction module (WP4). Each of
the suggested action is forwarded to all the available forward models and
the best pair of suggested action and forward model is selected. The state
information provided by the child model from GOAL (WP2) is then used
to train the models and to progressively personalize the system’s behavior.
Additional modifications of the HAMMER architecture made for the PAL
project are detailed in the next section.
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3.3.2 Implementation of the HAMMER architecture

The action selection module that will take place in the PAL system is be
based on a new implementation of the HAMMER architecture. This im-
plementation has been developed in JAVA to make easier the integration of
the module in the PAL system, as JAVA is one of the main programming
languages used in the PAL project. Moreover, the use of JAVA allows the
module to be easily installed on any operating system (thanks to the vir-
tual environment). Due to this property, the action selection module will
not impose any constraint on the server infrastructure on which the PAL
servers will be running during the project.

As mentioned previously, one of the key features of the HAMMER ar-
chitecture is to execute in parallel several pairs of models. In the designed
implementation of the HAMMER architecture, a particular attention has
been paid to this aspect in order to take advantage of the multi-core (or
multi processors) architecture presents in most of current computers (see
Fig. 4). This kind of technology allows a software to execute in parallel sev-
eral ”threads”, which each executes a different task. This multi-threading
property allows our current implementation of HAMMER to run in parallel
several models without severely harming the execution time and the system
reactivity. This aspect of our implementation has been evaluated thanks to
a stress test that is described in section 3.3.4.

Another feature of the implementation of HAMMER presented in this
deliverable is its ability to automatically generating all the possible combi-
nations of inverse and forward models with the different types of model that
are implemented in the architecture. While this feature was not technically
challenging in its implementation, it allows the users to be agnostic with
respect to the different models, and lets HAMMER decide on its own which
pairs of models are the most effective.

The action selection module is interfaced with the rest of the PAL sys-
tem thanks to massage passing library (TECS, designed by PAL partner
DFKI). As soon as the action selection module receives a list of potential
actions from the Natural Multimodal Interaction module (WP4), the HAM-
MER architecture is seeded with the different actions and after running the
different models, the action selection module sends back a message to the
Interaction module with the selected action.
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Figure 4: UML diagram of the HAMMER architecture.
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3.3.3 Validation of the implementation

In order to validate the core features of our implementation of the HAMMER
architecture, we designed an example problem in which the system has to
control a numerical value which varies according to the system’s choices.At
each time step, the system can execute one of the four possible actions: 1)
small increase, 2) large increase, 3) small decrease or 4) nothing. The goal in
this example problem is to lead the numerical value toward a desired value
(in our case: 8), which might represent for instance the insulin level of the
child, with the possible action would be to propose a light snack, a proper
meal or some exercise.

Three different types of Forward Models are implemented for the pur-
pose of this validation: 1) a random model, 2) a noisy model, and 3) a learnt
model. The first type of model always outputs a random prediction, while
the noisy model outputs the exact prediction, which is then artificially per-
turbed by an additive noise. The last model is a regression algorithm which
learns to predict the next state of the system. The predictions provided
by this model are not always accurate. However, we can expect that the
average accuracy of this model is higher than the accuracy of the two other
types of models. The implementation of this regression algorithm is based
on Gaussian Processes [12]. The model is initialized with 100 random sam-
ples and the probabilistic distribution produced by the Gaussian Process is
used to predict the next state of the system based on the current state and
the proposed action.

In this experiment, only one type of inverse model is used. Nevertheless,
this model is couple with the three different forward models in order to
constitute 3 different pairs of models. The inverse model is designed to
always provide the best action according to the current state of the system
and is based on a finite-state machine. We decided to use this kind of
model for this validation because the goal of the action selection is mainly
to predict the consequences of the suggested actions, and thus to detect
the most accurate forward models. Conversely, generating effective Inverse
Models is out of the scope of the PAL project, as the action are suggested
by the Natural Multimodal Interaction module.

This experiment has been replicated 100 times and the results (see Fig.
5) show that our implementation of HAMMER manages to keep the numer-
ical value close to the desired state. This is not surprising has the inverse
model always outputs the best action that should be done. However, this re-
sult demonstrates that the architecture works as expected. Moreover, when
we consider the selected model at the end of each iteration (see Fig. 6), we
can see that our implementation is able to rapidly detect the most accurate
pair of models and to select the corresponding suggested action. Indeed, we
can observe that after less than 30 iterations, 100% of the different replica-
tions are using the regression model.
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Figure 5: Evolution of the numerical value according to the number of
iterations. The target value is 8. The experiment has been replicated 100
times (starting from a random state) to gather statistics. The dark red line
represents the median over all the replications. The dark shade area extends
to the 25th and 75th percentile, while the bright area extends to the 10th

and 90th.

Figure 6: Proportion of the replications selecting each model according to
the number of iteration. When the proportion with respect to one model is
equal to 1, this means that 100% of the replications selected this model.

3.3.4 Stress test of the implementation

In addition to the validation of the implementation presented in the previous
section, the computational capabilities of the architecture have been assessed
by running a stress test. The goal of this stress test is to evaluate the number
of inverse and forward models that can be used simultaneously.

