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Abstract

In this thesis we present techniques to automate the �tting of spectral time series of
Type Ia supernovae (SNe Ia). These transient objects play an important part in the
chemical evolution of the Universe and are used as important distance indicators to map
out the expansion history of the Universe. Despite their importance, many aspects of
these transient events are still unknown. An important tool to study the explosion in
detail is the abundance tomography method in which a model is �tted to the spectral
time series of an observation using a fast spectral synthesis code.

In this work we present �rst steps to accelerate and automate this method in an attempt
to explore the parameter space surrounding the best �tting set of parameters and to
highlight degeneracies. To this end, we develop a framework that uses Machine Learning

(ML) techniques to quickly generate spectra and then use Markov chain Monte Carlo
(mcmc) methods to explore the parameter space with the help of Bayesian statistics to
construct a measure of the quality of �t. After extensively testing and validating the
framework, we apply it to supernova (SN) 2002bo, which was already the subject of
similar studies done manually. However, reproducing the results found in literature is a
challenge that needs further research beyond this thesis.
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1 Background and previous work

Supernovae (SNe) are among brightest astronomical objects in the Universe which can
even outshine their entire host galaxy during their evolution. A subclass, the SNe Ia
have played a crucial role in recent years in the �eld of cosmology due to their use as
standardizable candles. An empirical relation, between the width of a lightcurve and
the intrinsic luminosity of a SN Ia has been identi�ed (Phillips, 1993; Pskovskii, 1984).
Using this relation SN Ia were used as distance indicators, most famously by Riess et al.
(1998) and Perlmutter et al. (1999). They established the accelerated expansion of the
Universe which was awarded with the Nobel prize in 2011. Besides their importance in
cosmology, SN Ia play an important role in other disciplines of astrophysical research.
For example in galactic chemical evolution because they are the main source of stable iron
(see Matteucci & Greggio, 1986; Kobayashi et al., 1998). Moreover, they are discussed
in the context of triggered star formation (see Leibundgut, 2000).

However, their importance is contrasted by persisting uncertainties about the nature of
these objects and the physical processes that govern them (see Hillebrandt et al., 2013).
The consensus in the astrophysical community is that SN Ia are thermonuclear explosions
and full disruptions of a carbon/oxygen white dwarf (CO-WD) (Hoyle & Fowler, 1960;
Truran et al., 1967). This thermonuclear burning produces large quantities of radioactive
56Ni, whose decay through 56Co to 56Fe powers the intense light output of these systems
which we observe (see Pankey, 1962; Truran et al., 1967; Colgate & McKee, 1969; Kuchner
et al., 1994). However, the exact nature of the progenitor system and the details of the
explosion are still subject of active debate and ongoing research.

1.1 Explosion physics

The evolution of low mass stars (< 8MZAMS) ends in a compact white dwarf (WD) which
has exhausted its nuclear burning fuel and thus, no burning takes place (see Kippenhahn
et al., 2012). These dense objects are gravitationally stabilized through the pressure of
the degenerate electron gas (see Shapiro & Teukolsky, 1983) and their only evolution
consists of gradually cooling down. Thus, to trigger an explosion an external in�uence is
required which comes in the form of a companion star (see e.g., Hillebrandt & Niemeyer,
2000; Hillebrandt et al., 2013).

Historically two possible realizations of a progenitor system have been considered and
they were separated into two classes. In the single-degenerate scenario (SD-scenario) the
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1 Background and previous work

CO-WD accretes matter via Roch lobe over�ow from a main sequence or red giant star
(Whelan & Iben, 1973; Nomoto, 1982). During the accretion, the mass of the WD ap-
proaches the Chandrasekhar mass (MChan = 1.38M�; Chandrasekhar, 1931) limit, which
is the theoretical stability limit of self gravitating system supported by the degeneracy
pressure of electrons (see e.g., Shapiro & Teukolsky, 1983). Subsequently, conditions in
the center of the WD approach a state which enables thermonuclear burning of C-O.
The actual explosion is preceded by a simmering phase (see Woosley & Weaver, 1986) in
which almost all energy released by thermonuclear burning can still be e�ciently trans-
ported away by convection but at some point this cooling mechanism becomes ine�cient
and the increase in temperature leads to a thermonuclear runaway and the onset of the
explosion.

In contrast to that, the double-degenerate scenario (DD-scenario) involves two WDs in
a binary system and their merger. In the classical interpretation this happens by slow
accretion of the disrupted secondary onto the primary (Iben & Tutukov, 1984; Webbink,
1984). An explosion would then be triggered as the primary, again approaches the
Chandrasekhar mass. However, it is believed that no thermonuclear runaway is induced
by this process but rather an accretion induced collapse (Yoon et al., 2007). Recently
the DD-Scenario has received interest again as it has been shown that a thermonuclear
explosion can be triggered if the merger occurs violently, for a primary which is well
below Chandrasekhar mass (Pakmor et al., 2010, 2012).

Another possibility to induce an explosion in a sub-Chandrasekhar mass model is a
double detonation, where the primary WD accretes helium from its companion (Iben
et al., 1987; Wang et al., 2013). This accretion does not proceed stably but at some
point a detonation in the helium shell occurs, sending shocks into the C-O core which
again create conditions suitable for the ignition of a thermonuclear explosion.

However, all scenarios have their problems and so far there is no consensus which ones are
actually realized in nature. For example the SD-Scenario is in con�ict with x-ray obser-
vations made (Gilfanov & Bogdán, 2010) and surviving companions should be observable
but none have been found so far (Olling et al., 2015). For the DD-Scenario it is still a
challenge for population synthesis to reproduce the observed SN rate (see Hillebrandt
& Niemeyer, 2000). It is still not clear whether the double detonation scenario leads to
SN Ia since the Helium ash distorts the synthetic spectra dramatically. With all these
problems, of which this is only a small subset, it is still an open question whether the
observations we make correspond to one scenario or a mix of all of them (e.g., Woods &
Gilfanov, 2013, 2014).

In addition to uncertainties about exact nature of the progenitor system, the details of
how the thermonuclear burning process proceeds are also unknown. In principle, there
are two ways in which a �ame can propagate through the degenerate material, either by
de�agration or by detonation. A de�agration proceeds subsonicly and energy transfers
from hot ash to cold fuel via heat conduction. That means, the material in front of the
burning front can react and expand. Thus, the burning happens in a less dense region and
more intermediate mass elements (IMEs) are generated (see e.g., Hillebrandt & Niemeyer,
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1 Background and previous work

2000). In the other mode, the detonation, the �ame proceeds supersonicly, thus the cold
fuel is heated through shock compression. Since the fuel cannot react to the supersonic
�ame front, burning proceeds at high densities and the fuel burns predominantly up to
56Ni. In Chandrasekhar mass WDs, none of these burning modes in their pure form can
lead to the explosions we observe. A pure de�agration explosion does not produce the
56Ni masses we observe, while in a pure detonation model too much 56Ni and not enough
IMEs are created to match the observations. Thus, a combination of these two burning
modes is investigated in a de�agration to detonation transition (DDT) (see Khokhlov,
1991) explosion in which nuclear burning is triggered in a de�agration �ame, causing
the WD to expand. At some point, the �ame becomes supersonic and transitions into a
detonation which rapidly disrupts the WD and still produce signi�cant amounts of 56Ni
(Hillebrandt & Niemeyer, 2000).

1.2 Modeling Supernova explosions

1.2.1 Forward modeling

Theoretical attempts to reveal the nature of physical mechanisms that control the SN
explosion can be separated in two classes, forward modeling and backward modeling. In
the �rst approach, forward modeling, a theoretical model is followed through ignition and
ejecta evolution by doing detailed hydrodynamic simulations with an accurate description
of the burning processes (see e.g., Reinecke et al., 2002). Then a link to observations
is created by using detailed, multi-frequency, multidimensional radiative transfer codes
(e.g., Kromer & Sim, 2009) to compute synthetic observables. By confronting theoretical
observations with real observational data, we can draw conclusions about the assumed
model. The advantage of this method is a limited set of free parameters, however the
simulation is time consuming and complex and thus not suitable for large parameter
studies or the extensive analysis of di�erent objects.

1.2.2 Backward modeling

In the case of the second approach, backward modeling, we typically start with observa-
tions and use much simpler, faster numerical techniques to produce synthetic observables
Mazzali & Lucy (e.g., 1993); Kerzendorf & Sim (e.g., 2014). This is often done for entire
grids of parameters in order to identify a set of parameters that matches the observa-
tions best (e.g., Stehle et al., 2005). The downside of this approach is that many free
parameters are involved and that the simulations often rely heavily on assumptions. Nev-
ertheless, backward modeling can provide valuable and complementary information to
forward modeling.
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1 Background and previous work

1.2.3 Abundance tomography

Speci�cally for SNe Ia, we can use the abundance tomography method introduced by
Stehle et al. (2005) for backwards modeling. This method uses a spectral time series
to reconstruct a spatially resolved composition of the SN ejecta. Here one relies on the
fact that, as time progresses and the ejecta evolves, deeper layers of the ejecta become
transparent and contribute to the formation of the spectrum. Thus, by successively �tting
a model to spectra for di�erent times, we can constrain the composition in these layers
and thus perform a tomography of the SN ejecta. This method has been successfully
applied to number of SNe, including SN 2002bo (see Stehle et al., 2005) and SN 2011fe
(see Mazzali et al., 2015).

A big limitation of abundance tomography as it was done in the past is that the �tting
is done manually and thus, it is possible to miss solutions. Additionally, degeneracies
in the parameter space may pass unnoticed and the application of this method takes an
excessive amount of time. With the abundance of computing power available today and
the recent advancements in ML it is a great opportunity to apply these techniques to
the abundance tomography method. In addition to the aspect of reducing the amount
of human work that goes into applying this method, this opens up several new options.
Firstly, automating the process allows us to analyze more data, gathered by surveys Li
et al. (e.g., 2000) which enables statistical interpretation of the results. However, more
importantly by automating this approach, we can use algorithms that not only �nd the
best composition but also give the topology of the parameter space and uncertainties.
These informations are much needed to verify the correctness of this method.

In this thesis we present �rst steps towards the automation of this method. We present
a framework that allows us to fully explore the parameter space of models in a timely
manner while providing uncertainty estimates for the solution. Firstly, we introduce the
techniques that are used for the framework in chapter 2. Then, in chapter 3, we discuss
the tests performed on the framework and the results we obtained. Lastly, in chapter 4
we give a brief summary of our method and an outlook for the future.
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2 Method

In this work, we present a novel way to perform abundance tomography, the approach
of �tting an observed spectral time series to infer the composition, ejecta structure and
density pro�le of an exploding star.

The original method, introduced by Stehle et al. (2005) to study SN 2002bo, relies on
a fast radiative transfer method to predict synthetic spectra for simple SN models. The
composition of the theoretical SN model is then changed and the theoretical spectra
recalculated until a good �t to the observed spectral time series is obtained. Since
this original method, which has been successfully applied to numerous other SNe (see
Hachinger et al., 2009; Ashall et al., 2014; Mazzali et al., 2015) requires manual �ne tuning
of the model parameters (such as the abundances of the di�erent chemical elements), an
exploration of the entire parameter space is impossible and an assessment of potential
degeneracies challenging.

We propose to automate this process with the help of ML techniques, such as an emulator
(see section 2.3), a tool used to pre-calculate simulation results and interpolate between
them and mcmc methods(see section 2.4.2). In addition to increasing the e�ciency of the
abundance tomography procedure, these tools allow us to incorporate prior knowledge
about the nature of the exploding object such as nucleosynthesis constraints and provide
detailed information of the solution topology.

This additional knowledge about our solution allows us to de�ne regions in the parameter
space which we can exclude. These intervals strongly depend on the measure of compar-
ison, as we will discuss in detail in section 2.1. Because of that, the aim of this study is
to �nd regions of parameter space we are con�dent to exclude and rule out models that
lie within.

In this chapter, we will introduce all numerical techniques which are relevant for our
automated approach to abundance tomography. We begin by discussing the details of
�tting SNe spectra in section 2.1. Afterwards, we turn to tardis (Kerzendorf & Sim,
2014), the spectral synthesis code used throughout this work (section 2.2). Then we
describe a way of accelerating the spectral synthesis process in section 2.3 and �nish this
chapter by outlining how the parameter space may be e�ciently explored using mcmc
methods in section 2.4.
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2 Method

2.1 Spectral �tting

It is impressive how astrophysicists are able to draw conclusions about the universe just
based on observations of light. This is di�erent to most other disciplines of physics
which have access to experiments and laboratories to verify or falsify their theories.
To compensate this, astrophysicists rely heavily on observations and try to catch the
astrophysical systems in many di�erent states and con�gurations. A crucial diagnostic
in this aspect is the variation of the intensity of light with wavelength which is called,
called the spectral energy distribution or short spectrum.

While observations are on the one side, theoretical predictions and the development of
the models is on the other side. The models typically involve solving the coupled e�ects
of many di�cult physical processes. A task which is today most often performed on a
computer.

2.1.1 Fitting SNe Ia

One �eld that has pro�ted immensely from such a �tting process is the analysis of stellar
spectra, including the realization that stellar spectra can be well described by only three
parameters. These are the e�ective temperature, the surface gravity and the metallicity
which describes the stars composition in relation to that of the sun. However, such a
simple model does not work for SNe Ia. Their spectra do not feature a true thermal
continuum on which lines are superimposed. Instead a multitude of lines from many
species with no strong relation between them are blended together and form a pseudo-
continuum. This already demonstrates, that a realistic model involves more than three
parameters.

Already a one-dimensional description would at least involve of the order of ten param-
eters (see detailed description of our model in section 2.2.2), describing the abundances
of the elements, the density and the radial velocity structure.

Unlike a star, a SN is a transient object that evolves on relatively short time scales. The
time series of the spectra reveals additional information such that the parameters can in
principle be constrained. Thus any procedure cannot rely on a precomputed grid such
as in stellar spectroscopy (see e.g., Husser et al., 2013) due to the high dimensionality of
the parameter space. Thus, we have to use the simulation codes to generate a synthetic
spectrum for the model parameters we want to study.

