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A B S T R A C T

Activation of aryl(Ar)-halides for CeC coupling catalytic reactions using visible light has become one of the most
challenging tasks in organic synthesis since it offers effective and safer alternatives to traditional dehalogenation
protocols. The insufficient energy provided by visible light to cleave such strong CeH alogen bonds certainly
makes necessary the development of new protocols to overcome this limitation. We report here the application
of photon upconversion (UC) technology based on triplet-triplet annihilation (TTA) to a CeC coupling catalytic
reaction, a possibility that has not been investigated to date. This synchronized biphotonic process (TTA-UC)
activates successfully Ar-halides with visible light. Based on product analysis and spectroscopic experiments, a
cascade process combining photophysical and photochemical steps is proposed for the mechanism rationaliza-
tion. Visible light, ambient temperature and pressure, low-loading metal-free photocatalysts and no additives
make this protocol very attractive for applications to the synthesis of fine chemical building blocks, pharma-
ceuticals, agrochemicals or new materials.

1. Introduction

Selective formation of CeC bonds using visible light (VIS) is cur-
rently at the heart of organic synthesis and holds the key to the con-
struction of structural complexity and diversity of fine chemical,
bioactive, natural, and polymeric molecules [1–7]. Such photocatalytic
processes imply activated substrates that undergo facile generation of
radical carbon atoms either proximal to heteroatom substituents (car-
bonyls, imines/enamines, malonates, etc.) or to aryl moieties [8–12],
whereas the utilization of non-activated substrates has received much
less attention [13–15]; their activation using VIS is currently a sig-
nificantly more challenging task but would provide more effective and
safer alternatives to traditional dehalogenation protocols [16,17]. In
general, the energy of a visible photon edges the scope of photocatalytic
bond activations [18–20], delivering insufficient energy for stronger
bonds splitting such as those found in aryl(Ar)-halides [21–25]. Thus,
new procedures capable of overcoming this issue would be useful to
deal with this limitation.

Photon upconversion (UC) based on triplet-triplet annihilation
(TTA) is one of the most attractive wavelength conversion technologies.
Its interest has been intensified in the last decade due to the employ-
ment of low intensity and non-coherent light [26]. This synchronized
biphotonic process transforms VIS-to-UV light which includes a bimo-
lecular system and the association of multistep photochemical events

(Scheme S1 in the Supporting information). A variety of organic dyes
and metal complexes showing TTA-UC can be found in the literature
[27]. This methodology has been successfully applied in diverse sci-
entific areas such as displays [28], bioimaging [29], phototherapy [30]
or integrated TTA-UC solar cells [31], constituting nowadays a highly
active area of research.

Among protocols using UVA light source[32], some recent examples
have revealed that two-photon processes are suitable techniques for the
activation of aryl halides (Br, Cl) using VIS [33–38]. In particular, the
photogeneration of radical anions of these aryl halides leading to the
reduced species has been elegantly demonstrated by the observation of
a delayed fluorescence (higher energy) afforded by TTA (lower energy)
[33,34]. In this context, the development of TTA-UC technology for
addressing critical bond activations (e.g. hitherto unreactive aryl ha-
lides) by single electron transfer (SET) for organic synthesis may be
advantageous in terms of mild reaction conditions (lower-energy VIS,
room temperature and ambient pressure), metal-free photocatalyst
systems [39–43] and no additives (sacrificial donors/acceptors) in the
medium. With all this in mind, we report herein, as a proof of concept, a
new approach into the widely studied CeC forming bond reaction by
using TTA-UC technology (Fig. 1A). As far as we know, the feasibility of
these cascade processes (visible light+ TTA-UC+SET+Activa-
tion+Radical intermediate+CeC Coupling) to be applied in syn-
thetic reactions such as CeC forming bonds remains still unexplored
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and deserves further investigation. To test this concept, 4-bromoace-
tophenone (1) and N-methyl pyrrole (2) were chosen as reaction part-
ners using diiodoBOPHY-like derivative (DBP) and 9,10-diphenylan-
thracene (DPA) as the metal-free TTA-UC system (Fig. 1B).