This stress test is based on the same example problem as in the previous
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experiment. The only difference is that all the forward models are based
on the same type: regression model (GP). This choice has been made to
remove the variability in the computational cost among the different mod-
els. Therefore, the results of the stress test will not depend on the employed
models for the test. However, it is important to note that the global compu-
tational cost of HAMMER will be related to the computational cost of the
employed models. In other words, using models that are computationally
more expensive will slow down the execution of the architecture, while using
simpler models will speed up everything. This stress test is of importance
because the latency implied by the action selection should be small enough
to support real time interaction between the child and the system. This
stress test is of importance because the latency implied by the action selec-
tion should be small enough to support real time interaction between the
child and the system. For instance, while the average human time reaction
is 250ms, conversational agents should respond between 100ms, which per-
ceived as an instantaneous reactions, and 1s, which is considered fast enough
for users to feel they are interacting freely with the system ([11]).

The performance of the architecture is evaluated by measuring the elapsed
time between two action selections (the time required to execute the action
can be neglected in this toy problem). During this period, the architecture
computes the predictions of each model and selects the one with the highest
confidence. In order to see the influence of the number of running model on
the computational cost, we executed the architecture with different numbers
of running models. The measured execution time is very noisy because of
the execution of other processes on the computer. Therefore, we replicated
the measures 100 times to gather statistics. The stress test has been exe-
cuted on a standard desktop computer using an hyper-threaded quad-core
processor running at 2.8 GHz (intel core i7) and 8 GB of RAM.

The results of the stress test (see Fig. 7) indicate that at least 1024
simple models can run in parallel without making the computational time
intractable (median: 89ms). Indeed, it is very likely that the highest ac-
tion selection frequency required by the PAL system will be lower than one
action selection per second.With the current prototype of action selection,
the system can run with more than one thousand simple models and with
an action selection frequency one order of magnitude higher. Moreover, the
results suggest that the architecture can use up to 64 simple models without
any impact on the computational time (median: 30ms).

In order to investigate how our implementation of HAMMER behaves
when using computationally more demanding models, we added in the in-
verse models unnecessary operations in order to artificially increase their
computational cost. These operations consist in allocating and generating
a large random matrix (500 x 500) and then computing its matrix product
with itself and storing the result in a second matrix, which needs to be al-
located too. With this modification, each inverse model becomes 4 times
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Figure 7: Influence of the number of models running in parallel on the
computational time. Each condition has been replicated 100 times to gather
statistics and the dark red line represents the median number of milliseconds.
The dark shade area extends to the 25th and 75th percentile, while the bright
area extends to the 10th and 90th.

computationally more expensive (25ms were required, while 106ms are now
required with the modification).

The results of the stress test in this condition (see Fig. 8) show that
the parallelization of the model executions works properly, as the influence
of the number of running models is negligible when less than 4 models are
running in parallel. This result makes sense, as the stress test was running
on a quad-code processor. However, we can also observe that running more
models increases rapidly the running time. This increase is proportional
to the number of models(one can note the logarithmic abscissa) as soon as
more than 8 models are running in parallel (slope: 82ms/model).

The conclusion of this stress test is that our current prototype of action
selection can work at a decision frequency of one selection per second with
either several hundreds of simple models or with a small dozen of computa-
tionally demanding models. These results allow us to be relatively optimistic
in our future uses of this architecture in the PAL project. Indeed, we can
expect that the action selection module will rarely have to deal with more
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Figure 8: Influence of the number of models running in parallel on the
computational time. In contrast with the previous figure, each model has
been artificially slow down (with unnecessary operations) in order to simu-
late the use of computationally expensive models. Each condition has been
replicated 100 times to gather statistics and the dark red line represents the
median number of milliseconds. The dark shade area extends to the 25th

and 75th percentile, while the bright area extends to the 10th and 90th.

than 10 different actions at the same time step (this doesn’t restrict the
number of actions the PAL system will be able to deal with in total). In
such conditions, the action selection module will be able to run several con-
current and heterogeneous models for each action, which is likely to improve
its overall accuracy [14, 8].
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4 Conclusion

In this report, we described the first prototype of the PAL system’s action
selection mechanism that has been developed during the first year of the
project in the work package 3. The concise review of the state of the art
made in this report, highlighted that current methods focus either on the
personalization of the action according to the user’s preferences or on the
adaptation to the changes in the user’s preferences over the time. However,
only a very limited amount of work has been done to design architectures
that cover both of the personalization and adaptation aspects. The action
selection module presented in this report is designed to fill this particular
gap. In the remaining of the document, we detailed the characteristics of the
module that make it suitable for the PAL project. In particular, we detailed
how the concurrent execution of heterogeneous pairs of online-adaptable
models allows the action selection module to both personalize and adapt
the selection with respect to the user and the collected data.This document
reports the results of the experimental validations of the module, in which
it has been shown the ability of the system to autonomously recognize the
most appropriate pairs of models according to the situation and to maintain
its reactivity during even when simultaneously considering several hundreds
of action hypothesis. These different results demonstrate that the action
selection module has the computational power and efficiency required for
use in the PAL project.
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[13] Jozef Tvarožek. Bootstrapping a Socially Intelligent Tutoring Strategy.
Information Sciences and Technologies Bulletin of the ACM Slovakia,
3:33–41, 2010.

[14] M Zambelli and Y Demiris. Online ensemble learning of sensorimotor
contingencies. 2015.

EU H2020 PAL (PHC-643783) 20


	Executive Summary
	Role of personalized adaptive action selection in PAL
	Tasks, objectives, results
	Planned work
	Relation to the state-of-the-art
	Actual work performed
	The HAMMER architecture
	Implementation of the HAMMER architecture
	Validation of the implementation
	Stress test of the implementation


	Conclusion

