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ABSTRACT

Image sequence analysis is a promising tool to study the physics

of waves propagating on water surfaces. Physical knowledge

about water waves is used to develop two different approaches

to sequence analysis: motion is determined (a) in the Fourier

space and (b) by a new method based on a direetio-pyramidal

decomposition in the space domain. Both methods proof to be

interesting tools for investigating the nonlinear nature of water

surface waves. Image sequence analysis of such objects opens an

exciting interdisciplinary research area between computer vision

and the physics of nonlinear phenomena.

1. INTRODUCTION

Small scale water surface waves (wavelengths 2 mm to 2 m)

receive more and more attention in environmental sciences. This

is because they are involved in a number of current research top­

ics. One of the most important is backscattering of microwaves,

emitted from satellites, by the wavy ocean surface. The inten­

sity of the backscattered microwaves is determined by small scale

waves. Knowledge about the basic interrelations between these

waves, wind speed, and the backscattered signal opens a wide

field for remote sensing [12]. Another topic concerns the energy

flux from atmosphere to ocean via waves, which is still known

only crudely [16]. Finally, waves considerably enhance the trans­

fer of gaseous pollutants between atmosphere and ocean [8].

Without going more into details it can be imagined easily that

these questions are of importance for such relevant topics as

global energy cycling (i.e. c1imate) and exchange of pollutants.

Yet there are many open questions concerning the physics of

water surface waves. This is not surprising. On the one hand,

waves are a complex nonlinear and stochastic phenomenon. On

the other hand, the measuring technique is not adequate. Up to

now, most experimental work has been done with probes mea­

suring the time series of wave height or wave slope at a single

point [6]. It is beyond doubt that such a technique fails to de­

termine all effects of the waves related to their two-dimensional

spatial structure.

Image sequence analysis of waves is the appropriate instru­

ment to study the water surface waves, since the amplitude

a = a(x, t) of waves is given as a funetion of two space coor­

dinates and one time coordinate.

Processing of image sequences from water surface waves has

been used as an experimental tool only by one research group

until now. Gotwols, Keller and Irani processed image sequences

of small gravity waves both in the field [4]' and in wind/wave

facilities [9]. But so far their analysis has been restricted to the

calculation of two- and three-dimensional mean power spectra

(S(k) and S(k,w)). The phase velocity as a funetion of the

wavenumber is the only additional parameter extracted from

these data.

Therefore it remains achallenging task to analyse wave image

sequences in more detail. Since these objeets are quite differ­

ent from natural scenes, many interesting new questions arise

and new paths have to be gone. But in contrast to natural

scenes, this way is weil guided by the knowledge about the ob­

jeet "wave": the hydrodynamic laws.

This paper is an extension of an earlier one describing the

potentialities of image sequence analysis for two topics in en­

vironmental physics more generally [7]. Here image sequence

processing of water surface waves is discussed in detail and pre­

liminary results are reported. The basic new properties of the

wave scenes are pointed out and are contrasted with natural

scenes. Based on this knowledge two approaches to image se­

quence analysis are represented. We will discuss possibilities

and limits of image sequence analysis in the Fourier space and

introduce a new approach based on a direetio-pyramidal decom­

position of the sequences.

2. MOVING OBJECT "WATER SURFACE WAVES"

MOTION OBSERVATION IN THE SPACE DOMAIN

Figures 1 and 2 show two examples of wave image sequences

taken in the large wind/wave facility of the Institut de Mecha­

nique Statistique de la Turbulence (IMST), Marseille. The waves

are observed perpendicularly to the water surface and their slope
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is shown as different grey or color levels using an appropriate

illumination technique [6J. This set up ensures that the two

dimensional wave propagation on the water surface is projected

onto the image plane. Motion on the image plane directly reflects

motion at the water surface and does not contain any ambiguity

by projections as for a three dimensional scene.

Consequently, the whoie dass of projection problems for mo­

tion analysis is bypassed. But another basic difficulty appears.

It can best be expressed by the simple question:

What are the objects we see moving?

Indeed, this is the key question which turns out to be very dif­

fkult and to contain much of the physics of the waves. It is

illustrated with the image sequence shown in Figures 1 and 2.