There are various methods available for simulating the processes in the SN ejecta. Simple
tools like SYN++ (Thomas et al., 2011) are useful for line identi�cation, but do not
support solving the state of the plasma in the line forming region. Codes that include
these more complex physics are for example Mazzali & Lucy (1993, ML93) code and
tardis. They run a one-dimensional Monte Carlo (MC) simulation to iteratively solve
the radiation �eld and the plasma state. The inclusion of additional physical processes
come at the cost of a slightly longer run-time. However, they provide a good balance
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2 Method

between e�ciency and accuracy, making them a good candidate for manual �tting of
supernovae or abundance tomography. Therefore we will use tardis to generate the
synthetic spectra needed throughout this thesis. The most accurate spectra can be
generated with three-dimensional, time-dependent radiative transfer calculations. Tools
like artis (Kromer & Sim, 2009) or sedona (Kasen et al., 2006) take the output of a
multidimensional hydrodynamic explosion simulation to create a full time series of the
spectrum. One simulation takes roughly a week on a computing cluster, making them
uninteresting for general �tting of supernovae. Their main application is the theoretical
exploration of explosion models.

2.1.2 Comparing SN Ia spectra

In addition to a means to generate synthetic spectra, we need a procedure to compare
them to observations.A key requirement here is a prescription to assess how well the syn-
thetic spectrum matches the observation. For this measure we use a likelihood function
which we will discuss in detail in section 2.1.3.

As a consequence, the radiative transfer calculations are never able to fully re�ect the full
physics and thus will be subject to systematic imperfections which may a�ect di�erent
parts of the spectrum di�erently. Therefore treating all features equally is often not
advisable. Because of these issues, the comparison typically was so far done manually
using the expert knowledge of trained astronomers who decided whether or not the model
spectrum matches the observation. However, quantifying the measure requires to express
the approach in an algorithmic way, which has not been done so far. We quickly outline
the process of comparing spectra `by eye' in the next paragraph.

chi-by-eye The challenge in comparing model spectra with observations lies in the im-
perfections introduced by assumptions and approximations in the model and the simula-
tion code. As a result the important task is to decide which imperfections or discrepancies
to accept. This requires extensive knowledge of the underlying physics and simulation
code.

Applied to the task at hand, the general approach is to start by �tting the general shape
of the SN spectrum and then account for the individual intensity of atomic lines. This
works best for isolated and unsaturated lines, because the line depth at the core of the
line is proportional to the amount of matter in the ejecta (see Hachinger, 2011, for a
detailed explanation).

In addition to matching the general shape and individual lines, experienced astronomers
also know what wavelength regions are prone to be systematically bad �ts and can
deweight these in their �tting approach. This allows an experienced astronomer to em-
pirically identify regions where it is important to match the relative depth and pro�le of
an atomic line instead of matching the continuum.
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In summary, due to the large number of parameters (upwards of ten) and complex search
space as well as non-formalized weighting of di�erent spectral features, the process is very
time consuming and subjective.

χ2-measure A step beyond a visual inspection whether particular features match is
to de�ne a simple and quanti�able measure. The so called χ2 measure is the most
widespread approach::

χ2 =
N∑
i=1

(
θi − xi
σi

)2

(2.1)

as the distance to the expected result. Here f(θi) is the spectrum generated using model
parameters θi (e.g.,Si abundance, O abundance, etc. for our problem), the observed
spectrum is denoted as yi and the uncertainty is σi. That means, for each bin, we
determine the di�erence between the observation and our model scaled with the inverse
of the uncertainty. We then square this and sum them all together. The result is a
number that approaches the number of bins N for a perfect �t. If χ2 << N , this is
called `over�tting' and points to a �aw in the model or uncertainty because it is able
to reproduce the data without the noise. On the other hand, χ2 >> N is the result
of an unsuccessful �t with a model that does not su�ciently reproduce the data (or an
underestimation of the uncertainty in the data).

2.1.3 Likelihood

In the previous section we described ways to compare synthetic to observed spectra. We
will now formalize this measure known as likelihood. This is the probability that the
model θ results in the observations y we made which we will refer to as the posterior
probability P (θ | y). We can use Bayes Theorem to express this in terms of the probability
to observe y assuming model θ. This is called a likelihood function P (y | θ). To calculate
the posterior probability

P (θ | y) =
P (y | θ)P (θ)

P (y)
, (2.2)

we additionally need an evidence P (y) and a prior probability P (θ) (see e.g., Je�reys,
2011). In P (θ) we include the knowledge we have about the model and model parameters,
i.e.,excluding combinations of parameters that are impossible to occur in nature. The
term P (y) is proportional to the observation y and thus equal for all models we compare.
The important term in this formula is the likelihood function P (y | θ), which refers to
the probability to make the observation y under the assumption of model θ.

As likelihood functions incorporate the model they are a�ected by its systematic uncer-
tainty. While this often introduces di�culties in judging well-�tting solutions, in many
cases it is still bene�cial to rule out solutions that do not conform to the observations.
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Because of that, our goal is to quantify the area of parameter space we can exclude with
a high con�dence, instead of giving an interval of values as the `solution'.

The big advantage of using Bayes Theorem is that we can include prior probability in
the analysis of the problem. We are not using the full potential of this approach because
we use a uniform prior of zero or one (for details see section 2.2.2).

Because it simpli�es computation, we often use the natural logarithm of all probability
distributions: the log-likelihood L(y | θ), the log-posterior L(θ | y) and the log-prior
L(θ).

χ2 - Likelihood In section 2.1.3 we de�ne the χ2 measure, which is the main component
of the popular least-squares �tting approach. The common χ2 is simply the natural
logarithm of the likelihood:

P (x) =
1√

2πσ2
exp

(
−1

2

(
x− µ
σ

)2
)
, (2.3)

with variance σ and mean µ, we have de�ned the probability distribution of x. We apply
this to a spectrum with N bins, an uncertainty σi with i = 1, . . . , N and a mean µi in
each bin. The resulting probability is the product of the probabilities in each bin. We
use the natural logarithm of eq. (2.3) to transform this product into a sum:

L(x | θ) = −1

2

N∑
i=1

[(
xi − µi
σi

)2

+ ln(2πσ2i )

]
. (2.4)

If we de�ne x as our model spectrum fi(θ) and µi as the observation yi, the �rst part
of the summation in eq. (2.4) reads the same as the χ2 measure de�ned in section 2.1.2.
The only change compared to eq. (2.1) is the addition of the normalization term.

However, applied to SN Ia spectra this likelihood does not perform well as systematic
errors introduced by the simulation code cause the synthetic spectrum to di�er from the
observation by several σ. For the statistical error we use a rough estimate of the photon
noise and use an estimate of about 5% of the observation. To solve the problem of the
systematic error we use a trick by Hogg et al. (2010) to estimate the systematic error
during the exploration of the parameter space. As a result, we de�ne

σ2i =

(
5

100
ȳ

)2

+ fi(θ)
2 · e2γ (2.5)

as our uncertainty with ȳ as the mean of the spectrum and γ as the parameter that
controls the systematic error. We introduce γ is a nuisance parameter, which we will
marginalize over during the analysis.

9



2 Method

Other likelihoods In search for a likelihood, that works well for SN Ia spectra, we
explore several approaches to modify the spectra prior to calculating the likelihood, ,
i.e.,using χ2 on the derivative of the spectrum or subtracting a polynom. We discuss
them in detail in section 3.3.

For stellar spectra Czekala et al. (2015) de�ned a �exible likelihood using a combination of
local and global Gaussian Process (GP) kernels to estimate the covariance and therefore
account for uncertainties in the model (see section 2.3.3 for details on GPs). Using
a similar approach for SN spectra is beyond the scope of this work and involves the
quanti�cation of the systematic errors in the SNe models. Additionally, the suggested
approach takes a signi�cant amount of computation time because the process of �tting
the GP kernels has to be repeated for every evaluation of the likelihood. With a reported
runtime of 2 h, this approach is not feasible for parameter space exploration.

An interesting approach to this problem is a metric space for SNe Ia, an idea pursued
by Sasdelli et al. (2014). This space, constructed from observations using a Principal
Component Analysis (PCA) (for details see section 2.3.2) of the spectra to reduce the
dimensionality and associate features with dimensions, would enable a likelihood directly
from the principal components. This however requires that the synthetic spectra are
su�ciently close to the observations which went into construction the PCA space.

The staring point for a likelihood tailored to comparing SN Ia would be a χ2 modi�ed
with ideas by Sasdelli et al. (2014) and Czekala et al. (2015). Instead of using the
spectrum for comparison, one can enhance line features by taking the derivative or by
subtracting the continuum. We do a quick test of several ideas in section 3.3. Exploring
these ideas further is beyond the scope of this thesis.
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2.2 Tardis

All synthetic spectra used throughout this thesis are calculated with tardis (Kerzendorf
& Sim, 2014), a modular and highly con�gurable spectral synthesis code for SNe utilizing
MC techniques. The code is mostly written in Python with the computationally heavy
parts implemented in C.

To create a spectrum from a model, we have to solve the radiative transfer equations.
A fast way to do this, is to use MC quanta to discretize the radiation �eld. These MC
packets represent units of indivisible radiative energy, a formalism proposed by Abbott
& Lucy (1985); Lucy (1999) to ensure radiative equilibrium throughout the simulation.
The packets propagate through the SN ejecta and randomly encounter bound-bound or
bound-free interactions, changing its direction and co-moving frame frequency.

Because the ejecta is gravitational unbound, we can assume free, homologous expansion.
The simulation is not time dependent and limited to one dimension. The computational
domain is spherical symmetric and discretizes the radial coordinate into shells. Packets
traveling outwards and leaving the outermost shell are recorded to form the spectrum.
Following Mazzali & Lucy (1993); Lucy (1999), we assume a Schuster-Schwarzschild
boundary on the inside. That means all energy generation, for example through ra-
dioactivity, happens below this boundary (we will refer to this in the following as the

photosphere) which emits radiation with a thermal spectral energy distribution. This
assumption is good enough for normal SN Ia, even though they have no thermal con-
tinuum. Because the thermalization layer is much deeper inside than the photosphere a
pseudo-continuum is formed. Nevertheless it has been shown that this crude simpli�ca-
tion yields results that are in good agreement with observations (Mazzali & Lucy, 1993;
Lucy, 1999; Mazzali, 2000) As a consequence, we initialize the MC quanta at the inner
boundary with a frequency distribution according to Planck's law.

To provide the probabilities needed for the MC simulation, tardis solves the plasma
state. For this purpose, tardis assumes that the main in�uence on both ionization and
excitation comes from the radiation �eld. With the help of two estimators collected
during the MC simulation, it is possible to update the ionization fractions, the level
populations and the radiative rates. For the calculation of the ionization fractions tardis
uses a nebular approximation (see Eq. (3) in Kerzendorf & Sim, 2014) proposed by
Mazzali & Lucy (1993). The level populations are calculated using the dilute-lte

approach (see Eq. (4) and (5) in Kerzendorf & Sim, 2014) employing a basic non-
local thermodynamical equilibrium (NLTE) approximation for excited states and local
thermodynamic equilibrium (LTE) otherwise. To obtain the radiative rates, tardis
uses the simple radiation �eld model to link the mean intensity at the blue wing of the
transition between levels l and u

Jblu = WBνlu(TR). (2.6)

to the Planck function Bνlu and parameters of the radiation �eld: the radiation temper-
ature (TR) and a dilution factor (W), which relates the radiation �eld to the theoretical
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blackbody (see Mihalas, 1978). These are iteratively updated from the estimators of the
MC simulation in each grid cell. The radiative rates are then calculated using Eq. (6)
and (7) in Kerzendorf & Sim (2014).

During the propagation the packet can undergo two types of interactions - bound-free
Thomson scattering by free electrons and bound-bound interactions with atoms and
ions. Thomson scattering is considered as a coherent scattering process, thus only the
propagation direction of the packet changes, not its co-moving frame frequency.

The main source for opacity in the SN ejecta are bound-bound interactions which are
treated using the Sobolev approximation (see e.g., Lamers & Cassinelli, 2015). We use a
macro atom scheme to simulate the re-emission of an absorbed packet. The bound-bound
transition activates a macro atom to the upper level of the absorbing transition. After
undergoing a series of internal transitions, the macro atom deactivates and re-emits the
energy in form of a new MC packet to the simulation.

In general a tardis calculation consists of two parts. Since the plasma state depends on
the radiation �eld itself, a number of simulation cycles (typically 20) are performed �rst
to calculate a self-consistent plasma state iteratively. This plasma state is then used in
a �nal high resolution cycle to calculate the emergent spectrum. The full simulation for
one model takes an average of 100 s on a machine with eight cores and outliers take up
to twice that time. The execution time heavily depends on the abundance of elements
with thousands of possible line transitions, most notably iron.

2.2.1 Explosion model

An explosion model de�nes the structure and composition of the exploding star. Typi-
cally these models come from hydrodynamic simulations and provide the density pro�le
abundances needed for the radiative transfer simulations. We base our simulations on
the W7 model Nomoto et al. (1984) which is a one-dimensional de�agration model where
the rate of burning was modi�ed to explain the observables of normal SN Ia well. We
use a power law approximation proposed by Branch et al. (1985) to obtain the density
pro�le for our calculations (see �g. 2.1). We discretize the model into 20 regions, based
on the radial velocity and take the mean density of each region. However, we do not
copy the composition of the W7 model but use a uniform abundance structure as our
key parameters which are described in the next section.

2.2.2 Model Parameters

We use a relatively simple model in this work containing only 13 parameters. � Eleven
of those control the uniform abundance structure of the ejecta (see table 2.1). They are
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Figure 2.1: Power law approximation of the density pro�le as proposed by Branch et al.
(1985) for the W7 model (see Nomoto et al., 1984). This is used throughout this work
as the input density pro�le for all our calculations.

given as atomic mass ratios Xn, where n is the element. These are absolute ratios, i.e.,all
Xn have to sum up to one:

N∑
n=1

Xn = 1. (2.7)

To always ful�ll this requirement, we calculate one ratio based on all others. We choose
oxygen as this �ller ratio because its impact on the spectrum is rather low. A positive
oxygen abundance is our �rst prior requirement for the parameters. We will discuss
priors in detail in the next section.

The other two parameters are the temperature and velocity of the photosphere. The
temperature of the photosphere Ti is at the same time the temperature of the blackbody
emitted by the inner boundary. The last model parameter is the velocity of the photo-
sphere vi, which accounts for the position of the photosphere in the ejecta. Whenever
we mention model parameters, we will denote them as ~θ. Depending on the context, this
may refer to a subset of all parameters.