2. Main methods

2.1. General procedure for the CeC coupling photoreactions

In a quartz cuvette (4 mL) with a magnetic stirring bar, an ACN
(2.250mL) + DMF (0.750mL) solution of aryl halide (30 μmol, 0.01M,
1.0 equiv.), N-methyl pyrrole 2 (213 μL, 24mmol, 0.8M, 80 equiv.),
DBP (100 μg, 0.3 μmol, 0.0001M, 0.01 equiv.), DPA (1 mg, 3 μmol,
0.001M, 0.1 equiv.) and 1-dodecanenitrile (6.5 μL, 0.01M, 1 equiv.)
was prepared. The cuvette was sealed with a septum and placed in a
water cooling holder in order to keep a constant temperature around
20 °C (Fig. S8 in the Supporting information). The mixture was first
purged with a nitrogen gas flux for 10min, maintaining subsequently
nitrogen atmosphere during the photolysis. Then, 2 h irradiation of the
reaction was performed with an external diode laser pointer
(λexc= 445 nm ± 10) through one face of the cuvette. The reaction
progress was monitored by GC analysis. For isolation purposes, water
(10mL) was added and the aqueous phase was extracted with ethyl
acetate (3×10mL). The combined organic phases were washed with
brine (10mL), dried over magnesium sulfate, filtered from the drying
agent and concentrated in vacuum. The crude product was purified via
column chromatography on a silica gel column using a pentane/ethyl
acetate mixture as the mobile phase.

2.2. Laser flash photolysis

Measurements were carried out with a LP980 from Edinburgh
Instruments. The pump source is an optical parametric oscillator (OPO)
provided with an UV extension NT242 pumped by the third Harmonic
of a Nd:YAG laser model NT342A-10 from EKSPLA with typical pulse
duration of 5 ns. The wavelength can be set from 210 nm to about
2600 nm, with a pulse width of about 5 nm using an OPO mod. The
repetition rate was 10 Hz. The white probe light is generated by a
pulsed xenon flash lamp (150W) and passes the sample orthogonal to
the pump beam. The duration of the probe pulse is 250 μs. This probe
pulse is longer than the recorded time window of a measurement. A
monochromator (TMS302-A, grating 150 lines/mm) disperses the probe
light after it passed the sample. The probe light is then passed on to a
PMT detector (Hamamatsu Photonics) to obtain the temporal resolved
picture. The time resolution in each window is about 10% of the tem-
poral window width. All components are controlled by the software
L900 provided by Edinburgh.

3. Results and discussion

3.1. Suitability of the TTA-UC system

The design and synthesis of bis(difluoroboron)-1,2-bis((1H-pyrrol-2-
yl)-methylene)hydrazines (BOPHYs) have been very recently estab-
lished [44] and the number of reports with real applications has in-
creased over the last two years [45–49]. Encouraged by this progressive
evolution, we checked out the possibility of using a metal-free TTA-UC

Fig. 1. A: Conceptual scheme: Cascade processes involving TTA-UC, single ET and reductive activation of hitherto unreactive aryl halide for CeC coupling reaction
with a nucleophile-C. B: Schematic illustration of the photochemical events associated to the TTA-UC technology; conversion of low energy into high energy
(hν1=2.5 eV → hν2=3.1 eV). ISC= intersystem crossing, TTEnT= triplet-triplet energy transfer, TTA= triplet-triplet annihilation. Spectroscopic evidences for
the synchronized biphotonic process of DBP/DPA couple. C: Decay kinetics monitored at 770 nm (blue) and 430 nm (green) after 485 nm LFP of DBP (0.05mM) in
N2/DMF solution in the presence of DPA (1 mM). Inset: decay kinetic monitored at 770 nm (black) after 485 nm LFP of DBP (0.05mM) in N2/DMF solution. D:
Emission spectra (λexc= 485 nm) of a mixture of DBP (0.05 mM) and DPA (1 mM) in N2/DMF recorded at 14 ns (blue) and 50 ns (red) after the laser pulse. Inset:
Kinetic decay of the delayed 1DPA* at 440 nm. The black lines indicate the goodness of the lifetime measurement fitting. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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system which included DBP as donor partner for the CeC coupling
reaction (see synthesis details in the Supporting information). The
presence of heavy atoms on the DBP core dropped heavily the fluor-
escence quantum yield (ϕF= 0.17) [46], thus favoring the intersystem
crossing to the triplets. In fact, DBP was used as photosensitizer for
TTA-UC using DPA as emitter [45]; however this DBP/DPA system had
not been applied for synthetic purposes. Furthermore, according to the
absorption spectra (Fig. S1 in the Supporting information), photolysis in
the blue region (450–490 nm) allowed exclusive excitation of DBP in
the DBP/DPA couple that made it an appropriate choice for this work.

