
Evaluation of selected C++11
features with GCC, ICC and
Clang

August 2014

Author:
Stephen Wang

Supervisor:
Pawel Szostek

CERN openlab Summer Student Report 2014

Project Specification

The project concerns various C++11 features - their performance and reliability. The report
summarizes the tesults from four micro-benchmarks designed for this project and run with three
different compilers (GCC, ICC, Clang) and tries to make an evaluation based on the results.

Abstract

As C++11 gained almost full support by compilers, it is interesting to see whether we can
leverage some of the features to improve performance and reliability of C++ code. This work is
focused on four selected problems: time measurement techniques, for-loops efficiency,
asychronuous tasks and parallel mode of STL algorithms. For each of them a micro-benchmark is
made. All the benchmarks are fully automatized to generate results from running binaries
compiled by three compilers: GCC, ICC and Clang with -O2, -O3 and -Ofast options. In order to
evaluate vectorization and multithreading, profiling tools such as perf and Intel Vtune are used.

Table of Contents
Project Specification...2

Abstract..2

Introduction..3

Platform..4

Time measurement techniques..4

Evaluation of various types of for loops..8

Evaluation of std::async...13

Evaluation of STL algorithms in parallel mode...14

Conclusions...16

Acknowledgement..17

References...17

2

Introduction

C++ was developed by Bjarne Stroustrup starting in 1979 at Bell Labs as an enhancement to the
C language and originally named C with Classes. It was renamed C++ in 1983. C++ standard
committee takes charge of updating the standard. The previous standard is often referred to as C+
+98 or C++03, but actually the differences between C++98 and C++03 are not so much.

Nowadays more languages are rising such as Python, which is more flexible and easier to use.
More and more people find C++ hard to write and think that its performance does not increase
anymore. New features appeared in the new standard of C++, which can make C++ users feel
more convenient in development.

C++11 is the most recent version of the standard of the C++ programming language, which was
approved by ISO on 12 August. "Surprisingly, C++11 feels like a new language: The pieces just
fit together better than they used to and I find a higher-level style of programming more natural
than before and as efficient as ever.” said by Stroustrup. C++11 actually mainly improves C++ by
language usability, mulithreading and other stuff. Lambda expression, auto keyword and ranged
for-loop are designed to improve language usability. And it is the first time for C++ to include its
own multithreading library so that developer can get out of the trouble like pthread, which makes
users not necessary to take care on low-level threading management.

In this report, we will focus on four different topics, out of which each one is related to the C++11
standard. Instead of looking at the code reposponsible for each of them, we adopted a black-box
approach. We will be trying to estimate performance of lanugage features by running micro-
benchmarks targeting selected areas.

The investigated topics are :

 time measurement methods reliability,

 for-loop efficiency,

 std::async mechanism,

 STL algorithm performance in parallel mode.

Four micro-benchmarks are made for each of the topics, as well as scripts to automatize the
whole process. This is supposed to make all the results easily reproducible with different
compilers, optimization options, containers and even STL algorithms. Perf and Intel VTune
Amplifier are used to understand the behaviour of different code variants.

Benchmarks are compiled with GCC 4.9.0, ICC 15.0.0 and Clang+LLVM 3.4 run with –O2, -O3,
-Ofast. We would like to note here that we were fully aware that those flags enable different
optimization options when run with each of the compilers. Nevertheless, we didn't try to balance
them, as that would be very laborious and not always possible.

3

Platform

The platform used in the experiments is a dual-socket Intel Jefferson Pass equipped with E5-
2695v2 2.4GHz “Ivy Bridge” CPUs with TurboBoost and HyperThreading enabled and 64 GB of
DDR3 1666MHz DIMMs. The operating system is SLC6.5 with a 3.11 kernel used instead of the
stock one.

Time measurement techniques

Time measurement is the most basic problem to be considered in the evaluation. We tried to asses
four different time measurement techniques, which are:

 gettimeofday,

 omp_get_wtime,

 RDTSCP-based

 std::chrono.