For all parameters introduced in this section we can de�ne priors (see section 2.1.3). We
require the prior to have zero probability if any of the abundances have values outside 0
to 1. Due to nucleosynthetic predictions we also de�ne our prior to have zero probability
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Table 2.1: Upper limits for the abundance parameters from observations and based on
nucleosynthesis calculations.

Element n Si S Ca Fe Co Ni Mg Ti Cr C O
Xn,max 1.0 0.5 0.1 0.2 0.2 0.2 0.1 0.02 0.02 0.1 1.0

if the ratio of sulfur abundance is greater than the silicon abundance. For all other
elements we de�ne an upper boundary (e.g.,0.5 for XS) for the abundance.

As noted earlier, we require a valid oxygen ratio as described in the previous section.
Further, we can use nucleosynthetic predictions to exclude models with a higher sulfur
than silicon ratio. For all other elements we de�ne an upper boundary based on empirical
data from observations and hydrodynamic simulations. These are shown in table 2.1.

For models with Ti and vi as parameters, there is another prior that ensures that the
model is theoretically able to emit the luminosity we observe. For this we require

0.9L < 4πσSB (vpht)
2 T 4

ph (2.8)

with L as the total luminosity of the observed spectrum, σSB the Stefan-Boltzmann
constant, vph the velocity of the photosphere, t the time since explosion and Tph the
temperature of the photosphere.

2.3 Spectral emulator

For our goal, the reconstruction of the explosion of a supernova, it is necessary to compare
many thousands to millions of evaluations of a model to �nd sets of parameters that re-
produce spectra similar to the observation. We try to restrict the parameter space we
cover during our search as little as possible, by using broad boundaries (see priors in
section 2.2.2). However, even with the fastest simulation codes available, making heavy
use of approximations to increase performance, the whole analysis becomes very time-
consuming. The analysis of a single observed spectrum would take roughly one month on
a computing cluster.The limiting factor is the speed at which we can generate spectra.

However, we can make the generation of spectra much more e�cient if we create a grid
of synthetic spectra and use interpolation techniques to approximate values between
precomputed points (e.g.,linear interpolation with starkit (Do et al., 2015)). The sig-
ni�cant increase in speed for spectra generation allows us to continue the analysis and
explore the parameter space. However in multiple dimensions, linear interpolation is not
ideal because a prohibitively large number of points would be needed for the gradients
to be su�ciently enough resolved for this method to yield acceptable results.

Naturally interpolation is associated with uncertainties because we delve into areas where
no actual calculations were performed. For stellar spectra, interpolation was explored by
Czekala et al. (2015) with the goal to quantify these uncertainties. They created a tool,
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which processes the precomputed synthetic spectra in a particular way to allow for the
interpolation of stellar spectra. Combining these two techniques as so called emulator
framework was created that acts like an actual simulation code.

In this section we describe how we developed a similar process for the use with SN Ia
spectra. We aim to create a spectral `emulator', that uses a precomputed grid to mimic
the behavior of tardis for the creation of SN spectra. An overview of the processes
involved is shown in �g. 2.2.

The emulator has three main parts with di�erent contributions to its performance:

Grid The models we try to �t, have many parameters (from ten up to 50) which translates
into a high-dimensional parameter space. At the same time, the relative part of
the parameter space that is interesting to the analysis shrinks. A sparse grid could
easily miss this area but a uniform grid that is dense enough would require too
much resources to create. Thus we need an e�cient way to generate a grid that
covers the whole range for all parameters. One method is a Latin Hypercube (Stein,
1987) (LH) that places grid points in a non-uniform way such that all values for
one parameter are used once and that the distance between points is maximized.
The details are outlined in section 2.3.1.

Preparation Because the synthetic spectra have a poor S/N ratio, we use a smoothing
algorithm (Savitzky-Golay (Savitzky & Golay, 1964) �lter (SG �lter)). To construct
the interpolation basis, we create a set of eigenspectra with the help of a Principal
Component Analysis (PCA). This is done to reduce the number of dimensions to
interpolate and to have smooth changes in the values to interpolate (see section 2.3.2
for details).

Interpolation Following the approach by Czekala et al. (2015) we use a Gaussian Process
(GP) to interpolate in the basis of the eigenspectra obtained by the PCA where the
values vary reasonably smooth. The interpolation for one set of model parameters
then returns weights which are used in a linear combination of the eigenspectra to
create a spectrum.

2.3.1 Grid

The interpolation requires a grid of spectra to interpolate between. For the creation of
the spectra we run tardis for each grid point. However, a uniform grid is not an option
because of the required number of dimensions, the grid would either be too sparse or
creating the spectra for it would take unreasonable amounts of time. Thus, we need a
non-uniform grid, that covers the full spectrum of values for the parameters while at the
same time spreading all values equally across multiple dimensions. One algorithm that
ful�lls these requirements is a Latin Hypercube (Stein, 1987) (LH). This algorithm only
needs the boundaries of all dimensions to create a grid with N points. Each dimension is
split into N values and points are chosen by drawing a random value for each dimension
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Figure 2.2: Illustration of the main processes building up our SNe Ia spectral emulator.

without picking the same value twice. The result is a grid of N points that guarantees all
values are chosen once for each parameter. We repeat this process 1000 times and select
the grid with the highest distance between the two closest points is used. This way we
select a grid that is spread equally. We use this approach to generate a grid with values
ranging from 0 to 1 and later transform these into model parameters.

2.3.2 Preprocessing

In principle interpolation between the raw spectra is possible. However, this would require
a dense sampling. As described previously the high dimensionality of the parameter space
allows only a sparse sampling where interpolation on the raw spectra is not possible.
Interpolation requires a smooth variation of reference values. The interpolation process
is additionally complicated by the MC noise in the reference values which implicated that
these spectra do not vary smoothly as a function of the input parameters. In this section
we discuss the steps we take to transform the spectra at the grid points, our spectral
grid, into a form that allows us to easily interpolate them.

First, we change the binning of all spectra so the bins are uniform in log λ. Because of
the �rst order Doppler formula, a uniform velocity interval

∆v

c
=

∆λ

λ
= ∆ log λ (2.9)

is associated with a uniform interval in log λ. Thus using log λ intervals we have a
uniform resolution in `velocity space'. Line pro�les are determined by the projected
velocity, therefore the shapes of line pro�les are equally well resolved, regardless of which
part of the spectrum they fall in (priv. comm. S. Sim).
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Å
−

1
]

×10−11 Spectra for different steps of the emulator

original spectrum

loglambda spectrum

filtered spectrum

reconstructed spectrum

predicted spectrum

Figure 2.3: Plot showing various stages of preprocessing: rebinning (loglambda spec-
trum), SG �lter (�ltered spectrum), PCA reconstruction (reconstructed spectrum) and
emulator prediction (predicted spectrum).

Savitzky-Golay �lter The synthetic spectra generated by tardis contain MC noise.
However, the PCA works best when the spectra share many common features, such as
atomic lines. Noise is a problem in this case, as it interferes with the detection of features.
Subsequently, the PCA needs more eigenspectra to represent the dataset, most of which
are dominated by noise.

To smooth the spectra, we use a SG �lter, a popular digital �lter to process data with
low S/N. The �lter does a least squares �t with a low order polynomial to data-points
adjacent to the point of interest and evaluates it at the center. The �lter has two
parameters that need to be optimized by hand. They mainly depend on the shape and
S/N of the spectra grid. The order of the polynomial controls the degree of smoothing:
The lower the order, the smoother is the output. The second parameter is the window
length, that is the number of adjacent points, that are included in the least squares �t.
Increasing the window length puts more constraints on the polynomial, making it better
behaved and increasing the smoothness. In section 3.2.1 we look at di�erent parameters
for the �lter and determine the values we use throughout this thesis.

Principal Component Analysis Alongside the Gaussian Process (GP) (see section 2.3.3)
the Principal Component Analysis (PCA) (see e.g., Jolli�e, 2002) is one core component
of the emulator approach. As we will discuss in section 2.3.3 in detail, for the interpolation
to work best, the values to interpolate should vary smoothly. In our case, due to the
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sparseness of the grid, the spectra which are mainly dominated by line interactions do
not ful�ll this requirement. For our approach the PCA ful�lls two purposes: We use it
to reduce the dimensionality so the GP is able to interpolate the space. Secondly, doing
the transformation yields a space where the values vary much smoother.

We follow Czekala et al. (2015) and standardize the spectral grid ~F by subtracting the
mean spectrum ξµ. We use these standardize spectra to create a full set of eigenvectors
ξ that we combine into a Nbin ×Nbin matrix ~ξ where Nbin is the number of bins in the
spectral grid. We calculate the modi�ed spectral grid

~̂
Fk = ~F − ξµ −

k−1∑
i=1

~Fξkξ
T
k , (2.10)

that we use for determining the k-th eigenspectrum ξk. In other words, for the calulation
of the k-th component we subtract the reconstruction of all previous components from
all spectra in the grid. We then maximize

ξT ~F T ~Fξ

ξT ξ
(2.11)

with ~F =
~̂
Fk to obtain a new eigenvector ξk = ξ. We repeat eq. (2.10) and eq. (2.11)

for k = 1, . . . , Nbin to calculate the eigenspectra matrix ~ξ. With this matrix we can
transform all spectra in the grid into the eigenvector basis ~ξ to obtain the coe�cients

~C =
(
~F − ξµ

)
~ξ. (2.12)

We can use these coe�cients in a linear combination of the eigenspectra to fully recon-
struct all spectra

~F = ξµ + ~C~ξT . (2.13)

with ~C as the matrix of coe�cients for all spectra in the grid.

Due to the way the PCA calculates the eigenspectra, the elements of ~ξ are in decreasing
order of `importance'. In this context importance means that higher order components
encode less variation of input data. Thus, truncating the series at the right element allows
us to reduce the dimension without the loss of information. Speci�cally, we truncate after
Ncomp elements, a value we determine manually prior to the analysis based on the spectral
grid. ~ξNcomp

denotes the Nbin ×Ncomp matrix that forms the basis for the space we will
later interpolate in. We will interpolate the truncated components

~CNcomp
=
(
~F − ξµ

)
~ξNcomp

. (2.14)
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Figure 2.4: Illustration of the physical time it takes to train and emulate the emulator
as a function of the size of the input data. Note that the prediction time is given in
milliseconds on the right y-axis and the training time is given in seconds on the left
y-axis.

For clarity we will drop the subscript Ncomp in the future and assume all values in PCA-
space to be truncated to Ncomp, i.e.,~C = ~CNcomp

.

As described earlier, the PCA has one parameter: the number of components Ncomp,
which we optimize manually. There are automated ways of determining this value by
requiring that the di�erence between the original and the reconstruction falls below
a threshold for all spectra. However, our tests showed that determining a reasonable
threshold is equally di�cult to determining Ncomp directly, so we did that. Optimizing
the number of components is again a balance between speed (due to more values to
interpolate) and accuracy (due to the loss of information when truncating).

The PCA proves to be a useful tool that solves two problems at once. While producing
good results, this method has an inherent drawback because the features de�ned by the
PCA are not a function of the model parameters. As we will discuss in section 3.2.3,
there are model parameters that result in a shift of the features instead of a change in
amplitude. Such features are not possible to describe with a PCA.
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2.3.3 Interpolation

As detailed in section 2.1, comparing synthetic spectra with observations is a powerful
tool to measure quantities like e�ective temperature or metallicity. However, the gener-
ation of spectra for certain parameter sets often requires an expensive simulation. Thus
to quickly obtain spectra for arbitrary parameter sets one uses interpolation between
precomputed grids.

As detailed in above, we need more complex techniques than linear interpolation, since
we are dealing with large datasets with a non-uniform distribution of points. Czekala
et al. (2015) suggest a two step process � not interpolating on each spectral points
but on the coe�cients for eigenspectra (see section 2.3.2) and using an interpolation
technique that allows us to estimate the uncertainty in the interpolation (e.g.,giving a
larger uncertainty for a point that is more distant from grid points than for a point that
is densely surrounded by grid points).

Speci�cally, we follow Czekala et al. (2015) and �rst perform a PCA, then determine how
many eigenspectra we need and then use a so called GP (see section 2.3.3) to interpolate as
well as get uncertainties between them. However propagating these uncertainties through
the PCA is di�cult. Czekala et al. (2015) instead draw Gaussian random variables for the
coe�cients and used these to reconstruct spectra. These reconstructed spectra represent
the variance of all possible spectra for this set of model parameters.

Gaussian process A Gaussian Process (GP) is a statistical model that assumes ob-
servations in a continuous space are normally distributed random variables Rasmussen
& Williams (2006). A collection of those random variables has a multivariate normal
distribution with a covariance depending on the similarity between two points θ and
θ′. The similarity is de�ned by a kernel function. The covariance between all observed
points forms the matrix K(θ, θ′). If this depends on parameters, so called hyperparame-
ters, these need to be optimized before the GP can be used for interpolation. We use a
squared exponential kernel to describe the similarity with

K(φ, θ, θ′) = a2
N∏
n=1

exp

[
−(θn − θ′n)2

2 l2n

]
, (2.15)

whereN is the number of input parameters, i.e.,the dimension of θ and φ = {a, l1, . . . , lN}
is the collection of hyperparameters. Speci�cally a de�nes the amplitude while ln de�ne a
length-scale for the n-th input dimension. The length-scale is the extend to which points
in�uence each other. Optimizing φ de�nes the GP completely and allows prediction,
i.e.,interpolating and estimating an uncertainty.

Using a GP for data prediction is a Gaussian process regression problem that is solved
by the Kriging equations (see e.g., Cressie, 2015). They de�ne the mean estimate as
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µ = K(φ, θ∗, θ)K(φ, θ, θ′)−1f(θ) (2.16)

and the variance of the estimate as

Var = K(φ, θ∗, θ∗)−K(φ, θ∗, θ)K(φ, θ, θ′)−1K(φ, θ∗, θ)T , (2.17)

where K(φ, θ∗, θ′) is the covariance between the new point of estimation θ∗ and all
other observed points θ for a given hyperparameter vector φ, K(φ, θ, θ′) is the covariance
between all observed points, f(θ) is the value of the observed sample at point θ and
K(φ, θ∗, θ∗) is the variance at point θ∗ as dictated by φ. A notable drawback of GPs is
O(N2) scaling of the prediction time with the number of observed points. In �g. 2.4 we
show a comparison of how long the training process takes and how long one prediction
takes. The O(N2) scaling is clearly visible: the 2nd order polynomial �ts perfectly. For
the evaluation time we see a O(N) scaling instead of O(N2) because we are not yet
utilizing the uncertainty due to reasons we outline below. Overall the scaling makes
working with large datasets slow and fuels the search for alternatives.