We started our investigations exciting selectively (λexc= 485 nm) a
solution of DBP in deaerated N,N-dimethylformamide (DMF) by laser
flash photolysis (LFP) in the μs domain. The TeT absorption band of
DBP (3DBP*) was observed at 770 nm (Fig. S3 in the Supporting in-
formation) in agreement with literature data [45]. In our conditions,
the triplet lifetime (τT) of DBP was determined as 32 μs that fitted
perfectly to a mono-exponential curve (inset in Fig. 1C).

In the presence of DPA, the 3DBP* decay (τT= 0.4 μs) was con-
comitant with the generation of the DPA triplet, 3DPA*
(τgrowth= 0.4 μs), with a bimolecular quenching constant larger than
109 M−1 s−1 indicating that the triplet-triplet energy transfer (TTEnT)
was in fact very efficient (Fig. 1C). From a mono-exponential fit of the
3DPA* kinetic decay (Fig. 1C), its lifetime was estimated as ≈5 μs.

To observe the resultant formation of the DPA delayed fluorescence
(1DPA*) in our conditions, a deaerated DMF solution of a mixture of
DBP/DPA was submitted to LFP with an excitation of 485 nm. Thus, the
upconverted 1DPA* was detected displaying an emission band with
maximum wavelength at 440 nm (Fig. 1D) with a singlet excited state
energy of 71.5 kcal mol−1 in DMF [34]. The DBP emission between
λ=500–600 nm was also observed with the incident laser pulse
(Fig. 1D). Gratifyingly, the lifetime of the upconverted 1DPA* was
calculated from a mono-exponential fit of the temporal profile at
440 nm which was found to be 2.3 μs (inset in Fig. 1D). By definition
[50], a P-type delayed fluorescence relies on the TTA event where two
triplets (i.e., 3DPA*+ 3DPA*) collide to populate the delayed emission
(i.e. 1DPA*). Consequently, the 1DPA* lifetime must be approximately
half that of its precursor (3DPA*) to ensure that the overall process is
biphotonic. Taking into account these data, we clearly proved that the
couple DBP/DPA fulfilled all of the abovementioned criteria. Further-
more, density functional theory computational studies were performed
for rationalization of the TTA-UC pathways and their involved elec-
tronic configurations and transitions (Scheme S2 in the Supporting in-
formation).

3.2. Coupling reaction catalyzed by TTA-UC system

Once DBP/DPA was established as suitable TTA partners generating
the high energetic 1DPA* from lower energy light (VIS), the next step
was to investigate its application to a CeC forming bond reaction. As
stated above, we set out a model system which involved a non-activated
aryl bromide 1 and a trapping agent such as 2 (this compound possesses
high reaction rates in the adjunction of radicals) [35,38]. In addition,
photolysis of a mixture of 1 and 2 in the presence of DBP/DPA as
photocatalytic system was performed with a commercially available
blue laser pointer (λexc= 445 nm ± 10, 2W) that facilitated the
management of the optimal conditions instead of using a pulsed laser
from LFP technique [33,34].