The idea behind the benchmarks in this part is to estimate the overhead of the measurement and
its precision. Below is a summary of evaluated functions:

Name Source Resolution

gettimeofday sys/time.h microseconds

omp_get_wtime omp.h (OpenMP) nanoseconds

RDTSCP-based x86 assembly machine cycles

std::chrono C++11 standard library nanoseconds

Table 1: Tested time measurement techniques

RDTSCP is actually an assembly instruction which can access the timestamp register (TSC). The
value returned by the function is a 64-bit integer and its resolution are machine cycles. There are
many caveats related to code serialization that need to be considered when using this technique.
Therefore, we decide to use directly the code presented in [1].

Sample of a measurement using RDTSCP:

asm volatile ("CPUID\n\t"
 "RDTSCP\n\t"
 "mov %%edx, %0\n\t"
 "mov %%eax, %1\n\t": "=r" (cycles_high), "=r"
 (cycles_low):: "%rax", "%rbx", "%rcx", "%rdx");
// put your function here
asm volatile("CPUID\n\t"
 "RDTSCP\n\t"
 "mov %%edx, %0\n\t"

4

 "mov %%eax, %1\n\t": "=r" (cycles_high1), "=r"
 (cycles_low1):: "%rax", "%rbx", "%rcx", "%rdx");
start = (((uint64_t)cycles_high << 32) | cycles_low);
end = (((uint64_t)cycles_high1 << 32) | cycles_low1);
uint64_t elapsed = (end - start) / CPU_NOMINAL_FREQ;

std::chrono is the new feature in C++11 which aims time measurement. It offers class
std::chrono::steady_clock representing a monotonic clock, which means that the time of this
clock cannot decrease as physical time moves forward, even if the system clock gets readjusted.
According to the specification, we can expect a resolution of nanoseconds.

Overhead is one of the most important factors affecting the realibility of time measurement of
small, unrepeated pieces of code. In this experiment we ran a loop whose task was to measure the
time that is taken by the function call. As next, we calculated maximun, minimuln, median and
variance of all the measurements.

Sample of overhead benchmark:

std::vector<int> overhead;
for (i=0; i<OVERHEAD_LOOP_SIZE; i++) {
 auto start = std::chrono::steady_clock::now();
 auto end = std::chrono::steady_clock::now();
 int elapsed = std::chrono::duration_cast<std::chrono::nanoseconds>(end
- start).count();
 overhead.push_back(elapsed);
}

The figure shows the maximun overhead of four tested methods

 omp_get_wtime

 gettimeofday

 RDTSCP-based

 std::chrono

5

Figure 1: Time measurement median overhead

Since precision of gettimeofday can not access nanosecond, its median is equal to zero.
Surprisingly, omp_get_wtime only can achieve nanosecond resolution onlt when compiled by
GCC. The overhead of RDTSCP and std::chrono are similar and the stability achieved by
std::chorono is even better than RDTSCP’s.

Then real-time benchmark is aimed to check what is the correspondance between the measured
time and real-time. To this end, we need an accurate timer to control the real-time consumed.
Since sleep is not an accurate enough function, we used select function, which guarantees micro
second precision. The time spent by a proces in inactive mode depends on the operating system
policy and current system usage.

The code used for making a process sleep :

void microseconds_sleep(unsigned long uSec){
 struct timeval tv;
 tv.tv_sec=uSec/1000000;
 tv.tv_usec=uSec%1000000;
 int err;
 do{
 err=select(0,NULL,NULL,NULL,&tv);
 }while(err<0 && errno==EINTR);
}

Sample code of real-time benchmark:

for (i=10; i<CYCLES_LOOP_SIZE; i++) {
 auto start = std::chrono::steady_clock::now();
 microseconds_sleep(i);
 auto end = std::chrono::steady_clock::now();
 int elapsed = std::chrono::duration_cast<std::chrono::nanoseconds>(end
- start).count();
 cycles_elapsed.insert(std::pair<int, int>(i, elapsed));
}

6

Figure 2: Time measurement maximum overhead

This measurement has been done with the sleeping time ranging from 10 micro seconds to 1
seconds. A plot of The real-time benchmark works from 10 micro-second to 1000 micro-second
and the results are shown here.

The results are almost the same for these four different time measurement techinques.