Summarizing, we can interpret the probability distribution for the coe�cients as a Ncomp-
dimensional Gaussian distribution whose mean and covariance are functions of the point
θ∗, the hyperparameters φ and the (�xed) values of the coe�cients at grid points (see
Czekala et al., 2015).

Application Applying the method of GPs to our approach, we already established to
interpolate the coe�cients of the spectra in the basis created by the eigenspectra of the
PCA. That means the observed values f(θ) are the coe�cients C (see section 2.3.2) and
the grid points are the θ that are used by the GP.

Although we generally followed the approach by Czekala et al. (2015) in constructing the
emulator we made adjustments to the detailed workings of the emulator.

The �rst notable change is that we use one GP to model all coe�cients, while they
advocate the use of one GP per coe�cient. A comparison between an unoptimized
implementation of the latter to the former showed no signi�cant improvement in the
quality of the prediction but came at the cost of a Ncomp-fold increase in execution time
for the training phase as well as the prediction. For the tested case, the training took over
a week, compared to approximately 2 h for the version with a single GP. Pursuing this
idea further is out of scope for this thesis as the chosen approach works well enough.

Whilst being one of the main reasons we chose GP interpolation, the current implemen-
tation does not yet make use of the predicted uncertainties. The reasons being a notable
increase in evaluation time for the prediction and that this does not work well with only
one GP.

These are the main points that di�erentiate our approach from what Czekala et al. (2015)
described. For the �tting of the GP we provide the grid of points and the eigenspectra
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coe�cients. We also provide sensible boundaries for φ to keep the values in the range we
expect, i.e.,ln ∈ [10−3, 102]. This prevents, for example, length scales below the average
distance between grid points, which would in the interpolation only work in the direct
vicinity of grid points.

Summarizing, our approach works quite well and we made some adjustments to reduce
the runtime to �t our needs. The inherently bad scaling of the GP in combination with
the requirement of a �nely sampled grid and the wish to limit the search space as little
as possible has created a setting where GP interpolation meets its limits. Future work
might push these limits back with advanced techniques for the selection of the grid used
to �t the GP. We will discuss these options in section 4.2.

We conclude this section with an important technical detail. Czekala et al. (2015) de-
scribe the usage of a `nugget' term that accounts for the imperfections in the spectrum
introduced by the PCA analysis. In particular, this term is needed to allow for coe�-
cients at grid points to be outside the range predicted by the GP which may happen due
to noise or abrupt changes in the coe�cients. Without this parameter, the optimization
of the hyperparameters φ can easily fail if coe�cients (see eq. (2.14)) are in con�ict to
another. While they optimize this term in conjunction with the other hyperparameters,
we use a constant `nugget' of 10−4.

2.4 Exploring the parameter space

One way to explore the parameter space is to do it by hand. We already gave a quick
overview of this procedure in section 1.2.3. Although this is a slow process, this approach
yields good results (see e.g., Stehle et al., 2005; Hachinger et al., 2009; Mazzali et al.,
2015). However, quantifying the results and revealing correlations between parameters
cannot be done manually. Additionally it is much easier for a human to miss important
areas than for an algorithm that proceeds systematically.

The �rst step towards automation is to use an optimizer to �nd the best �tting set of
parameters. However, a study by Jancauskas et al, in prep. showed that repeating this
process with di�erent initial conditions yields nearly identical spectra but with some
parameters di�ering by a factor of two to three (e.g.,the cobalt abundance). This de-
generacy in the parameter space creates doubt in the viability of this approach. Past
analysis' might be a�ected by this phenomenon without being noticed. Thus, it is impor-
tant to visualize the distribution of models and quantify the spread of the parameters.
We use a posterior function to quantify the similarity between the observation and a
model spectrum. The distribution of this posterior function, the posterior probability
density function (PDF), can give us insights about the parameter space.

We can visualize the PDF and thereby the parameter space, by approximating the PDF
and drawing points from its distribution. The PDF represents how probable one set
of model parameters is to match the observation based on the posterior probability. A
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popular and e�cient method to approximate the posterior PDF is Markov chain Monte
Carlo (mcmc). The details of this process are outlined in section 2.4.2.

2.4.1 Optimization

In astrophysics it is often required to numerically optimize parameters. That is to �nd
the best values that minimize or maximize a function. For example, a simple optimization
problem is �tting e�ective temperature to the spectrum of a star by minimizing the χ2

of the synthetic spectrum and the observation and thus �nding the maximum likelihood
for a spectrum.

In general we distinguish between two classes of optimization algorithms. Local opti-
mization is a fast way to �nd optimal values, starting from a guess. An example method
is the popular Levenberg-Marquardt algorithm (see e.g., Nocedal & Wright, 2006). The
disadvantage of these methods is that they stop once they found an optimal point at
which a step in any direction would result in a decrease of the function's value. That
means, there is no guarantee to �nd the globally best value. For applications with only
a single peak, this is �ne, however many applications involve noise, spikes in the data or
periodicity where local optimization fails.

Global optimization aims to �nd the best value in a speci�ed range. At the cost of speed,
these methods aim to probe the parameter space more thoroughly and �nd the globally
best value. This is especially useful if there are several peaks in the parameter space.
One algorithm that implements global optimization is Di�erential Evolution (di�erential
evolution) (see e.g., Chakraborty, 2008). For examle Jancauskas et al, in prep. found
multiple solutions using di�erential evolution, a global optimization algorithm, with a
similar χ2 and spectra, but di�erent model parameters (see section above). This result
suggests strong degeneracies in the parameter space.

2.4.2 Markov-Chain Monte Carlo

While optimization algorithms are able to, very e�ciently, �nd the optimum value of
a function, they generally fail to provide additional, much needed information. For
example, if there are multiple solutions that are almost equally good for the observations
at hand. In section 2.1.3 we de�ne a posterior probability that assigns to every point of
the parameter space a probability of how likely it is for a model with these parameters to
produce the observations. This is referred to as the probability density function (PDF).

In the previous section we discussed, how the PDF can be used to �nd the best combi-
nation of parameters. However, degeneracies in the parameter space require us to look
at the region surrounding the optimum. The challenge in exploring the parameter space
is to obtain a good approximation to the PDF, which allows us to visualize the topology
of the parameter space.
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Figure 2.5: Plot showing the PDF associated with XFe. Showcased with the dataset
from section 3.2.1 and a basic χ2 (see eq. (3.5)).

There is an e�cient method to approximate a PDF, namely the Markov chain Monte
Carlo (mcmc) technique. The general idea of this approach is to start from a proposal
PDF that is successfully re�ned to converge towards the target PDF. This is done by
drawing samples from the PDF and use Bayesian Inference (see e.g., Sivia & Skilling,
2006) and their posterior probability of the samples to iteratively update the approxima-
tion. After an initialization phase (burn-in), convergence is achieved and drawing from
the approximation yields samples that are compatible with the posterior PDF. Thus, af-
ter the burn-in the parameter space can be e�ciently explored by continuously drawing
sampled from the PDF.

Di�erent implementations of mcmc di�er mainly in their proposal function, that is how
the algorithm chooses the next state based on the current state. A famous example is
the Metropol-Hastings algorithm (see Hastings, 1970), however in this work we use the
emcee (see Foreman-Mackey et al. (2013) (emcee) implementation of mcmc because it
has proven to work well in many dimensions in addition to being e�cient in the generation
of uncorrelated samples.

To advance the state in a mcmc application, a new candidate state is found by evaluating
the proposal function. Then the posterior probability of the candidate position Pnew and
the current position Pold is calculated and compared. The candidate is always accepted,
i.e.,the candidate becomes the current point, if

Pnew > Pold (2.18)
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otherwise we only accept the candidate with the probability

Paccept =
Pnew
Pold

. (2.19)

The states used by mcmc retain in general information from one step to the next result-
ing in correlations in the history of points. We can calculate an autocorrelation time,
that is the number of steps it takes for a chain to have an independent state from an
arbitrary starting point (see Sokal, 1996, p. 16 for details). For the purpose of exploring
the parameter space only the number of independent samples is relevant, thus we skip
intermediate ones.

Markov-chain Monte Carlo Ensemble Sampler In this section we give a brief overview
of the implementation of the mcmc algorithm using the ensemble sampler emcee devel-
oped by Foreman-Mackey et al. (2013) and proposed by Goodman & Weare (2010). The
state of this implementation consists of an ensemble of N positions that each form an
individual Markov chain. New candidates are proposed based on the current positions
of these chains (walkers).

All walkers are propagated simultaneously. For this purpose, the ensemble is split into
two equal subsets and each chain is randomly paired with one from the other subset (this
pairing is not bi-directional). A new candidate position C is found based on the current
positions of the pair A and B according to

C = B − x (B −A) . (2.20)

where x is determined in the random experiment

x =
(u+ 1)2

2
, (2.21)

using a random number u, uniformly distributed over [0, 1). To compare the likelihood
at the candidate and the current position, we modify Pnew such that

P̂new = xd−1Pnew (2.22)

includes a term re�ecting the in�uence of x, where d is the number of dimensions.

If we apply this method to our approach, we generally start with random positions
following our prior distribution. We then iterate the chains long enough for the chains to
converge on the important area. This takes approximately 5× 103 iterations. Afterwards,
we use the converged state of the sampler to draw the points we will use to visualize the
parameter space. For this we run between 2× 104 and 105 iterations. Based on these
samples we calculate an autocorrelation time and use it to �lter out correlated samples.
Thus the remaining, independent samples correctly re�ect the posterior distribution.
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It is our goal to reconstruct the explosion from an observed spectral time series of a SN Ia.
In most cases this reconstruction starts with a parameterized model of the explosion. In a
next step we, manually or algorithmically, adjust the model parameters and use a spectral
synthesis code, like tardis, to generate theoretical spectra that match the observed ones
and then - �nally - deduce that these parameters are likely close to the reality (e.g.,Si
abundance).

Already in the original work by Stehle et al. (2005), which introduced the abundance
tomography method, a suitable model for SN 2002bo was identi�ed and numerous other
supernovae have been studied with similar success by a number of authors (Hachinger
et al., 2009; Mazzali et al., 2015) by relying on a manual execution of the abundance
tomography �tting procedure. Recently, Jancauskas et al, in prep. demonstrated that the
�tting process can be automated. However, the authors also found that multiple models
produce spectra which agree with observations to a similar degree. This degeneracy
in some model parameters makes the identi�cation of a best-�t model challenging. In
this thesis we intend to algorithmically identify regions of parameter space that produce
spectra similar to the observation and examine the degeneracies in the parameter space.

Finding these models requires e�cient exploration of the parameter space for which we
will use the mcmc algorithm (see section 2.4.2). For each point explored this way, we
generate a synthetic spectrum. However running the simulation code is computationally
expensive, therefore we use the emulator introduced in section 2.3 to approximate the
spectral synthesis process.

In section 3.1 we present our result of using tardis directly to generate the spectra
needed by mcmc. We found a solution to the computational cost by appropriately
interpolating between pre-computed tardis spectra on a sparse grid. More speci�cally,
we use an spectral emulator (section 2.3) for this purpose. We show in section 3.2 that this
approach does indeed produce spectra that are similar to the synthetic spectra generated
by tardis.

The spectral emulator has parameters unrelated to physics, such as the number of eigen-
spectra used by the PCA. We will look at these parameters and optimize them as needed.
This includes examining the impact of the training grid on the performance, the data
preparation and the interpolation. For the purpose of testing the emulator, we created
four di�erent datasets to target speci�c problems that might arise.
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To showcase our method, we need a likelihood function (see section 2.1.3) to quantify the
match of a synthetic spectrum and the observation. Construction a specialized likelihood
function is out of scope for this thesis, so we combine basic ideas to see, what works best.
In section 3.3 we compare our candidates for the likelihood function and select one, that
we use for further analysis.

In a �nal test, we apply the methods developed in this thesis, i.e.,the spectral emulator
(section 2.3), the likelihood function (section 2.1.3) and the algorithm for sampling the
parameter space (section 2.4.2) to �t the supernova SN 2002bo. We will then compare
our results with previous studies that are already available (see Stehle et al. (2005)) for
this object.

3.1 Markov chain Monte Carlo with TARDIS

As described in section 2.4, we aim to �nd the best �tting model and associated uncer-
tainties in a means to better understand the explosion. This requires e�cient exploration
of the parameter space, whose boundaries are listed in table 2.1. We use the mcmc al-
gorithm to generate sample points and tardis explicitly to generate spectra for those
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Figure 3.1: This plot shows the iron abundance XFe of a random subset of 30 walkers
after running mcmc for 300 iterations. Important to note is that the walkers do not
change values on average and there is almost no mixing. After the burn-in, the walkers
are expected to have converged onto an area and started mixing frequently.
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points. To quantify the match to the observation, we use the log likelihood

L(x) = −1

2

N∑
i=1

(
fi(θ)− yi

σi

)2

, (3.1)

where fi(θ) is the value of the i-th bin of the spectrum for a set of model parameters θ,
yi is the i-th bin of the observation and σi is the uncertainty in that bin. We restrict this
likelihood to the bins between 2800 to 6300Å.

The spectra created by the simulation code include several uncertainties that are ex-
tremely di�cult to quantify, such as uncertainties due to atomic data, the one dimension
approximation or the Sobolev approximation. Because they have not been studied in
detail, we neglected them for now (by setting σi = 1).

We use the Bayesian interpretation of probability (see section 2.1.3) which requires the
priors P (θ) and the evidence P (x). We can neglect the evidence (P (x) = 1) because
only the model parameters change, not the models. We use priors for the model param-
eters coming from nucleosythesis calculations and general constraints of the model (see
section 2.2.2 for details on priors and table 3.1 for their values).