Especially from Figure 2 it can be seen that the wave field

consists of components with various wavelengths propagating

with different velocities and in different directions. The ob­

served slope pattern results from the interference of all these

differently moving components. Therefore the greyvalues can­

not be regarded as weil defined individual object points as for a

rigid object. The sequences in Figures 1 and 2 also show how

fast the slope pattern changes with time especially in the small

scales.

Figure 1: A wave image pair taken with a wave following visual­

ization system moving with 25 cm/s in wind direction. The time

interval between the two images is 40 ms, the sector shown is 15

cm times 20 cm, and the wind is blowing from the right to the

left. The waves shown are initial waves obtained after turning

on a wind speed of 6.5 m/s.

Conseauently, the image sequences consist of "objeets" chang­

ing their shape. The size of these objeets is not weil defined. The

wave image sequences may be compared with the 3D-motion of

several transparent objects in different distances from the cam­

era with the restriction that their motion is parallel to the image

plane. In 3D-motion objects change their shape by velocity com­

ponents perpendicularly to the image plane. "Wave packets"

change their shape by the physical laws governing them. The

life time of individual "objects" is limited because of dynamic

interaction processes.

Figure 2: Same as Figure 1, but showing the waves several sec­

onds later. The time difference between the first and second

image is 40 ms, between the first and third image 160 ms. A

comparison between the first and third image shows that the

wave trains propagate with different velocities.



3. GLOBAL REPRESENTATION IN FOURIER SPACE

where the co-spectrum Co and the quad-spectrum Qu are the

real and the imaginary part of the cross-spectral density, respec­

tively. The corresponding phase velocity c and displacement

vector u in the space domain are

This representation can be used as long as the interactions can

be regarded as only small a disturbance of a linear superimposi­

tion. Then, as already discussed, the individual "object" is still

wide spread in time and space and remains a small "object" in

Fourier space.

(1)

(2)

Qu(k)
f>.rp(k) = arctan --(-)

Co k

( )
_ f>.rp(k)

c k - kf>.t '

pro~ess is called (nonlinear) wave-wave interaction and

eauses energy exchange between waves of different wave­

lengths as weIl as the generation of a third wave with an­

other wavenumber.

3. The stability of waves deereases with their steepness. To

an inereasing extent waves loose energy which is trans­

ferred to turbulent motions. Larger waves break visibly

with bubble entrainment, but also smaller waves can de­

cay into turbulence ("micro-scale wave breaking" [1]).

DETERMINATION OF DISPLACEMENT VECTORS IN FOURIER

SPACE

Motion of a plane wave in the space domain results in a phase

shirt of the corresponding spectral density. This phase shift f>.rp

is given by the cross-spectrum from two consecutive images

These three processes basically determine the energy cireulation

in the wave field and therefore are the key to the research topies

diseussed in the introduction. There is a source (energy input

by wind), a distribution mechanism (nonlinear wave-wave inter­

action) and a sink (decay into turbulence). For given conditions

the wave field develops to a stationary mean spectrum where all

energy fluxes balance each other in the mean.

Image sequence analysis should not just yield some kind of

displacement vector field. It should rather determine these in­

teraction processes, i.e. answer questions as

1. How much energy is transferred from the wind field into

the waves at whieh wavelength?
2. Between whieh seales are the dominant wave-wave inter­

actions?
3. At which scales do waves mainly deeay into turbulence?

Generally, it is the aim of the analysis of wave image sequences

to reveal their nonlinear nature. In this relation the question of a

suitable representation of the waves is of importance. This rep­

resentation, in turn, directly reflects the physical nature of the

objects. In the following sedions two approaches are discussed.

THE NONLINEAR NATURE OF WATER WAVES

If waves were a linear phenomenon, we would have solved the

problem of image sequenee analysis of water waves. But the

real difficulties are introdueed by the nonlinear nature of water

waves. First, the nonlinearity causes a wide variation of interac­

tion processes between waves of different wavenumbers k limiting

spatial and temporal seales of the individual wavenumbers. See­

ond, motion of different wavenumbers may be coupled, so that

quasi-rigid but spatially limited objeets may exist.

With respect to image sequenee analysis it is instructive to

summarize the most important interaction processes far a wind

wave field on the ocean [16].

1. The turbulent wind field puts energy into the wave field

at different wavelengths: new waves of small scales are

generated, other eomponents are amplified.