In a first stage, steady-state blue light irradiation of a N2/DMF
mixture of 1 and 2 in the presence of catalytic amounts of DBP/DPA
through quartz was carried out. Desired coupled product (3) together
with the photoreduced byproduct (4) were formed with moderate
starting material conversion and low yield (Table 1, entry 1). Although
4 was clearly the major photoproduct (DMF is a very good H-donor)
[51], a reasonable amount of 3 was obtained, confirming the feasibility
of the method. Control experiments were performed without DPA or
without DBP (Table 1, entries 2 and 3) giving negative outcomes.

Employment of acetonitrile (ACN) drastically shifted the 3/4 ratio to
the CeC forming bond reaction (Table 1, entry 4); however, conversion
was found to be poor under the same conditions.

Aiming for the best compromise between conversion product dis-
tribution and yield of 3, mixtures of ACN/DMF as solvent were used
(Table 1, entries 5 and 6). Interestingly, a high conversion together with
notable 75% selectivity to 3 and good yield were obtained when the
ACN/DMF ratio was 3:1 v/v after only 2 h of irradiation time (Table 1,
entry 6). Longer irradiation times did improve very slightly the result
(Table 1, entry 7) whereas the presence of different amounts of 2 clearly
gave changes on the product distribution (Table 1, entries 8–10); as
expected, the higher equivalents of 2 the better yields of 3. With the
occurrence of decreasing the production of by-product 4, we employed
N,N-dimethylacetamide (DMA) as solvent (NeC(O)CH3 group appears
to be less acid than NeCHO group). Although conversion of 1 improved
(Table 1, entries 11 and 12), similar selectivity and amounts of isolated
coupling product were obtained.

3.3. Mechanism

To evaluate the nature of the excited state from the TTA-UC system
involved in the SET process, quenching experiments were carried out by
means of LFP under reaction conditions (Fig. S4 in the Supporting in-
formation). Hence, delayed fluorescence intensity of DPA gradually
decreased upon addition of increasing amounts of 1 (normalized
spectra on DBP emission regarding control experiment, Table 1 entry
2). Fig. 2A shows the Stern–Volmer correlation [52] (equations S1 and
S2 in the Supporting information) where KSV was obtained as 12.8M−1.
Considering this value and the DPA singlet lifetime (τF= 6.5 ns in

Table 1
Photocatalytic CeC coupling between 1 and 2 by DBP/DPA as TTA system.a

Entry Solvent Conv/%b 3/4b Yield of 3/%b

1 DMF 62c 31/69 16
2d DMF 0 0/0 –
3e DMF 0 0/0 –
4 ACN 49f 100/0 30
5 ACN/DMF 2/1 v/v 67 62/38 41
6 ACN/DMF 3/1 v/v 72 75/25 54
7g ACN/DMF 3/1 v/v 74 77/23 54
8h ACN/DMF 3/1 v/v 70 85/15 60i

9j ACN/DMF 3/1 v/v 72 80/20 57
10k ACN/DMF 3/1 v/v 62 53/47 32
11h DMA 100 40/60 40
12 ACN/DMA 3/1 v/v 92 78/22 71l

a Conditions: [1]= 0.01M, [2]= 0.5M, [DBP]= 0.1mM, [DPA]= 1mM
in 3ml of bubbled (N2) solvent at 20 °C; 2 h of irradiation time with a blue laser
pointer (λexc= 445 ± 10 nm, 2W).

b Conversion (conv), product distribution and yield of product 3 ([conv x
selectivity of 3%]/mass balance) were calculated from quantitative GC analysis
vs. internal 1-dodecanenitrile. Mass balances were 100% in all cases unless
otherwise indicated.

c 85% mass balance.
d Without DPA.
e Without DBP.
f 63% mass balance.
g 4 h of irradiation time.
h [2]= 0.8M.
i Isolated yield 41%.
j [2]= 0.6M.
k [2]= 0.25M.
l Isolated yield 38%.
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ACN/DMF 3/1 v/v) that was experimentally obtained (Fig. S5 in the
Supporting information), the fluorescence quenching rate constant,
kq(S1), was found to be 1.9×109 M−1 s−1. From these data, 1

quenches the delayed 1DPA* at a nearly diffusion controlled rate.
Deactivation of 1DPA* under preparative irradiation conditions