Looking at our tests we can say that std::chrono might be less reliable than other methods.
Maximum measurement overhead obtained in our experiments was much lower in case of
omp_get_wtime and RDTSCP. Thus, in our opinion when doing very fine-grained measurements
of small pieces of code without use of loops it is prefereable to use different methods than
std::chrono.

Evaluation of various types of for loops

For-loop is a crucial element of programming languagues, concentrating heavy computation in a
single block of code. C++11 introduces a range-based variant, which makes the code simpler and

7

Figure 3: Measured time vs. sleep time

more elegant. In our experiment we wanted to investigate if this and other loop flavours have
different performance. To this end, we were iterating over containers of different sizes and types.
Different. This was combined with various compilers and optimization options..

The table below contains the data that we gathered in our experiment. We chose following
naming convention:

• for_index accesses a container with an integer index,

• for_iterator uses STL's iterators

• for_each uses STL's for_each algorithm

• C++11_range uses C++11's range-based looping

Lambda allows a function to be implemented in the place where it is used. It can also be
encapsulated as an object and be passed as a function parameter or used as a class member. Its
main idea is very similar to lambdas Python. It helps ‘for_each’ function to be more elegant.

Finally, let’s see what range based for-loop is, which actually is based on iterator and helps user
to get out of the complex iterator initialization. We will check whether any optimization is
implemented by compilers on it.

Sample of range based for-loop :

std::vector<int> vec;
for(auto i : vec){

std::cout << i << std::endl;
}

In micro-benchmark of for-loop effeciency. accumulation is used as workload inside of
the iteration. And one note is the result of accumulation should be a temporary variable,
since all workloads for these four benchmarks are the same and compilers will optimize
the operation to actually ignore the calculation. Sample of micro-benchmark with
workload:

double for_range(void) {
double sum=0;
for (auto i : v) {

sum+=i;
}
temp = sum;
return sum;
}

Usually for-loop effeciency will be affected a lot by differenet compilers and
optimization options. So all the results are listed here to show the big picture of for-loop
effeciency.