2. Nonlinearity implies that waves of different wavenumbers

cannot superimpose eaeh other without disturbance. This

MOTION OBSERVATION IN THE FOURIER DOMAIN

We start our eonsiderations from the basic fact that waves

of different wavelengths .>- respectively wavenumbers k (k =
27r /.>-) move independently with different phase veloeities. Then

these eomponents are the individual objeds we are searehing far.

The space domain is not a good representation, since they are

spread over large areas superposing each other. This diredly

implies that they are weil distinguished and represented in the

Fourier spaee. Here they are sharply located objeds: one point

represents the amplitude and phase of a plane wave with the

wavenumber k. In conclusion, a Fourier transformation sepa­

rates our wave images into independent objects and the motion

analysis can be earried out easily in the Fourier spaee. This

situation is in clear contrast to natural scenes, where motion

analysis in the Fourier spaee does not make sense, as soon as

there are more than one individually moving object in the scene.

An interactive proeedure between physieal modeling and im­

age sequenee proeessing will be neeessary in order to determine

the actual spatial and temporal characteristics of the objeets the

motion of whieh we are observing. This will be the red thread

to be followed in the rest of this section.

First we can conclude that it does not make much sense just

to use the original greylevel picture far image sequenee analysis.

Let us illustrate which information a displacement vector field of

the greylevel image would contain. Every algorithm determin­

ing a displacement vector field is most sensitive to the steepest

changes in greylevels. So it mainly represents the motion of the

small seales which is the sum of the phase velocity of small seale

waves and the orbital velocities of larger waves modulating it.

These two components in the motion cannot be separated since

only one displacement vector field is obtained.

Therefore we have to ask far other representations of the wave

images in which a more detailed sequence analysis ean be carried

out. This discussion is guided by the physics of the waves.



It is important to note that for each wavenumber k in the Fourier

space a homogeneaus displacement vector field is obtained for

the corresponding plane wave covering the whole space domain.

DETERMINATION OF THE INTERACTION

The interaction process can globally be characterized by the

life time T of the component. Since newly generated waves of

the same wavenumber are incoherent to previously existing ones,

the wave field becomes more and more incoherent with increas­

ing time difference 6.t between two consecutive frames. Cross­

spectral analysis also yields the coherency

Figure 3: Mean power spectrum (a), phase velocity (b) and co­

herency (c) of image pairs from the wave patterns as in Figure 1.

Only the right halfs of the symmetrie spectra are shawn. The or­

dinate is the along-wind wavenumber. All amplitudes are shown

in linear scales with the following ranges: power spectrum: zero

to maximum response, phase velocity: ±3 cm/s (deviation from

25 cm/s, the velocity of the moving visualization system), co­

herency: 0 to 1.

is much bwer. This effect is caused by the fact that the size of

the discrete intervals increases with k Z
• Consequently, also the

spectral densities are multiplied by k 2 and can be displayed in

a linear scale. Multiplying spectral densities with k 2 is a useful

alternative to the conventionallogarithmic scale used to display

Fourier spectra. Indeed, it is more natural, since the limiting

2D-wave slope spectrum goes with k- z [16]' leading to a fiat

spectrum in the (ln k, 'P) representation.

The power spectrum (Figure 3a) shows two peaks: a wide one

at k = 11.2 cm-1 CA = 0.56 cm) in the capillary wave region

and a second, much narrower at k = 2.1 cm-1 (A = 3 cm) in

the gravity region. These two dominant wavelengths can also

be seen in the space domain (Figure 1). Moreover the 2D-power

spectrum contains the exact shape of the angular distribution

of the waves. This is the basic new information contained in

the 2D-wavenumber spectrum in comparison to the frequency

spectrum derived from wave gauges measuring the wave slope or

~mplitude at a single point.

(4)

(3)

A general problem in the coherency analysis lS the limited

area of the images. An object moving with a velocity u can be

observed at most aperiod 6.t = I/u, where I ist the size of the

image. Typical phase velocities of 50 cm/s and picture sizes of

50 cm result in an observation time of about only 1 s, which is

much too low. This problem has been solved with the image

aquisition system. The whole wave visualization system used in

the IMST wind/wave facility is mounted on a carriage, which

can follow the wave field with adjustable speed of up to 1 m/s.

where (... ) denotes the average of the spectral densities over

many images. In this way the coherency allows an estimate of

the interaction.

