Generalized linear mixed-effects model fit by PL Model information: Number of observations 39 Fixed effects coefficients 8 Random effects coefficients 52 Covariance parameters 5 Distribution Gamma Link Power FitMethod REMPL Formula: Slope ~ 1 + Genotype*Drug + Genotype*Sex + Drug*Sex + Genotype:Drug:Sex + (1 + Drug | Slice) + (1 | Exp) Model fit statistics: AIC BIC LogLikelihood Deviance -13.64 5.00 19.82 -39.64 Fixed effects coefficients (95% CIs): Name Estimate SE tStat DF pValue Lower Upper {'(Intercept)' } 0.32 0.06 5.22 31.00 0.00 0.20 0.45 {'Genotype_hAPP' } 0.17 0.08 2.12 31.00 0.04 0.01 0.34 {'Drug_Pre' } 0.02 0.03 0.52 31.00 0.61 -0.05 0.08 {'Sex_M' } 0.06 0.09 0.70 31.00 0.49 -0.12 0.24 {'Genotype_hAPP:Drug_Pre' } 0.32 0.05 6.40 31.00 0.00 0.22 0.43 {'Genotype_hAPP:Sex_M' } 0.06 0.13 0.42 31.00 0.68 -0.22 0.33 {'Drug_Pre:Sex_M' } 0.05 0.04 1.17 31.00 0.25 -0.04 0.14 {'Genotype_hAPP:Drug_Pre:Sex_M'} 0.02 0.09 0.24 31.00 0.81 -0.16 0.21 Random effects covariance parameters: Group: Slice (20 Levels) Name1 Name2 Type Estimate {'(Intercept)'} {'(Intercept)'} {'std' } 0.13 {'Drug_Pre' } {'(Intercept)'} {'corr'} 1.00 {'Drug_Pre' } {'Drug_Pre' } {'std' } 0.06 Group: Exp (12 Levels) Name1 Name2 Type Estimate {'(Intercept)'} {'(Intercept)'} {'std'} 0.00 Group: Error Name Estimate {'sqrt(Dispersion)'} 0.09