As the �rst test we used the above setup and generated samples with emcee, an imple-
mentation of mcmc. We choose this implementation because it has only two parameters,
the number of individual Markov chains, called walkers, and a scaling parameter a which
we do not change. In contrast to most mcmc implementations based on the Metropolis-
Hastings algorithm (see Hastings, 1970) which use a multivariate normal distribution
as the proposal function, emcee uses the positions of several individual chains to pro-
pose new points. The bene�t is that the initialization does not require the covariance
of the distribution but only positions for each individual chain. Determining this co-
variance would require a signi�cant number of evaluations to the posterior probability
and thereby computational resources due to the time it takes to simulate a spectrum.
With emcee we expect all chains to converge to the region of parameter space with high
posterior probability relatively quickly. We originally expected this burn-in phase to last
for approximately 100 iterations, however our analysis in section 3.3 and section 3.4 each
result in an autocorrelation time of approximately 100 samples. It is common to ignore
at least the �rst ten independent samples, depending on the problem even more.

We start the exploration of the parameter space by initializing 200 walkers with random
points in the twelve-dimensional parameter space that meet our prior requirements (see
section 2.2.2), e.g.,valid oxygen and an iron abundance of 0 < XFe < 0.2. We propagated
the chains 300 times which took a total of 31 h on a total of 512 cores. For 28 643 out
of the 6× 104 proposed points a tardis spectrum was generated. For the remaining
points no spectral synthesis calculation was performed because the proposed parameter
sets were excluded by the imposed priors.

We expected all walkers to converge on the area around the point with maximum posterior
probability quickly, i.e.,after a burn-in phase of about 100 iterations, and mix there. In
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Table 3.1: Parameters and their priors used for the exploration of the parameters with
emcee.

XN Si S Ca Fe Co Ni Mg Ti Cr C O
min 0
max 1.0 0.5 0.1 0.1 0.2 0.2 0.1 0.02 0.02 0.1 1

vi [km s−1] Ti [K]

min 5000 6500
max 20 000 20 000

�g. 3.1 we show the trace, that is the history of parameters one Markov chain had, for
a subset of the walkers. Clearly there is no convergence after 100 iterations and there is
no visible trend which could be used to estimate when convergence will be achieved.

One important aspect of mcmc is the mixing of multiple walkers. While some of the
walkers cross their paths, there is no frequent change of parameter which would be
expected after the burn-in. This shows that the chains are still at the beginning of the
initialization phase, after having already spent a signi�cant amount of computation time.
Further tests aimed at improving the initial distribution of walkers by using a distribution
gained by �tting a multivariate normal distribution to the likelihood distribution of earlier
runs or by using a small spread around the best �tting point found by Jancauskas et al,
in prep. produced similar results.

As we discovered later, we made a mathematical mistake that a�ected the calculation
of the likelihood, preventing individual walkers from advancing properly. By setting the
uncertainties to 1 erg s−1 cm−2Å−1, we assumed uncertainties orders of magnitude higher
than the actual measured values, in our case the emergent �ux. The latter is typically
of the order of 10−22 erg s−1 cm−2Å−1. Thus, no matter how large the di�erence in the
spectra, the likelihood is dominated by the error and a new point is always accepted.

What should have been done would have been for example to set the uncertainty σ to
a value related to the emergent �ux. This would mean for example a 5% uncertainty.
By accepting every proposed point that was not rejected by the priors we imposed, it
was impossible for the chains to converge, explaining the observed behavior. One should
note that the method in general works, as we show later with the help of the spectral
emulator (see in section 3.4).

Despite this error, this test nevertheless provided valuable insights. By investigating
the set of calculated spectra we found that to properly characterize the parameter space
many more spectra are required. This in turn calls for a more e�cient way of generating
spectra if the overall task is to be performed on reasonable time scales. The spectral
emulator, which we will study in the next section allows us to repeat this analysis in a
fraction of the time.
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Table 3.2: Parameters of the emulator with their default values which are used through-
out this thesis.

SG �lter PCA GP
WL p PC llower lupper nugget optimizer
21 3 100 10−5 102 10−4 Welch

3.2 Testing the emulator

In the previous section we showed that the simulation code tardis, despite being highly
optimized, is too slow for exploring the parameter space with mcmc. In search for a
faster way to generate spectra we developed the spectral emulator, a tool that is able
to interpolate e�ciently between a set of precomputed synthetic spectra. Skipping the
expensive simulation of physical processes allows the generation of spectra in milliseconds
compared to approximately 100 s with tardis. However this approach hides the direct
connection between model parameters and their spectra through physical processes by
embedding this information in the grid. Therefore it needs to cover the region around
interpolation points well. Spectra generated by tardis are noisy which may be problem-
atic for mcmc but acceptable for the emulator because it can handle noisy data. Thus,
the steady interpolation also solves the problem that mcmc walkers can get stuck on
outliers because of noise.

In order to justify substituting the simulation code, it is necessary to test the limitations
and capabilities of the emulator. Speci�cally that means comparing emulator spectra
with tardis calculations. To this end we use the emulator with four di�erent datasets,
speci�cally created to test its performance in various areas.

Optimizing non-model parameters The emulator itself has parameters, as explained
in section 2.3, for example the number of Principal Components (PCs). In table 3.2 we
list these, together with their default values. These are a good starting point but need
to be carefully checked to ensure an e�cient performance and accurate results of the
emulator for a speci�c problem. There are three aspects in which respect the emulator
should be optimized, that can be tested and optimized.

Grid dependance The emulator is an advanced approach that allows interpolation on a
grid of precomputed spectra. A di�erent dataset will give di�erent interpolation
results and the goal is to keep these di�erences below the level of noise we expect
to have in our data. In this case, the noise and systematic errors dominate and
we can neglect the interpolation error. We show the variance in the interpolated
spectra by using a random subset of the original grid and comparing the spectra
for one set of model parameters.

Preprocessing There are two steps for preprocessing the data: Smoothing the spectra
and decomposing them into PCs. The smoothing is necessary to remove noise in
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the spectra, which the PCA would otherwise identify it as real features. That
means the information content does not drop o� and almost all components would
be required to reconstruct a spectrum from its projection on the PCA basis. We
use a SG �lter for this, an idea adopted from Sasdelli et al. (2014). The smoothing
is done by �tting a p-order polynomial to the w surrounding points and evaluating
it in the middle. We optimize these two parameters manually, which is a trade o�
between loss of information and increased performance of the PCA. The PCA has
the number of PCs as parameter. The number of PCs has positive and negative
e�ects on the performance of the emulator. On the one hand, PCs carry all the
information so a minimum is required for working spectra reconstruction. However,
each PC contains less information than the previous one, slowly getting dominated
by noise. Because the interpolation takes time and we do not want to interpolate
noise, we should �nd a good balance.

Interpolation We brie�y compare the GP interpolation against the popular Random
Forest (see e.g., Breiman, 2001) (RF) regressor. The main topic however is the
optimization of GP parameters, which are optimized during the training phase (see
section 2.3.3). The GP implementation we use provides two di�erent algorithms
for this. We will analyze, whether the improved, but considerably slower algorithm
is worth using over the simple one.

Precomputed Grids We created four grids to test di�erent areas of application of the
emulator. Except for the one-dimensional grid, we use the same LH (see section 2.3.1)
as the source of our grid. This is a grid of values between zero and one that can be
transformed onto any interval using a simple transformation. For example to transform
[0, 1] onto [0,∞) one would use

f(x) =
1

1− x − 1. (3.2)

When the datasets are introduced in detail, we will also cover how the LH transforms
into the model parameters.

Since the oxygen abundance XO is computed based on all other parameters (see sec-
tion 2.2.2), we do not count it as an input parameter, although it is constantly changing.
For example in the one-dimensional grid, we change the value of XFe from 0 to 0.2 and
XO changes accordingly to achieve the normalization to 1 (see eq. (2.7)).

Here is a short overview of all four grids:

� We start with a simple one-dimensional grid with the iron abundance XFe as the
only parameter which changes from 0 to 0.2 (see section 3.2.1). Here we test the
general application of the method and do most of the manual optimization regarding
the preprocessing of our spectra.
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Table 3.3: Parameters used to generate the one-dimensional dataset. They are based on
a best �t done by Jancauskas et al, in prep.. Note that XFe in this case is the abundance
used to create the synthetic reference spectrum which is used to showcase the PDF in
�g. 2.5.
N Si S Ca Fe Co Ni Mg

Ti Cr C O vi [km s−1] Ti [K]

XN 0.3972 0.2880 0.005 146 0.023 24 0.002 067 0.035 76 0.036 45
0.005 971 0.000 375 4 0.003 603 0.2022 13 140 10 820

� In a second step we increase the complexity and consider a ten-dimensional grid
with all abundances varying linearly, to test interpolation in many dimensions.

� In addition to the linear multidimensional grid, we also investigate the in�uence
of logarithmic spacing. With such a spacing we can accurately follow the e�ect
of parameters which vary over orders of magnitude. This would be particularly
useful for parameters with low abundance ratios. By using logarithmic intervals
for the parameters we hope to thoroughly cover the area needed for interpolation.
We repeat the analysis done for the other ten-dimensional grid.

� In a �nal step and in an attempt to generalize the method, we use a grid with
ten abundance parameters with logarithmic intervals together with vi and Ti to
interpolate spectra for di�erent epochs.

3.2.1 Testing one dimension

We begin the validation process of the spectral emulator by applying it to a simple setup
to show that predicting the spectrum for one free parameter is possible. The base model
for this test is the best �tting combination of parameters found by Jancauskas et al, in
prep. for a �t to a spectrum generated by artis. This model uses the same density
pro�le as discussed in section 2.2.1. We use this template to generate a series of 500
spectra with tardis, changing the iron abundance XFe from 0 to 0.2 Alongside this
change comes an adjustment to the oxygen abundance XO to satisfy

∑
nXn = 1 (see

discussion in section 2.2.2). We chose iron as the principle parameter for this test because
the large number of atomic lines has a noticeable impact on the spectrum. In contrast,
oxygen has little impact on the spectrum. That means we can approximate the system
as one-dimensional with XFe as the only parameter. The other abundance parameters,
Ti and vi have the values listen in table 3.3.

Grid dependence There are two cases we want to test in this section. We show how
many spectra are needed to successfully interpolate a spectrum such that the di�erence
to the original is below the level of noise. To this end, we train the emulator with a
random subset of N spectra and use the remainder for the comparison. In �g. 3.2 we

32



3 Results

2000 4000 6000 8000 10000

λ [Å]
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Figure 3.2: Comparison of a synthetic spectrum generated with tardis (original) and a
spectrum generated by the emulator (prediction). Note that the chosen pointXFe = 0.023
is not part of the training grid and that an arti�cial o�set has been applied to facilitate
visual comparison.

show that with a grid of 50 points we are able to reconstruct a spectrum with all its
features. It is even possible, to properly reconstruct with as little as 20 points, however
this heavily depends on the distribution of the points. However training the emulator
with only 20 points often leads to the emulator failing to converge to a �t. In �g. 3.3
we show the result of a prediction for this case. Thus, we will use 50 random points for
the remainder of the tests. To highlight the spread of the prediction, we use 50 di�erent
subsets to train the emulator with and reconstruct the same spectrum. In �g. 3.4 we
present the result of this analysis namely that the spread is low enough to trust the
prediction for any random subset.

Preprocessing As discussed in section 2.3.2 we have to prepare the spectra for the
interpolation. This is especially important because we optimize the creation of the syn-
thetic spectra with tardis towards speed. We do this by choosing a small number of
MC packets N to use during the simulation. The noise in the generated spectrum is
proportional to O(N−

1
2 ) while the e�ort to do the calculation scales with O(N). Thus

we have to make a trade-o� between speed and accuracy. For our analysis we focus more
on performance to keep the already high computational cost of the analysis low. As a
result, we choose N = 4× 104 during the plasma convergence iterations and N = 105

for the �nal, high-resolution simulation that creates the emergent spectrum.
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We then follow the approach by Sasdelli et al. (2014) and use a SG �lter to reduce the
noise and provide smooth spectra that can be used by the PCA. This �lter has two
parameters, the window length WL and the order of the polynomial p that is �t to the
points inside the window. We solve this optimization problem manually. In �g. 3.5 we
compare di�erent parameters for the SG �lter. The plot shows the trend of a higher
order polynomial being able to represent the data better. Increasing the window length
increases the smoothing potential of the �lter. At the end of the day, we have to make a
trade-o� between retaining su�cient information and facilitating the �t which requires
smooth data. For this reason we choose to use a window length of 21 points, that means
ten points on either side of the current location are considered for the �t. To represent
the data, we use a third order polynomial. Although we lose a lot of information that
way, we had to choose these settings for the whole framework to function properly. The
current implementation is sensitive to the training data and these settings for the SG
�lter help improve the robustness of the emulator. A better choice would be a �fth order
polynomial and a shorter window length, around 15, which would represent the date
much better and not remove small peaks (see around 4300Å in �g. 3.5).

We determine the number of principal components we need for this grid by plotting
the associated coe�cients. In �g. 3.6 we show the �rst three components. The forth
and further components have coe�cients that are zero almost all the time. We can
thus truncate the series after three components without losing much information for this
one-dimensional test.
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Figure 3.3: Same as �g. 3.2 but we only use 20 points for the interpolation. There are
clearly features missing below 4000Å. Note that to better highlight the di�erence, we
are not using an o�set for the plot.
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Figure 3.4: We show the spectrum the emulator predicts for the one-dimensional case
for 50 di�erent subsets containing 50 points out of the 500 datapoints. These di�erent
spectra are plotted in black with a transparency of 10%. That means areas where all
spectra overlap are darker while areas with spread are lighter. Overplotted in blue is the
original spectrum calculated with tardis.

Interpolation We use a GP for interpolation. This has the advantage, that it provides
an error estimate for the interpolation process. That is, interpolation in an area with
a low density of reference points results is more uncertain and thus results in a higher
error estimate than high density regions. However the time the GP takes to train and
predict scales unfavourably with the number of dimensions, principal components and
points in the grid (see �g. 2.4). As an example, training the emulator with a grid of 1000
points takes 12 s, while 2000 points need 48 s. This is a scaling of exactly O(N2) which
con�rms the estimate from section 2.3.3. The requirements to the computing hardware
scale the same, especially the required Random Access Memory (RAM) reaches amounts
only available on computing clusters if the number of points exceeds 10 000.