Ifthe interaction is weak (i.e. changes the wave pattern only in

scales T » T and x = TC » A), then the interaction process can

be linearized, and the coherency decreases exponentially with

the lifetime 1".

Unfortunately another mechanism not transferring energy also

decreases coherency. The phase velocity of small scale waves is

modulated by the orbital velocities of larger waves, even if no

interaction takes place. This elfect leads to a variance in the

phase velocity ((6.Zc)). The coherency decrease is proportional

to this variance [6]

RESULTS

Figure 3 shows the results of an cross-correlation analysis of

8 image pairs, from which one example is shown in Figure 1.

After a 2D-FFT the mean spectral densities were calculated in

a (ln k, 'P) polar coordinate system. We chose 31 angular inter­

vals from -'lf/2 to 'lf/2 (6.'P = 'lf/31 = 5.8°). The logarithmic

k-interval 6. In k = 6.k/k has the same value as the angular in­

terval resulting in a 10% k-resolution. Details of the analysis are

described by Huber [5J.

The (In k, 'P )-representation for spectral densities olfers two

advantages. First, a considerable data reduction is achieved:

For 2562 pictures the 129 X 256 (k x , ky ) matrix is mapped anto

a 45 X 31 (ln k, 'P) matrix, which is a reduction factor of more

than 20. Second, the dynamic range of the Fourier coefficients



Phase velocity and coherency are only shown in a window in

which the spectral density is at least 1/32 of the peak density.

The phase velocity (Figure 3b) can be measured quite sensitively.

Since the image sequences are taken from a system moving with

25 cm/s, the whole velocity range in Figure 3b covers only the

deviation from this value in a range of about ±3 cm/s.

The coherency (Figure 3c) remains high up to the peak in the

capillary range. Since the decrease in the coherency is caused by

both the modulation and interaetion processes, the life time of

the individual wavenumbers cannot be calculated from just one

image pair. It is rather necessary to calculate the coherency for

different time differences i:>.t in order to separate both effects by

their different time dependencies. Or, generally speaking, the

image sequence analysis has to be extended to a true 3D-image,

where time is the third coordinate.

LIMITS OF FOURIER SPACE APPROACH

Image sequence analysis in the Fourier space based on mean

spectral densities has its limitations.

It is not possible to distinguish the different interaction pro­

cesses by this analysis. The lifetime r of one wavenumber is

an integral information containing the interaction with all other

wave numbers and the decay into turbulence. Nevertheless, a ba­

sic information is obtained. The lifetime and the mean energy

density of a wave component yield the net energy fiux density

for this wavenumber.

Likewise all information about individual wave trains is lost

by the averaging procedure. It can only be observed how long

a certain wavenumber exists in the mean. This is not a suf­

ficient analysis of the interaction processes if the nonlinearity

becomes dominant. Then the Fourier space representation gives

no useful picture of the wave field in the sense that a point in the

Fourier space represents an object, i.e. a plane wave propagating

- at least in first approximation - independently from other

components of the wave field. Consequently, the whole approach

discussed in this seetion breaks down under these circumstances.

From Figures 1 and 2 it is obvious that the interaction be­

tween small scale structures in the wave field is strong, since they

rapidly change with time. Indeed, theoretical calculations show

that wave-wave interaetions are much stronger in the smaller

scales (capillary-gravity range) than for large scales (pure grav­

ity waves) [13].

and which move coherently. If nonlinear interaction processes

are dominant, then the phase relation between the components

of different scales is of importance. But this is just the informa­

tion lost by calculating mean spectral densities.

Therefore it is proposed first to separate the wave field inta

all components which may move independently, before the image

sequence analysis is applied. Then in each level of the decompo­

sition a displacement vector field can be calculated for instance

with one of the established algorithms [14]. Afterwards coherent

struetures can be searched in space, within different pyramidal

levels, and in time to extract the objeet scales, interactions be­

tween different scales, and the object life time.

A representation of the waves which separates wavenumbers

but maintains as much spatial position as possible seems to

be appropriate. These contradietionary demands (uncertainty

principle) are optimally solved by the Laplace pyramid [2]' [3].