([1]= 0.01M) (equation S3 in the Supporting information) relies on
the relative contribution of the different pathways which includes
fluorescence, fluorescence quenching and intersystem crossing. The
fluorescence (kF) and intersystem crossing (kISC) rate constants were
kF= 1.1×108 s−1 and kISC= 0.4× 108 s−1, respectively (equations
S4 and S5 in the Supporting information), taking into account the
quantum yields of fluorescence (ϕF= 0.73, see Figs. S2 and S6 in the
Supporting information) and intersystem crossing (ϕISC= 0.27)
[53,54], respectively. Under these conditions, quenching of the delayed
1DPA* by 1 contributed 11% to the overall singlet deactivation with a
significant residual fluorescence (65%) and some amount of the excited
molecules (24%) intersystem crossing to the triplet state. Actually,
observation of fluorescence quenching would not discard that activa-
tion of 1 could take place from the 3DPA*. Spectroscopic measurements
were carried out to establish whether 3DPA* may or may not be cor-
related with the CeC coupling catalytic reaction. Thus, addition of 1 to
the TTA system (0.1 mM DBP, 1 mM DPA in ACN/DMF 3/1 v/v, N2,
λexc= 485 nm) did not affect the temporal profile of the delayed 1DPA*
at 440 nm (Fig. 2B). Assuming 3DPA* quenching by 1, there would
have been a direct effect in the lifetime of the delayed 1DPA*. In other
words, sensitized 3DPA* is the direct precursor of the delayed 1DPA*
and any external factor that may affect it should have a posterior
consequence. These findings therefore allowed us to conclude that ac-
tivation of 1 by SET occurred from the delayed 1DPA*. Furthermore, ET
thermodynamics strongly supported this analysis. Application of the
Weller equation [55] (equation S6 in the Supporting information) was
used for estimating the free energy changes (ΔGET in kcal mol−1) as-
sociated with ET processes. The oxidation potential (E°(DPA%+/ DPA)) of
DPA as well as its singlet and triplet energy E*(S1 or T1) were pre-
viously reported [34,56]. Their corresponding values are 1.25 V vs.
SCE, 71.5 and 41.5 kcal mol−1, respectively. Taking into account the
reduction potential of 1 (−1.81 V vs. SCE) [34], the ΔGET (S1) and ΔGET

(T1) values were estimated as −0.9 kcal mol−1 and +29.5 kcal mol−1,
respectively. Therefore, activation of 1 by delayed 1DPA* would be an
exergonic process, whereas the mechanism from 3DPA* is thermo-
dynamically prohibited.

The obtained results can be rationalized as depicted in Fig. 3. The
3DBP* is generated after selective excitation to DBP plus an efficient
ISC. Re-establishment of DBP takes place in the presence of DPA by fast
TTEnT process giving rise to the 3DPA* that is capable of colliding with
other 3DPA*. This deactivating phenomenon, named TTA, affords the
formation of a delayed fluorescence 1DPA* possessing high-energy
characteristic, sufficient to activate electrophilic substrates such as 1 by
SET. Once the radical ion pairs are formed, the unstable radical anion
Ar-X%− undergoes fast irreversible fragmentation to give anion X− and
the aryl radical Ar% which, suitably, can be trapped by a nucleophile
agent such as 2. Oxidation of the resultant radical intermediate a occurs
by an exergonic BET based on DFT calculations, (Fig. S7 in the

Fig. 2. Activation of target compound 1 by
delayed 1DPA*. A: Stern-Volmer plot to obtain
kq (S1); experimental errors were lower than
2% of the obtained values. B: Kinetic decays of
the delayed 1DPA* at 440 nm without 1 (black)
and with 5mM of 1 (red). (For interpretation of
the references to colour in this figure legend,
the reader is referred to the web version of this
article.)