Container Syntax Size gcc -O2 gcc -O3 gcc- Of

std::vector
for_index 100 95 96 96

for_iterator 100 81 29 29
for_each 100 94 29 29

8

C++11_range 100 91 29 29
for_index 10000 8481 8497 8500

for_iterator 10000 6567 1864 1866
for_each 10000 6577 1857 1857

C++11_range 10000 6563 1859 1871

std::array

for_index 100 81 24 24
for_iterator 100 82 24 24

for_each 100 81 24 24
C++11_range 100 82 35 34

for_index 10000 6500 1521 1540
for_iterator 10000 6499 1517 1543

for_each 10000 6496 1528 1539
C++11_range 10000 6483 2316 2314

C_array

for_index 100 81 24 24
for_iterator 100 82 34 34

for_each 100 81 34 37
C++11_range 100 85 34 34

for_index 10000 6499 2309 2300
for_iterator 10000 6500 2304 2313

for_each 10000 6497 2311 2303
C++11_range 10000 6492 2320 2314

std::set

for_iterator 100 832 637 641
for_each 100 628 639 658

C++11_range 100 635 638 642
for_iterator 10000 102082 91793 93256

for_each 10000 91750 94276 94978
C++11_range 10000 91913 91736 92821

std::list

for_iterator 100 180 179 179
for_each 100 178 181 185

C++11_range 100 180 179 179
for_iterator 10000 23702 23594 23556

for_each 10000 23699 23635 23604
C++11_range 10000 23716 23603 23559

Container Syntax Size gcc -O2 gcc -O3 gcc -Of

std::vector

for_index 100 26 26 26
for_iterator 100 20 20 20

for_each 100 25 25 25
C++11_range 100 20 20 20

for_index 10000 1627 1614 1627
for_iterator 10000 1306 1310 1270

for_each 10000 1285 1269 1273
C++11_range 10000 1299 1264 1274

std::array for_index 100 24 24 24

9

for_iterator 100 82 82 82
for_each 100 53 57 67

C++11_range 100 54 54 55
for_index 10000 1252 1326 1301

for_iterator 10000 6508 6505 6498
for_each 10000 1270 1248 1199

C++11_range 10000 1221 1256 1233

C_array

for_index 100 35 34 34
for_iterator 100 67 67 67

for_each 100 67 67 67
C++11_range 100 95 95 97

for_index 10000 1261 1238 1233
for_iterator 10000 1239 1225 1205

for_each 10000 1227 1237 1200
C++11_range 10000 1235 1198 1199

std::set

for_iterator 100 638 639 638
for_each 100 678 677 676

C++11_range 100 628 635 638
for_iterator 10000 90677 91802 91313

for_each 10000 91657 93469 91659
C++11_range 10000 90974 91969 91432

std::list

for_iterator 100 179 179 179
for_each 100 181 181 181

C++11_range 100 179 179 179
for_iterator 10000 23489 23555 23652

for_each 10000 23494 23559 23651
C++11_range 10000 23485 23555 23644

Container Syntax Size clang -O2 clang -O3 clang -Of

std::vector

for_index 100 94 94 94
for_iterator 100 24 24 24

for_each 100 23 23 23
C++11_range 100 24 24 24

for_index 10000 8489 8497 8495
for_iterator 10000 1261 1263 1271

for_each 10000 1254 1266 1260
C++11_range 10000 1257 1276 1255

std::array

for_index 100 25 27 27
for_iterator 100 34 34 34

for_each 100 24 27 27
C++11_range 100 34 37 34

for_index 10000 1275 1306 1293
for_iterator 10000 1238 1250 1285

for_each 10000 1250 1281 1294

10

C++11_range 10000 1247 1242 1306

C_array

for_index 100 24 24 24
for_iterator 100 24 24 24

for_each 100 24 24 24
C++11_range 100 24 24 24

for_index 10000 8383 8379 8376
for_iterator 10000 1264 1239 1282

for_each 10000 1256 1250 1284
C++11_range 10000 1243 1234 1288

std::set

for_iterator 100 748 654 641
for_each 100 652 743 746

C++11_range 100 652 644 655
for_iterator 10000 95843 92702 92106

for_each 10000 93253 95038 95505
C++11_range 10000 93193 95432 94004

std::list

for_iterator 100 179 183 185
for_each 100 179 181 181

C++11_range 100 179 181 181
for_iterator 10000 23700 23743 23596

for_each 10000 23705 23755 23589

C++11_range 10000 23688 23751 23585

Table 1: Execution times of iteration over containers. Various iteration methods were
chosen over a set of conainers such as std::vector, std::array, std::set, std::list and plain
C array. We ran the same tests on containers keeping 100 and 10000 integers. Execution
time in the array is given in CPU cycles.

This comparison doesn't yield any obvious winner. Direct indexing is the slowest variant in many
cases, though. However, when having a closer look at the data, one can see a couple of interesting
results:

• using iterator with std::array anf gcc is 5x slower than for_each or based-ranged loop,

• increasing the problem size by a factor of 100x makes iteration per element either faster
or slower, depending on the container

• iterating over std::vector is almost as fast as over C array

A related issue is the compiler auto-vectorization for different iteration schemes. We compiled
simple loops with -O3 enabled with three compilers. Subsequently, we ran the binaries and
checked with perf the number of vector instructions. This allowed us to reason about auto-
vectorization in each case, what is shown below.

11

C array std::array std::list std::set std::vector

GCC Vectorized Vectorized Not vectorized Not vectorized Vectorized

ICC Vectorized Vectorized Not vectorized Not vectorized Vectorized

clang Vectorized Not vectorized Not vectorized Not vectorized Vectorized

Table 1: Vectorization of for-loop flavours for different containers and compilers with
-O3 flag.

Evaluation of std::async

In C++11 standard std::async is a template function that spawns threads asynchronously. It
returns a std::future that will eventually hold the result of that function call. It accepts two
execution policies: deffered (lazy evaluation) and async (asyncronous evaluation). In our
experiment we used only the latter. We tried to see when a new thread is created and whether
threads are reused. For this purpose we employed Intel VTune Amplifier.