It allows aseparation of wavelengths in intervals of a faetor 2

maintaining maximal possible spatial resolution. The faetor 2

is especially useful to study nonlinear objeets, because the first

harmonie is located just one level lower in the pyramid.

But one problem remains with this decomposition. Figure 2

shows that wave components with similar scales but different di­

rections are crossing each other. Such components are located in

the same level of the pyrarnid though they are moving indepen­

dently. Hence we propose an additional directional decomposi­

tion in each level of the pyrarnid to separate such components.

A coarse direetional decomposition is sufficient, since the waves

normally cross each other nearly perpendicularly.

FILTERS FOR DIRECTIO-PYRAMIDAL DECOMPOSITION

Direetional filters have been proposed by many researchers

(e.g. Knutsson [11], Kunt et al. [10]). Here we propose a simple

set of directional filters simultaneously providing a pyramidal

decomposition.

These filters are based on binornial kerneIs. The convolutions

of the image with different kerneis are combined which each other

and result both in the directional components and the isotropie

level of the pyramid.

The simplest construetion scheme decomposes each level of

the Laplace pyramid into two perpendicular directional compo­

nents. Two 1D binornial smoothing filters, one along each axis,

for instance

are convolved with each other to yield an isotropie smoothing

kernel B

This isotropie kernel is used to calculate one level of the Laplace

pyrarnid

4. DIRECTIO-PYRAMIDAL DECOMPOSITION

REPRESENTATION OF NONLINEAR WAVES

In the case of stronger interaction we are confronted with the

fact that the object is neither sharply located in the space do­

main nor in the Fourier domain. Then the scales in both do­

mains to which a wave train extends become the charaeteristic

parameter which is not known but which has to be determined.

Moreover, we do not know, which scales move independently

Bx = 1~ { 1 4 6 4 I},

12=1-B

By = 2.. { : }16 4

1

(5)

(6)

(7)
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move.

The figures impressively demonstrate how much information

can be obtained by directio-pyramidal decomposition. If now for

each component a displacement vector field is calculated, it can

easily be imagined that a powerful tool for the analysis of wave

image sequences is at hand.

one level of the Laplace pyramid. Using an isotropie binomial

filter with (>2 = 2 for the construetion of the Laplace pyramid

results in maximal amplitude responses at a spatial frequency

of 0.6 times the Nyquist frequency. At this frequency the direc­

tional separation is still sufficient.

A general benefit of these filters is the low cost. For one level

of the Laplace pyramid including the direetional decomposition

in four directions with the kerneis P' only 36 arithmetic oper­

ations (28 additions and 8 shift operations) are necessary per

pixel if cascaded filtering with the elementary 1D binomial fil­

ter {11} along the four direetions is applied. This is a very low

number of operations. A direct calculation of the direetional

components with the five 11 X 11 kerneis (DI and 12) would need

1205 arithmetic operations (605 multiplications and 600 addi­

tions) per pixel.

In this paper we introduced a new application for image se­

quence processing. The discussion shows that an interdisci-

5. CONCLUSIONS

RESULTS

Figures 5 and 6 show the' decomposition of the wave images in

Figure 1 and 2, respectively, in two directional components and

three pyramidal layers as indicated in the figure caption.

Figure 5 does not only show the two dominant components,

which have also been derived from the 2D-wavenumber spec­

trum. It also directly makes visible how the small capillary

waves are modulated by the larger gravity wave including the

phase relation of this interaction. In the cross-wind directional

component, where the dominant along-wind component is fil­

tered out, hidden crossing wave patterns are revealed, which are

not visible in the original image (Figure 1). The crest of the

gravity wave is disrupted along two horizontal lines. This is an

example how 2D-instabilities of the waves can be investigated in

detail with the proposed decomposition.

Crossing wave patterns in the cross-wind directional compo­

nent can be observed even better in Figure 6. In addition, in

some regions structures are preserved troughout the three levels

of the Laplace pyramid. This indicates strong nonlinear interac­

tions.