The GP is able to interpolate the data well with the default values mentioned in sec-
tion 2.3. For the one-dimensional application the advanced optimization algorithm is
not available. This leaves the boundaries for the length-scale lFe as the only variable
parameter. For the upper boundary we choose a value of 102 because anything above
this value would correspond to a �at distribution which would be the result of PCs that
could be ignored. For the lower boundary we should choose a value that is bigger than
the distance between two points in the grid. Otherwise it might be possible to end up
with the interpolation only working in the vicinity of grid points and failing in between.
We choose a value of 10−5 which works well for this grid. With the emulator trained
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Figure 3.5: We show di�erent combinations of parameters for the Savitzky-Golay (Sav-
itzky & Golay, 1964) �lter (SG �lter). We denote the window length by `WL' and the
oder of the polynomial by `p'. There are two trends in the data: Increasing `p' increases
the sharpness of the �ltered spectrum, allowing for narrow peaks to appear in the data.
On the other hand, increasing `WL' creates a smoother spectrum by including more
points. For the remainder of this work, we choose `WL'= 21 and `p'= 3.

with these numbers we are able to reconstruct spectra that match a synthetic spectrum
generated by tardis well (see �g. 3.2). There are only small features missing that could
as well be noise in the original data.

In search for a possible replacement to the GP we try the popular RF classi�er. The
big advantage of this algorithm is that the evaluation does not scale with the number of
data-points used for training. Additionally the training for a huge dataset takes a fraction
of the time needed by the GP. However we were not able to create spectra resembling
the original with this approach and therefore we did not pursue this method for the
current application further. We therefore use the GP interpolation for the remainder of
this work.

3.2.2 Abundance test

With the emulator working well in one dimension, the next step is to allow all abun-
dances to vary. We can not use the approach from section 3.2.1 to create a grid with ten
dimension as the simulation thereof would take prohibitively long. Instead we randomly
spread 7× 104 points across the parameter space creating a LH (see section 2.3.1). We
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Figure 3.6: Illustration of the successful interpolation of the emulator in the PCA space
for the one-dimensional iron test. Only the �rst three PC are shown because higher other
coe�cients do not contain information (i.e.,they are almost zero). The points show the
data-points that are used to train the emulator. The crosses are all data-points available
in the dataset.The solid line which shows the prediction of the emulator falls nicely on
these points, thus demonstrating the successful performance of the emulator. The light
background shows the uncertainty associated with the prediction.

transform these points into model parameters using the boundaries in table 3.4. For
vi and Ti we choose 11 700 km s−1 and 10 000 K respectively. Because the LH covers the
whole parameter space without respecting the priors we de�ned earlier (see section 2.2.2),
we �lter out all points that do not meet our requirements. This leaves us with approx-
imately 10 000 points for which we create a spectrum using tardis. This means that
the priors we use �lter out roughly 6/7 of the parameter space if we use the linear map
(eq. (3.3)).

We will go into detail why we created two di�erent grids down below. The di�erence
between them is the way the intervals for each abundance parameter are spaced. The
�rst does linear interpolation between 0 and the upper boundary while the second set
interpolates logarithmically between a lower boundary and the upper boundary. For both
sets the oxygen ratio is calculated afterwards. Because of our prior requirements for the
parameters a big part of the 7× 104 points is excluded by the priors, netting approxi-
mately 1.05× 104 points for the linear interpolation and 3.65× 104 for the logarithmic
interpolation. It is expected to get more data for the logarithmic interpolation because
more points lie near the lower end of the interval.
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Table 3.4: Parameters for the two di�erent LHs used in section 3.2.2.
Name 10d linear 10d log

min max min max
Si 0 1.0 10−3 1.0
S 0 0.5 10−3 0.5
Ca 0 0.1 10−5 0.1
Fe 0 0.2 10−5 0.1
Co 0 0.2 10−5 0.2
Ni 0 0.2 10−5 0.2
Mg 0 0.1 10−5 0.1
Ti 0 0.02 10−7 0.02
Cr 0 0.02 10−7 0.02
C 0 0.1 10−5 0.1

Linear grid We present the results of using a grid with 1.05× 104 points created from
a LH with 7× 104 points and transforming its values from [0, 1] onto the ranges shown
in table 3.4 using eq. (3.3). As mentioned earlier, we keep vi=11 700 km s−1 and Ti=
10 000 K �xed. To transform the uniform values of the LH into the parameter values we
use

f(x) = l + (u− l)x (3.3)

with the lower l and upper u bounds and the value x ∈ [0, 1] from the LH.

Going from one to ten model parameters increases the variance in the spectra. We cover
the full range for each abundance parameter, from no in�uence to the spectrum until the
atomic lines are saturated. We need approximately 100 PCs to create spectra similar to
the originals (see �g. 3.7).

We use the default values for the emulator parameters shown in section 2.3 and repeat
our approach from section 3.2.1: We train the emulator with a subset of the original grid
(5× 103 points) and use the remainder to validate the interpolation results by comparing
them to the original.

The result works well, however we notice the interpolation does not work near the edges of
the training grid (see �g. 3.8). Speci�cally, if one is interested in the iron abundance XFe

between 0.001 to 0.01Å the whole grid has only 651 points in this area. However, adding
another requirement, like XC < 0.01 drops this number to 74. As a result interpolation
and extrapolation mix and the resulting spectrum does not always resemble the original.
In �g. 3.8 we compare interpolation for a point near the center of the training grid (P1)
and a point at the edges (P2). The model parameters for these points can be found in
table 3.5.

Logarithmic grid We also explore other ways of mapping the LH to the model param-
eters, in particular by using a logarithmic transformation. In doing so, we increase the
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Å
−

1
]

×10−14 Partial reconstruction using the linear cube

with 25 PC

with 50 PC

with 75 PC

with 100 PC

original

Figure 3.7: Predicting a spectrum with subsequently more PCs. Only using 100 PCs
adds detailed features like the double peak at 4500Å. The parameters corresponding to
this spectrum are listed in table 3.5 as P1.

grid density for low values while decreasing it for higher values. We motivate this by
assuming that small changes in high abundance ratio regions change the spectrum only
slightly while for example changing the iron abundance XFe from 0.1 to 0.2 completely
changes the absorption pro�le (see �g. 3.9).

For the mapping we use
f(x) = ux · l1−x (3.4)

to map the value x between 0 and 1 onto the range between the lower boundary l and the
upper boundary u. Overall using this grid, it should be possible to successfully emulate
spectra also in regions where there were only a handful of reference points available in the
linear cube. Repeating the test from section 3.2.2 with this dataset shows that the issue
of extrapolation is solved (see �g. 3.10). Using 104 points from this grid it is possible to
emulate spectra in a bigger region of the parameter space. One could use all 3.65× 104

points to train the emulator, however because of the scaling of the requirements as well
as the computational e�ort, we choose 104 as a good balance. Therefore we adopt the
logarithmic spacing in the parameter grid for any further applications. Nevertheless it
is always important to compare prediction and original for a small set of data to justify
using the emulator.

Preprocessing For the SG �lter we copy the parameters from section 3.2.1 because the
best values depend on the shape of the spectra, which is similar. With more variance
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Table 3.5: Parameters of the points used to compare the linear and logarithmic trans-
formation of the LH.

P1 P2
Si 3.1× 10−1 4.5× 10−1

S 1.6× 10−1 1.6× 10−1

Ca 7.6× 10−2 1.4× 10−2

F 8.4× 10−2 1.2× 10−3

Co 9.0× 10−2 1.2× 10−1

Ni 8.9× 10−2 2.9× 10−4

Mg 3.6× 10−3 2.2× 10−3

Ti 1.2× 10−2 3.8× 10−7

Cr 1.3× 10−2 1.3× 10−2

C 3.9× 10−2 2.8× 10−2

O 1.2× 10−1 2.2× 10−1

in the spectra, the PCA needs more PCs to achieve an accurate representation. As
mentioned earlier in section 3.2, the optimization of the number of PCs is a compromise
between speed and accuracy. For this grid, we can again use 100 PCs to reconstruct the
spectra (see �g. 3.11).

Interpolation In multiple dimensions the parameters of the GP are more di�cult to
tune. The area that is in�uenced by each grid point, is characterized by a length-scale
lN . For this grid we choose a ten-dimensional kernel function (see eq. (2.15)) because
the in�uence of each input dimension (abundance parameter) stretches across a di�erent
area. Each length-scale lN is thereby associated with one input dimension.

The optimization algorithm, which �nds suitable length-scales lN , has the biggest in-
�uence on the quality of the interpolation. For one dimension l is a single value and
optimization is done by a least squares. However, in multi dimensions lN becomes a
vector and one has to choose whether to optimize all components simultaneously or in-
dividually. The latter is computationally more expensive during the training phase but
does not a�ect the evaluation time. Our results show the improvement is noticeable,
thus we will adopt this approach for the remainder of this work.

Independent of the algorithm, it is possible for the optimization to fail and the best
values for some, or all, lN coincide with the upper or lower boundaries. A possible
explanation is that we use one GP to describe all coe�cients of the PCA instead of one
for each. This approximation allows us to run the analysis orders of magnitude faster
and with considerably reduced requirements in terms of computational resources. This
is a trade-o� we made that could be solved in a future analysis.

In section 3.2.1 we brie�y discuss our attempts with RF interpolation, which were unsuc-
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cessful in one dimension. For completeness, we repeated the test for our ten-dimensional
grid but obtained the same, discouraging, results.
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1

2

3

4

5

6

F
λ

[e
rg

cm
−

2
s−

1
Å
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Figure 3.8: Comparison of emulator prediction (prediction) and synthetic spectrum
calculated with tardis (original) for two di�erent points in the parameter space. The
top is a successful prediction while the prediction for the bottom spectrum is wrong
because the linear cube does not have enough grid points in that area. The parameters
corresponding to these spectra are listed in table 3.5 as P1 (top) and P2 (bottom).
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0.5

1.0

1.5

2.0

2.5

3.0

3.5

F
λ

[e
rg

cm
−
2

s−
1

Å
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Figure 3.9: We show the di�erence in a spectrum for a small change in the iron abun-
dance (∆XFe = 0.002). This change is once done for near zero and once for 10% iron.
The plot shows that this change has a notable impact on the spectrum near an abundance
of zero while there is no visible di�erence near 10%. These spectra were generated with
the setup used in section 3.2.1.
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Figure 3.10: Same as the bottom plot in �g. 3.8. However, this time we use the logarith-
mic transformation of the values of the LH. With this dataset, there is no extrapolation
and the spectra match well. The abundance parameters used for this comparison are
listed as P2 in table 3.5.
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Figure 3.11: The top plot shows the reconstruction of a prediction spectrum with
subsequently more PCs. In the bottom the remaining di�erence is shown between the
prediction and the synthetic spectrum from tardis. Note that the y-Axis of the latter
plot has di�erent limits. The bottom plot highlights how the PCs a�ect the details of
the spectrum (see e.g.,at 4400Å and 5900Å).

45



3 Results

Table 3.6: Boundaries used for the transformation of the LH to model parameters to
create the twelve-dimensional grid.

min max
Si 10−3 1.000
S 10−3 0.5000
Ca 10−5 0.1000
Fe 10−5 0.1000
Co 10−5 0.2000
Ni 10−5 0.2000
Mg 10−5 0.1000
Ti 10−7 0.020 00
Cr 10−7 0.020 00
C 10−5 0.1000
O 0 1
vi [km s−1] 5000 20 000
Ti [K] 6500 20 000

3.2.3 Full test

Up to this point, we only varied the composition but kept Ti and vi constant. However,
when �tting actual observed spectra, in particular for multiple epochs, these values also
have to become part of our parameter set which is varied. Thus, as a �nal test, we extend
the grid from the previous section by these two parameters and create the fourth dataset
which includes all model parameters from the logarithmic grid (see section 3.2.2) and
adds Ti and vi as variables with linear scaling (see eq. (3.3)). The boundaries are listed
in table 3.6.

Preprocessing the data in this grid turns out to be a challenge. Because of the nonlinear
e�ects Ti and vi have on the spectra we have to take special care during this step.
Changing Ti changes the integral of the spectrum and moves the position of the peak of
the black body background according to Wien's displacement law (see e.g., Heald, 2003).
This is a problem for the following PCA which works best with data normalized to a
standard deviation of 1. We do not normalize the data to preserve as much information
as possible and reversing the normalization for interpolated spectra would be a di�cult
task. For the previous analysis, we could skip this step because the standard deviation
does not di�er by orders of magnitude.

The e�ect of vi on the spectrum is also problematic, although not as strong as for Ti.
The line pro�le changes with vi which again is a problem for the PCA. Features, that
change in shape instead of amplitude are not clearly associated with single PCs. However
such a one-to-one relationship is needed for an accurate and e�cient performance of the
interpolation. In �g. 3.12 we show two sample predictions that highlight the problems
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caused by Ti. The interpolation is not able to predict spectra that match the total
luminosity of their synthetic counterparts.

Overcoming these problems requires more research and careful preparing of the data
which goes beyond the scope of this thesis. Potential solutions to the interpolation
challenge may involve the following steps:

� We can normalize all spectra and thus compare the shape and ignore the integral
of the spectrum which corresponds to the total luminosity emitted by the SN.

� Another promising approach may be to reduce the parameter ranges drastically
(for example from 5000 to 20 000 to 9000 to 11 000 ). Spectra would overall have
similar shape due to vi and Ti, however the problem remains that features created
by these parameters do not easily translate into the PCs we use to interpolate.
The disadvantage of this method is that, again, one needs to create one grid per
observation. This leaves the estimate of the ranges for Ti and vi as the only bene�t
of this method.

� Other methods of dimensionality reduction and feature extraction beside PCA,
might allow us to work with the variety of spectra. For example, Sasdelli et al.
(2016) developed a method that uses ML techniques to de�ne a feature space in
which SNe Ia can be classi�ed. A similar approach could be used to de�ne such a
space for interpolation.

However all of these proposals have not yet been carefully tested, a task which is reserved
for future work.
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Figure 3.12: Comparison of the emulator prediction (prediction) and a synthetic spec-
trum (original) for the same point generated with tardis. On the left the prediction
works well, however on the right, the prediction is completely o�, predicting at least
an order of magnitude higher luminosity than the synthetic spectrum. The synthetic
spectrum was generated with Ti= 5052 K which is considerably less than most other
spectra and as a result the PCA does not cover that part well. This highlights the strong
in�uence the Ti parameter has on the luminosity of the spectrum.
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3.3 Comparing likelihoods

As discussed in section 2.1 it is di�cult to assess the quality of a �t to an observed
supernova. We established that automating the exploration of the parameter space needs
a metric to compare spectra with. Because we have prior knowledge about the system
it is convenient to choose the Bayesian interpretation of probability and the posterior
probability as the metric. The posterior probability consists of the prior probability
(see section 2.2.2) and a likelihood function, which determines the similarity between
observation and model spectrum. We had the goal to �nd a simple likelihood function
that performs well in �nding a spectrum that is close to the observation.