Fig. 3. Proposed photocatalytic mechanism of the CeC coupling reaction be-
tween aryl halides and N-methyl pyrrole. Cascade processes involving: ISC
(intersystem crossing), TTEnT (triplet-triplet energy transfer), TTA (triplet-tri-
plet annihilation), SET (single electron transfer), CeC bond formation and BET
(back electron transfer).

Fig. 4. Other examples of CeC coupling photoreaction using DBP/DPA as
photocatalysts. Reaction conditions: aryl bromide (10−2 M), N-methyl pyrrole
(0.8 M), DBP (10-4 M) and DPA (10-3 M), 3ml of ACN/DMF 3/1 v/v using a
blue laser pointer (445 nm ± 10) under nitrogen atmosphere during 2 h.
[a]conversion; [b]selectivity; [c]from 4-iodoacetophenone; [d]from 4,4′-diiodo-
biphenyl [0.007M], ACN/DMF 1/1 v/v, 67% selectivity of 4-iodo-1,1′-bi-
phenyl; [e]from 2-acetyl-5-chlorothiophene.
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Supporting information), restoring DPA (Fig. S9 in the Supporting in-
formation) and leading to cation intermediate b and afterwards to the
desired couple product.

3.4. Scope

A few more examples of the CeC coupling catalytic reaction by
DBP/DPA TTA-UC system, which strongly support the proof of concept,
are shown in Fig. 4. A range of substituted aryl halides gave the cor-
responding coupling products where their diverse reactivity would be
associated with the thermodynamic and kinetic data determined by
DFT methodology at the B3LYP/6-311++G(d,p) level (Table S1 in the
Supporting information). Regarding the activation barriers, for instance
ET vs BET, low reactivity can be a direct consequence of reversibility of
the electron transfer and subsequent mesolysis. Alkylation of 2 was also
applied under same conditions.

3.5. Continuous-flow device

An up-to-date overview on photochemical transformations in con-
tinuous-flow reactors has been recently reported [57]. As a matter of
fact, it would be of great interest to explore the applicability of this
proof of concept with continuous-flow conditions that currently no
precedents can be found in literature. Thus, the CeC coupling reaction
between 1 and 2 in the presence of the TTA system (DBP + DPA) with
scaling-up optimal conditions was actually observed under flow settings
(Fig. 5). The deaerated solution phase (A) was delivered to a Pyrex glass
holder (D) by a MasterFlex® continuous-flow pump (C) at 100 rpm
through a Tygon® tubing (ID 1.6mm). Constant stirring at D was
achieved in order to facilitate the solution flow and minimize the
possible retention time in the irradiation region. At this point, the re-
action mixture was photolyzed by a blue laser pointer
(λexc= 445 nm ± 10). The final exiting stream was collected again in
A to evolve continuously the photoreaction. To our delight, selectivity
and isolated yield of coupled photoproduct 3 was found to be very
promising and we expect that advantages of photochemical syntheses
observed on a small scale will be able to be exploited on a larger scale
and consequently to be implemented in the industry.

4. Conclusions

In conclusion, we have proven the feasibility of photon upconver-
sion technology based on triplet-triplet annihilation to be successfully

applied to organic synthesis such as heteroarene functionalization by a
CeC coupling reaction. The approach follows an unprecedented cas-
cade of processes that involves both photophysical (ISC, TTET, TTA)
and photochemical (SET, radical trapping, CeC forming bond) events
as crucial steps. Combination of spectroscopic data, product analysis
and theoretical calculations support the described mechanistic scenario
(Fig. 4). It is worth highlighting the advantages of this catalytic pro-
tocol, which includes very mild reaction conditions (visible light, room
temperature and ambient pressure), employment of metal-free photo-
catalysts and no additives (sacrificial donors/acceptors) in the medium.
We believe that this original methodology will make way for applica-
tions to the synthesis of fine chemical building blocks, pharmaceuticals,
agrochemicals or new materials and therefore to have an immediate
impact on the current state of industrial manufacture.
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