Sample benchmark:

int len = std::distance(v.begin(), v.end());
int distance = len / thread_num;
double sum = 0;
auto handle1 = std::async(std::launch::async, fsum, v.begin(), v.begin()
+distance);
auto handle2 = std::async(std::launch::async, fsum, v.begin()+distance,
v.begin()+2*distance);
auto handle3 = std::async(std::launch::async, fsum, v.begin()+2*distance,
v.begin()+3*distance);
auto handle4 = std::async(std::launch::async, fsum, v.begin()+3*distance,
v.end());
sum = handle1.get()+handle2.get()+handle3.get()+handle4.get();
return sum;

12

Figure 4: Threads spawning with std::async

In the figure we can see that every call to std::async causes a new thread to be spawned
immediately and there is no thread reuse. The computation starts after a thread is created.

Evaluation of STL algorithms in parallel mode

libstdc++'s parallel mode is a an experimental feature of C++ standard library which allows
running chosen STL algorithms using all available cores. It comes very handy when we want to
run standard operations on standard containers with levereging computing capacity of our
hardware. With our benchmarks we can see that even though multi-threading is used, achieved
performance is worse than expected.

These parallel mode constructs can be invoked by explicit source declaration or by compiling
existing sources with a specific compiler flag.

Out evaluation costited in comparing the excecution times of STL algorithms in sequential mode
and parallel mode. One need to note that not all algorithms are implemented in parallel mode -
the guide (https://gcc.gnu.org/onlinedocs/libstdc++/manual/parallel_mode.html) explains which
algorithms can be employed.

13

Figure 5: Relative speed-up for STL algorithms for std::vector. Sequential execution of the code
compiled with gcc serves as a baseline

Figure 6: Relative speed-up for STL algorithms for std::array. Sequential execution of
the code compiled with gcc serves as a baseline

Figure 7: Relative speed-up for STL algorithms for std::list. Sequential execution of the
code compiled with gcc serves as a baseline

14

One obvious conclusion we can get from these results are std::sort is the best accelerated by
parallel mode. And std::vector and std::array are two containers which benefit most from the
parallel mode, which is related to the data structures that they represent and their implementation.

Conclusions

In this project several features from C++11 have been evaluated with GCC, ICC and LLVM.
From the results we can see that the ease of use does not result in better code performance.
Nevertheless, C++11 includes a handful of new features whose effectivness still might be
investigated. Some of them are: tuples, move semantics, efficiency of different random number
generators, uniqe_ptr performance, influence of -std=C++11 flag on the C++03 code efficiency.
All the benchmarks and results from the report can be found on
https://github.com/wangyichao/CPP11_Benchmarks.

Acknowledgement

Thanks to my supervisor Pawel Szostek. I learnt a lot from him, which is even more than the
project.

Thanks a lot for CERN openlab. It is an amazing platform and gives teenages from all over the
world chance to work together. I think it is the bect summer for me.

15

Figure 8: Relative speed-up for STL algorithms for std::set and std::unordered_set.
Execution times are gathered from a binary compiled with gcc. Serial execution server as
a baseline.

References

1. Intel Corporation. How to Benchmark Code Execution Times on Intel® IA-32 and IA-
64Instruction Set Architectures[EB/OL]. [September 2010].
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-
benchmark-code-execution-paper.pdf#page=31&zoom=auto,139,694.

2. Bjarne Stroustrup. C++11 - the new ISO C++ standard[EB/OL]. [September 5, 2014].
http://www.stroustrup.com/C++11FAQ.html#std-async.

3. Orion Lawlor. Dr. Lawlor's Quick and Dirty C++11 Benchmark Results[EB/OL]. [].
https://www.cs.uaf.edu/~olawlor/2012/c++11/.

4. Alex Allain. Lambda Functions in C++11 - the Definitive Guide[EB/OL]. [].
http://www.cprogramming.com/c++11/c++11-lambda-closures.html.

16

http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-

	Evaluation of selected C++11 features with GCC, ICC and Clang
	August 2014
	Author:
	Stephen Wang
	Supervisor:
	Pawel Szostek
	CERN openlab Summer Student Report 2014

	Project Specification
	Abstract
	Introduction
	Platform
	Time measurement techniques
	Evaluation of various types of for loops
	Evaluation of std::async
	Evaluation of STL algorithms in parallel mode
	Conclusions
	Acknowledgement
	References