To this end we compare four di�erent implementations of a likelihood function against
a synthetic spectrum generated with tardis. That way we can tell exactly how good
each implementation performs because we know the exact model parameters our mock
observation was created with.

We train the emulator with the same dataset that we used in section 3.2.2 except for
vi = 13 135.3 km s−1 and Ti = 10 821.58 K. Due to the problems outlined in section 3.2.2
we choose to �t a synthetic spectrum in an area that is well covered by the training
data.
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Figure 3.13: We show the iron abundance for a subset of 30 walkers obtained with the
basic χ2 likelihood for a synthetic spectrum as the `observation'. The constant mixing of
the walkers shows that they have reached an equilibrium state and we sample from the
posterior PDF.
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We limit all likelihood functions to the range from 3600 to 6300Å because we expect the
least unquanti�able uncertainties of tardis in this region. Further, when talking about
likelihood functions in this section, we mean the logarithmic likelihood L = logP (x|θ)
that is numerically easier to work with.

For each likelihood we show the parameter surface obtained after using the mcmc algo-
rithm with 300 walkers for 105 iterations with a random distribution at the start. For
comparable results, we use the same trained emulator and the same initial conditions
for emcee. We discard the �rst 104 samples to ensure the Markov chains reached equi-
librium. From the remaining samples we calculate an autocorrelation time, that is the
number of iterations it takes for two samples to be independent of each other. Subse-
quently we �lter the data such that only independent samples remain. For the basic χ2

likelihood we show exemplary that the Markov chains converged to an equilibrium state
(see �g. 3.13). To compare the performance of the individual likelihoods, we plot the
approximation to the posterior PDF.

Basic χ2 (`default') Our �rst attempt for a likelihood function is assuming a Gaussian
distribution for the data. Expanding this for multiple data-points yields a likelihood
resembling a χ2 (see eq. (2.1))

L(x) = −0.5 ·
∑
i

[(
gi(xi)− yi

σi

)2

+ log 2πσ2i

]
. (3.5)

If σ does not depend on x, one can neglect the second term and one ends up with
L(x) = −0.5χ2. However, in section 2.1.3 we introduced the parameter γ that is necessary
to model the unknown uncertainties of tardis. This parameter is part of x so we have
to use the formula from eq. (3.5) with the uncertainty

σ2 = ((0.05 · ȳ)2 + gi(x)2 · exp(2γ)), (3.6)

where γ appears as a nuisance parameter that adjusts σ such that 66% of the points are
within the errors (see Hogg et al., 2010). During the analysis we will marginalize over
γ.

In �g. 3.14 we present an extract from the full PDF associated with this likelihood. All
parameters are recovered well and there is only a little spread. In �g. 3.18 we show how the
remaining parameters interact. Most parameters match the reference with the exception
of Titanium and Chromium where the reference value was not recovered. Additionally,
the constraints for Magnesium are broad. Overall, this likelihood is able to reproduce the
reference parameters well enough and seems as a good basic approach because it tries to
minimize the total error by optimizing the spectrum to �t the underground, rather than
individual lines.
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Figure 3.14: Projection of the PDF onto the Si-S, Si-Ca and S-Ca plane to visualize the
distribution of the `default' likelihood. The blue lines indicate parameters of the model
used to create the observed spectrum. The parameters shown here are recovered well.
For a detailed look at all parameters see �g. 3.18.
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Figure 3.15: Same as �g. 3.14 we compare the spectra with the `poly' likelihood, where
we subtract a �fth order polynomial prior to calculating a χ2. All parameters shown here
match the reference well. For a detailed analysis see �g. 3.19.
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χ2 - subtract continuum (`poly') The main problem of the basic χ2 is that lines are
not given more weight to although they are the features that de�ne a spectrum and
therefore the quality of the �t. To overcome this issue, one approach is to subtract a
background. Thus, both g(x) and y are preprocessed by �tting a �fth order polynomial
to the data and then subtracting it. The result is a spectrum with a mean close to
zero where lines translate into strong features. By using the spectrum directly and only
subtracting a background, which is determined for each spectrum individually, we are
sensible to lines in general and to their depth in particular. However, this likelihood
might have the problem that a constant o�set of the model spectrum, for example due
do high absorption or a low temperature of the photosphere, goes unnoticed. As a result
special care should taken when using this likelihood.

We show the results we obtain using this likelihood in �g. 3.15 and �g. 3.19. This
likelihood performs almost as good as the basic χ2 in this scenario, as the most probable
point for most parameters agrees well with the reference. Notable outliers are Cobalt,
Nickel and especially Chromium, which does not match. In summary, this likelihood
could be a contender to the basic χ2 likelihood and it is worth testing it for �tting a real
SN.

χ2 with di�erentiation (`di�') Inspired by Sasdelli et al. (2014) who use the di�eren-
tiation of the spectra for the analysis, we try to �nd out whether this approach can be
used to construct a useful likelihood for SN Ia. The e�ect is similar to the previously
presented method, in that we have an increased focus on the lines. The di�erence, how-
ever, is that this likelihood tries to match the slope of the lines instead of the depth.
As in the previous likelihood, we preprocessing g(x) and y individually using the same
algorithm. We calculate σ with eq. (3.6) before we do the preprocessing. In �g. 3.16 we
show the PDF we obtain when using this likelihood. Only Silicon is well reproduced and
in general this likelihood seems not promising without further modi�cations.

L1 norm instead of L2 (`abs') This likelihood is di�erent from the others because it is
based on the L1-norm (|x|) instead of the L2 (

√
x2). This translates to the assumption

that the observations follow a Laplace distribution instead of a normal distribution. The
general e�ect is, that regions with a big di�erence between observation and model do
not have a reduced impact on the likelihood. We use σ from eq. (3.6) because the same
assumptions about the uncertainties apply. We calculate the likelihood as

L(x) = −
∑
i

∣∣∣∣gi(xi)− yiσi

∣∣∣∣+ log 2σi. (3.7)

In practice this likelihood behaves similar to the basic χ2 with the only major di�erences
being the Mg abundance (see �g. 3.17).
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Figure 3.16: Same as �g. 3.14 but we use the di�erentiation of the spectrum for the
χ2 likelihood (`di�'). The Silicon abundances matches the reference value relatively well.
In contrast, the Sulfur is not well determined and the Calcium abundance is even worse.
For this likelihood to be usable, some changes would be required.
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Figure 3.17: Same as �g. 3.14 but we use the Laplace distribution instead of a normal
distribution as the basis for the likelihood (`abs'). Note that this plot shows the Si, Fe and
Mg abundances to highlight the areas where this likelihood performs di�erent to the χ2

as their results are generally similar. The important di�erence is that the `abs'-likelihood
does not reproduce the Mg abundance well.
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Summary Comparing the distribution of the di�erent likelihoods with the reference
values we used to create the spectra gives a good overview of the capabilities of each
likelihood. Out of the four candidates, the basic χ2 (`default') and the subtraction of a
continuum (`poly') perform best. In �g. 3.18 and �g. 3.19 we show the full PDF for these
likelihoods. Although these likelihoods performed best, they are not perfect and some
parameters were not found correctly, namely the Titanium, Magnesium and Chromium
abundances and for the `poly'-likelihood Nickel and Cobalt. We attribute this to the
fact, that these elements do not have dominant atomic lines in the spectral region we use
for the comparison.
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Figure 3.18: Projection of the PDF onto all possible parameter combinations to visualize
the distribution of the basic χ2. The parameters are from top to bottom (and left to
right): Si, S, Ca, Fe, Co, Ni, Mg, Ti, Cr, C, O. The blue lines indicate the corresponding
parameters of the model used to create the observed spectrum. The limits of all axes
coincide with the priors de�ned in table 3.4 for the logarithmic cube.56
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Figure 3.19: Same as �g. 3.18 but with the `poly'-likelihood. Overall most parameters
are well determined, except for Ni, Mg, Ti and Cr.
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3.4 Fitting SN 2002bo

We apply the methods (see chapter 2) developed in this thesis to �t the observation of
SN 2002bo. We choose this SN because it has previously been extensively studied with
abundance tomography methods (see Stehle et al., 2005; Hachinger, 2011).

SN 2002bo was discovered on 9th March 2002 and is located in NGC 3190 with a distance
modulus (µ = 31.67; Benetti et al., 2004). The spectroscopic coverage for this supernova
starts at about 13 d before maximum light and extends until 368 d which is in the nebular
phase. The supernova was the subject of prior studies by Stehle et al. (2005). The
supernova was classi�ed as a normal SN Ia but there are some peculiarities concerning
the line velocities (see Cacella et al., 2002; Benetti et al., 2004). Past analysis' of the SN
found an abnormal amount of Magnesium in the ejecta with abundances up to 30% (see
Stehle et al., 2005).

In a �rst approach, we use the method developed by Jancauskas et al, in prep. to �nd the
globally best combination of model parameters and compare these to the results obtained
by Stehle et al. (2005). This step is not required for the exploration of the parameter
space, however with the use of the emulator, repeating the di�erential evolution approach
becomes computationally cheap and provides another set of best-�t model parameters
that can be compared with literature. For the generation of spectra we use the emulator
trained with the grid we analyzed in section 3.2.2. We compare these spectra with the
spectrum of SN 2002bo for the epoch 9.1 d before maximum light, because at this time
the systematic uncertainties in the spectra of the grid which were created by tardis are
assumed to be relatively low.

After obtaining the best �tting combinations of parameters, we start the exploration of
the parameter space in a similar manner as outlined in section 3.1 but with the emulator
as the source for the spectra and the observation of SN 2002bo as the target. We again
use the mcmc algorithm (see section 2.4.2 for details) to generate samples approximate
the posterior PDF. We also brie�y test a di�erent method, nested sampling (Skilling,
2006) that works similar to mcmc but uses di�erent algorithms to estimate the topology
of the whole parameter space.

3.4.1 Di�erential evolution

In this section, we present our results of using global optimization with the di�erential
evolution algorithm (see Jancauskas et al, in prep.) to �nd the best �tting set of model
parameters for SN 2002bo. We compare them to previous studies by Stehle et al. (2005)
and Hachinger (2011). On the one hand we want to assess if the framework functions
properly and on the other hand we aim to compare the physical results with literature
values.

For the comparison we use the likelihoods de�ned in section 3.3 and we use the spectral
emulator (see section 2.3) trained with the grid used in section 3.2.2 relying on the default
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Figure 3.20: Plot showing emulated spectra for the best �t by Hachinger (2011) (red)
and the best �t obtained using di�erential evolution for di�erent likelihoods in comparison
to the observation of SN 2002bo (black) 9.1 d before maximum.

parameters to generate the spectra. We use 100 PCs and a random subset of 1000 out
of the 36 500 available points as the grid for the interpolation.

In �g. 3.20 we compare the observation with a tardis spectrum for the values found
by (Hachinger, 2011, henceforth SH �t) and the result of using the di�erential evolution
algorithm with three of the likelihoods presented in section 3.3. We can see, that the
`di�' and `poly'-likelihoods do not �t the observation. The most probable reason is
that these likelihoods do not account for a continuum. As a result, their line pro�les
match the observation but there is a constant o�set and thus, these likelihoods need
adjustments to be viable. However, assessing whether the SH �t or our results with the
`default' likelihood match the observation better, is a challenge. The χ2 does not �t
the absorption line at 4000Å, the peak at 4100Å and the absorption at 4300Å but it
matches the spectrum better above 5000Å. One could argue that both, the SH �t and
the di�erential evolution result from the `default' likelihood are equally good, however
if we take the importance of selected lines into account, the �t by Hachinger (2011)
performs better.

To get some statistical insight about the results produced by di�erential evolution, we
repeat this experiment and run the algorithm 50 times and compare the results. In
�g. 3.21 we visualize the spread of the best �tting spectra and show the mean and
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Figure 3.21: Overplotting 50 results obtained by di�erential evolution (black, α = 5%
) and the original spectrum of SN 2002bo at 9.1 d before maximum.

standard deviation for the �t results in table 3.7. Some abundances, like Carbon, Cobalt
and Oxygen for example have a large standard deviation of approximately 100% which
explains why Jancauskas et al, in prep. found multiple solutions that �t the observation
equally well. Therefore it is important to not only �nd the maximum likelihood point,
but to also explore the associated posterior PDF which is the topic of the next section.
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Table 3.7: Average value (µ) and standard deviation (σ) of values obtained by run-
ning di�erential evolution repeatedly (50 times) with di�erent starting positions. Large
standard deviations (in particular for C, Co and O) highlight the degeneracies in the
parameter space and explain why Jancauskas et al, in prep. found multiple solutions.
Note that each row contains two abundances.

`default' `poly'
µ σ µ σ

Si 1.54× 10−1 1.54× 10−2 4.45× 10−1 6.56× 10−2

S 2.05× 10−2 2.33× 10−3 2.40× 10−1 7.38× 10−2

Ca 7.76× 10−2 2.75× 10−3 7.11× 10−2 3.42× 10−2

Fe 1.63× 10−2 1.69× 10−3 4.56× 10−2 8.47× 10−3

Co 7.64× 10−3 6.00× 10−3 1.10× 10−2 9.82× 10−3

Ni 1.86× 10−3 1.48× 10−3 4.33× 10−3 3.67× 10−3

Mg 1.78× 10−2 7.66× 10−3 8.84× 10−2 1.01× 10−2

Ti 1.77× 10−3 6.50× 10−4 9.77× 10−4 1.19× 10−3

Cr 1.22× 10−4 1.03× 10−4 1.07× 10−3 1.10× 10−3

C 2.19× 10−3 2.21× 10−3 1.43× 10−2 1.35× 10−2

O 7.00× 10−1 9.60× 10−1 7.74× 10−2 7.79× 10−1
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3.4.2 Markov chain Monte Carlo

Here we present the results of combining the tools we developed and using them to
explore the parameter space of SN 2002bo. For that reason, we repeat our approach
from section 3.1 but use the spectral emulator from the previous section (section 3.4.1)
to generate the spectra required by the likelihood. We use the emcee (see section 2.4.2)
algorithm to explore the parameter space with two di�erent likelihoods, the basic χ2

(`default') and the χ2 with a subtracted continuum (`poly'). These likelihoods are covered
in detail in section 3.3.