A decomposition in 4 directions with the filter set DI is shown

in Figures 7 and 8. In these pictures the signum of the ampli­

tude is displayed. In this representation characteristic structures

can easily be traced through different directional components

and the two levels of the Laplace pyramid. This allows direct

conclusions how coherently or independently the different scales

(9)

(8)

(13)

(11)

(10)

3

LDI = t (12)
i=O

for 0 ~ i < 4

B- xy = ~ {~ ~ ~)
4 0 0 1

BxBxy

ByBxy

ByB- xy

BxB- xy

B' = Ba * B2 = BI * B3

1I0 0 1 )Bxy = 4" 0 2 0 ,
100

PI=~(12+Bi-Bi+2) for 0~i<4 with

where i + 2 is calculated modulo 4.

It is also possible to construct a set of filters where the im­

age is decomposed in direetional components along the axes and

diagonals (Figure 4)

" 1 ( )Di = 4" 12 + Bi + Bi+1 - Bi+2 - Bi+3

This isotropical filter is used to calculate one level of the Laplace

pyramid f/ = J - B'. Finally the isotropie Laplace operator 12'
is combined with the set of direetional filters Bi in (10) to a new

set of directional filters DI

With additional binomial kerneis along the diagonals

Consecutive filtering with two of these directional filters yields

an isotropie binomial smoothing kernel with (>2 = 2

The frequency responses of these filters are shown in Figure 4.

Despite the simple construction scheme a sufficient direetional

separation is obtained. The half width of all filters is 45°. The

directional separation in only two components offers two basic

advantages. First, all spatial frequencies perpendicular to the

filter direetion are completely removed. Second, the directional

sensitivity is preserved up to the highest spatial frequencies.

This is not the case for the decomposition in four directions

(Figure 4). At the highest spatial frequencies all filters give a

uniform response. Nevertheless, this is no drawback of these di­

reetional filters since the highest frequencies are not existent in

1

'" D· - I'L t--

a separation In four direetions is possible. The four binomial

kerneis (Bx, By, Bxy , and B- xy ) with equal variances (here (>2 =
1) are combined to four identically constructed directional filters

Bi with main axes in 22.5°, 67.5°, 102.5°, and 157.5° direction

(steps of 45°)

with

where J is the identity operator. The difference operator be­

tween the two 1D binomial kerneis Bx and By is combined with

the Laplace operator 12 to a new set of two direetional kerneis

Di adding up to 12.
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Figure 4: Frequency response of the filters used for directio-pyramidal decomposition. The shading is linear in 16
greylevels from zero to maximum response. a: Laplace kernel f, b: VI, c: Vi' (90°), d: V{ (67.5°), e: V;' (45°).

plinary research area between experimental physics, environmen­

tal sciences, theoretical fluid dynamics, numerical mathematics,

and computer vision is evolving. The two approaches presented

here yield quite different results. On the one hand, the Fourier

space approach allows a derivation of mean parameters of the im­

age sequences, as mean spectral densities, phase velocities, and

the coherency of the wave field. On the other hand, the directio­

pyramidal decomposition is a versatile instrument to study mo­

tion and interaction of individual wave components in detail.

So far we have introduced the directio-pyramidal decompo­

sition as a necessary procedure to precede the image sequence

analysis for water waves. The next step will now be to apply im­

age sequenee analysis on each of the different eomponents. It is

planned to process the deeomposed wave image sequences in co­

operation with the German Cancer Research Center, Heidelberg

(J. Dengier) and the Fraunhofer-Institut für Informations- und

Datenverarbeitung, Karlsruhe (H.-H. Nagel) using algorithms

developed in both institutions.

The directianal decomposition is a necessary requirement for

image sequenee analysis of waves. It seems to be an interesting

research topic, whether this preprocessing in turn leads to new

and more efficient image sequenee algorithms.

Presumably more and more similar complex scientific ques­

tions, whieh cannot be handled with conventional measuring

technique, will be treated with computer vision systems as they

are getting eheaper and more powerful. Kew applieations, as

the one presented here, illuminate image sequence analysis from

other points of view. Hopefully, they also stimulate the classieal

field of image processing of natural scenes. Anyway, the analysis

of images from physical objects implies a thorough consideration

of the theoretical basis. This is just the trend found in image se­

quenee analysis in general leading from phenomenology toward

theoretical foundation, as reeently pointed out by Nagel [15].
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Figure 7: Directional decomposition of the first image of Figure 1

in four directional components as indicated. In two levels of the

Laplace pyramid the signum of amplitude is shown.

D{

Figure 8: Same as Figure 7 for the first image in Figure 2.