We use emcee with 300 walkers and run it for 105 iterations. The original plan, to ran-
domly distribute the initial points for the walkers and let them converge to the area with
the maximum was not successful, because we noticed that the chains would converge
to multiple distinct areas with no mixing between them (see �g. 3.22). This is further
evidence for the degeneracy of the parameter space observed by Jancauskas et al, in prep.
and the high standard deviation in the results obtained through di�erential evolution.
In order to force the walkers to explore one peak, we initialized them to a small area sur-
rounding the best �t of Hachinger (2011). This approach yields acceptable results, which
means the walkers converged and the Markov chains we obtained had an autocorrelation
of approximately 100 samples. That means, after �ltering the burn-in (104 samples)
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Trace plot with 30 walkers for XCa

Figure 3.22: We plot the trace of 30 chains after running emcee with the `poly'-
likelihood with randomly distributed starting positions. This plot shows well how the
chains converged to three di�erent areas with high probability. This is not the desired
outcome, instead the goal is for all chains to converge to the same area and explore that.
Note that this is not the data used for �g. 3.25.
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and correlated samples, we are left with 2.7× 105 independent points representing the
parameter space for each likelihood.

Before we analyze the parameter space in detail, we look at the spectra that dominate the
area surrounding the peak (see �g. 3.23). Comparing our result with the spectra obtained
using di�erential evolution (see �g. 3.21), we observe that the spectra for the `default'
likelihood match the observation of SN 2002bo well, whereas the `poly'-likelihood has the
same problem as with di�erential evolution: The continuum is not taken into account
for the comparison and thus, the spectra do not match. Therefore we will focus the
discussion on the `default'-likelihood.

In �g. 3.24 (`default') and �g. 3.25 (`poly') we show the topology associated with the
likelihoods. We compare the contours we obtain with the maximum likelihood points
found by Stehle et al. (2005); Hachinger (2011) and �nd overall good agreement. We
compare the maximum likelihood model parameters for SN 2002bo found by the previous
studies with our points of maximum likelihood in table 3.8. Only the Magnesium and
Oxygen abundances do not agree with literature values. This is most likely caused by
the limitations of the priors for the Magnesium abundance, which has been reported in
literature to be unusually high for SN 2002bo (see Stehle et al., 2005). The inability of
the algorithm to �t Magnesium correctly e�ected the Oxygen abundance which had to
make up for the missing Magnesium.

It is important to note that by initializing the Markov chains to the area surrounding
the SH �t, we constrained the area emcee would explore as the ability of the algorithm
to descent into low likelihood regions is limited. Thus, we did not explore the two other
peaks for Calcium which are visible in �g. 3.22. While it might be possible to explore the
whole parameter space with emcee by tweaking its parameters, there are other tools,
like Nestle (see Barbary, 2014) that are designed for this task.

In summary, we show that the emcee algorithm can be used together with the spectral
emulator to explore the parameter space of a real supernova. We �nd the main problem
of this approach to be the likelihood function which is not yet good enough in determining
the quality of a �t. In the case of comparing a real supernova with a synthetic spectrum,
it is important to quantify the systematic uncertainties of the radiative transfer code
in some way as they dominate the di�erence between model and observation in some
wavelength regions.

63



3 Results

Table 3.8: A list of literature abundances for SN 2002bo found by Hachinger (2011)
(SH �t) and Stehle et al. (2005) (Stehle) in comparison to the values we obtain using
the emcee and Nestle methods with di�erent likelihood functions. Note that our
calculations were done with vi = 11 700 km s−1 and Ti = 10 000 K, the same values used
in Hachinger (2011). However they are di�erent from the values used by Stehle et al.
(2005) (vi = 13 900 km s−1 and Ti = 9239 K).

SH �t Stehle emcee Nestle

`default' `poly' `default' `poly'
Si 2.5×10−1 3.1×10−1 2.1×10−1 5.0×10−1 1.2×10−1 3.0×10−1

S 4.5×10−2 6 ×10−2 1.7×10−2 1.3×10−1 2.5×10−2 2.3×10−5

Ca 1.0×10−2 2 ×10−2 1.5×10−2 9.7×10−3 5.7×10−2 8.9×10−3

Fe 8.0×10−3 3 ×10−2 1.5×10−2 3.9×10−2 1.8×10−2 1.2×10−1

Co 9.9×10−3 - 2.2×10−3 3.6×10−3 1.8×10−2 1.9×10−2

Ni 4.6×10−3 1.1×10−1 1.4×10−3 9.5×10−3 6.7×10−5 6.6×10−10

Mg 1.0×10−1 2.8×10−1 1.6×10−2 9.7×10−2 1.8×10−2 7.9×10−2

Ti 1.0×10−3 6 ×10−3 4.0×10−3 1.3×10−4 1.6×10−3 2.5×10−10

Cr 7.0×10−4 6 ×10−3 2.1×10−4 1.9×10−4 7.0×10−10 2.7×10−3

C 8.0×10−4 - 2.5×10−3 1.0×10−2 9.0×10−10 8.5×10−3

O 5.5×10−1 1.9×10−1 7.1×10−1 2.0×10−1 7.5×10−1 4.6×10−1
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Figure 3.23: Plot showing the spread in the spectra near the maximum probability
point. This was done for the basic χ2(top) and the `poly'-likelihood (bottom). The plot
includes the spectrum of SN 2002bo(blue) and emulated spectra (black, α = 5 %) for a
subset of 100 points from the samples generated by emcee.
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Figure 3.24: Same as �g. 3.18 but we compare the emulator spectra against SN 2002bo
and use the `default' likelihood as metric for comparison. Again, the parameters from
top to bottom (and left to right) are Si, S, Ca, Fe, Co, Ni, Mg, Ti, Cr, C and O. The
blue lines mark the abundances of the �t by Hachinger (2011). As before, the blue lines
represent the values of the �t by Hachinger (2011). The contours represent 1σ con�dence
intervals.
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Figure 3.25: Same as �g. 3.24 but we use the `poly'-likelihood. Again, the parameters
from top to bottom (and left to right) are Si, S, Ca, Fe, Co, Ni, Mg, Ti, Cr, C and O. As
before, the blue lines represent the values of the �t by Hachinger (2011). The contours
represent 1σ con�dence intervals.
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3.4.3 Nested sampling

Lastly, we test Nestle (see Barbary, 2014), an implementation of the MultiNest algorithm
(see Feroz et al., 2009) which is a di�erent method to explore the parameter space. The
approach is similar to emcee, however, the key di�erence is that Nestle tries to sample
the whole PDF space de�ned by the priors. This is the reason we try this algorihm,
because it allows us to explore all parts of the PDF and not only the area around the
maximum likelihood point. We run Nestle with the two likelihood functions `default'
and `di�' to compare spectra generated with the emulator from section 3.4.2 with the
observation of SN 2002bo.

In contrast to the mcmc algorithm where the run-time is �xed by the number of itera-
tions, the execution of this test is dynamic and dependent on the topology the parameter
space that is explored, which took an unexpected amount of computation time. While
these tests with the basic χ2 took approximately a day to �nish, the analysis with the
`di�'-likelihood, which uses the derivative of the spectrum, ran for over a month. Unfor-
tunately the test which used the χ2 with a subtracted polynomial had to be stopped after
running for two months without results. The increase in runtime is due to the increased
complexity of the topology that is associated with these likelihoods.

We start presenting the results by showing a comparison of the best �tting spectra in
�g. 3.26. As can be seen, the `di�' likelihood performs not well and has similar problems
as the `poly' likelihood which we already discussed above (see section 3.4.2). Therefore
we will focus the analysis on the `default'-likelihood which performs equally well as the
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Figure 3.26: The plot shows the observation of SN 2002bo (black) in comparison to
emulator spectra for the `default' (dark blue) and `di�' (yellow) likelihood as well as the
SH �t (green). The `di�'-likelihood is clearly an outlier as the spectra do not match.
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�t by Hachinger (2011). The only major concern in this spectrum is that the Silicon line
at approximately 6000Å does not match well.

For the comparison to Hachinger (2011) and Stehle et al. (2005), we will focus on the
`default' likelihood �ts as this seems to �nd better matches to the observations as opposed
to the `poly' likelihood. In �g. 3.27 we show the topology associated with the `default'
likelihood and, for completeness, we also show the same plot for the `poly' likelihood
(see �g. 3.28). We list the parameters for our maximum likelihood points obtained
by nestle together with parameters found by the previous studies and our results from
emcee in table 3.8. Overall the con�dence contours seem to agree with both previous
studies. In addition to the agreement, we, however, also show the space is degenerate with
multiple solutions that are equally good but not presented in the literature. While most
elements are broadly consistent with Stehle et al. (2005); Hachinger (2011), Magnesium
and Calcium show noticeable di�erences.

For Magnesium this is likely due to the fact that we allow for a normal Magnesium
abundance but SN 2002bo has been shown to be especially abundant in this element (up
to XMg = 0.3; Stehle et al., 2005). Calcium is seemingly multivariate where Hachinger
et al. (2009) and Stehle et al. (2005) have focused on one part of the PDF each while
the Nestle algorithm �nds all three. As mentioned in section 3.4.2, the emcee algo-
rithm was also able to �nd multiple peaks when initialized randomly, however this had a
negative impact on the performance of the algorithm and we chose to sample from one
peak instead. This again emphasizes the point that it is crucial to explore the parameter
space and not only present maximum likelihood values.

The �rst exploration of the PDF for these spectra has already shown that there are
undocumented degeneracies which need to be considered when comparing these �tted
values with theoretical nucleosynthesis models. Our nestle exploration has shown that
our method is performing well and can be used in the future to explore this space in
more detail.
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Figure 3.27: Topology of the parameter space for SN 2002bo obtained using Nestle
and the basic χ2 likelihood. Again, the parameters from top to bottom (and left to right)
are Si, S, Ca, Fe, Co, Ni, Mg, Ti, Cr, C and O. As before, the blue lines represent the
values of the �t by Hachinger (2011). The contours represent 1σ con�dence intervals.
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Figure 3.28: Same as �g. 3.27 but we use the `di�' likelihood. Again, the parameters
from top to bottom (and left to right) are Si, S, Ca, Fe, Co, Ni, Mg, Ti, Cr, C and O. As
before, the blue lines represent the values of the �t by Hachinger (2011). The contours
represent 1σ con�dence intervals.
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4.1 Summary

In this work we have presented �rst steps towards automating the abundance tomography
method, that is to �t an observed spectral time series of a SN Ia and infer important
characteristics and properties of the exploding object.

An important aspect of this approach is the possibility to study the full parameter space
with this technique. This, in principle allows us to identify degeneracies and exclude
regions parameter space which are clearly incompatible with observations. We use ML
techniques in combination with a fast spectral synthesis code (tardis) to achieve this
automation. However, our �rst tests showed, that even fast radiative transfer codes are
orders of magnitude too slow to e�ciently explore the parameter space.

We therefore develop a spectral emulator, which is a means to interpolate e�ciently in
a precomputed grid of synthetic data and at the same time provide information about
the uncertainties associated with the interpolation. In a series of tests we analyze the
performance and accuracy of the emulator. In particular we validate that the results
from the emulator are compatible with those explicitly calculated with tardis. This
spectral emulator performs well if the abundances in the ejecta are the only variable
parameters of the analysis. However, so far we were not able to successfully incorporate
Ti and vi as additional model parameters due to their non-linear e�ect on the formation
of the spectra.

Automating abundance tomography also requires a way to asses the quality of a �t.
We use Bayesian Statistics to combine prior knowledge about the parameter space
(e.g.,nucleosynthesis constraints on the ratios of certain elements) and a likelihood func-
tion to formulate a posterior probability. For the likelihood function we test di�erent
approaches and settle for a basic χ2 to comparing the spectra. With this likelihood we
can converge on the correct abundances for most elements reasonable well. Elements
that do not �t well have no dominant lines in the spectral window we consider for the �t
and thus the poor �t is expected.

In a �nal application of our framework we apply our analysis to actual observations,
by studying SN 2002bo with the techniques developed during this thesis. In particular
we were able to derive abundances, similar to those reported in literature. Parameters
whose literature values were not well reproduced lie close to the boundaries of the priors
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we imposed (e.g.,because of nucleosynthesis calculations). Thus, these deviations are not
unexpected.

Based on the work presented here, we conclude, that automating the complicated �tting
process of Type Ia spectra is a promising technique in the future analysis of SN Ia.
However, the framework presented here is only a starting point and has to be extended
to reach its full potential.

4.2 Outlook

So far we only looked at a uniform abundance model for the spectrum for one epoch.
But our goal is to have a strati�ed abundance pro�le and �t a time series of spectra.
However, this may pose problems for our approach. Our current simple model has ten
parameters, with �ve epochs we would already increase that to 60 parameters. Our cur-
rent approach cannot handle these many dimensions because we reach the limits of what
is computationally feasible (both with respect to time and hardware requirements).

To overcome these challenges, we propose to explore two possible strategies. One pos-
sible approach would be to train the emulator iteratively. That means, instead of pre-
computing a grid of spectra, we start with a small number of training points and decide
based on the uncertainty of the interpolation whether the interpolation results will be
used or if a synthetic spectrum is explicitly created with tardis. This would then be
included in the training data of the emulator. The bene�t would be that only for points
needed in the exploration of the parameter space tardis calculations would be per-
formed. However this approach would not allow the generation of a precomputed grid in
a parallelized way, thus resulting in long serial run times of the code.

A completely di�erent approach that would scale well with many parameters would be
to interpolate the likelihood directly instead of the spectrum. The bene�t would be
a signi�cant reduction in computational resources. This approach could be combined
with the previously suggested iterative training of the emulator to create a tool that
determines whether or not the prediction is accurate enough and then update itself with
the new information. A combination of the options above would be to use an emulator
for the likelihood to limit the parameter space down to a small region in which the
spectral emulator could actually work if the grid is dense enough. However the approach
of emulating the likelihood function requires an accurate de�nition thereof.

Independent to the abundance tomography method, the �eld of SN Ia research could
bene�t in general from an improved likelihood to compare spectra. There are several ideas
that could be explored, such as using local GP kernels to deal with model imperfections
(see Czekala et al., 2015) or using a metric space for supernova (see Sasdelli et al., 2014)
to formulate a likelihood.
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With the recent advancements in machine learning and more powerful tools becoming
readily available in di�erent disciplines, now is the perfect time to exploit them in astro-
physics and abundance tomography in particular.
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