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Abstract—In recent years, use of different sensors connected 

to vehicles is dramatically increasing in order to enhance 
transportation efficiency. The current Big Data technologies are 
predominantly used to store large amount of telematics data 
especially in the cloud, and they are only able to perform simple 
querying for the purpose of reporting. While all the data is stored 
in the cloud-centric datacenters, these telematics systems are not 
capable of exploiting other functionalities offered by advanced 
real-time analytics such as run-time anomaly detection. In this 
paper, we propose an advanced telematics system orchestrated 
upon an edge computing framework in the context of the 
PrEstoCloud (Proactive Cloud Resources Management at the 
Edge for Efficient Real-Time Big Data Processing) project. This 
telematics system is a real-time data-intensive application 
running at the extreme edge of the network for drivers’ behavior 
profiling and triggering run-time alerts. Such functionalities may 
be useful in order to notify stakeholders for example drivers and 
logistic centers on situations where a possible accident may occur 
or attention is required. 
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I.  INTRODUCTION 

Nowadays, vehicle telematics [1] such as fleet management 
systems, vehicle tracking solutions, location-based vehicle 
navigation technologies and traffic information services has 
gained increasing attention in the context of Big Data 
management paradigm. The current vehicle telematics systems 
produce big volumes of multimodal data [2], which is 
predominantly stored in cloud-based datacenters and processed 
by traditional analytics tools. Consequently, vehicle 
management is becoming a highly data-centric business. 

The major challenge in this research area is not in 
collecting and storing the monitoring data, but rather in fast 
extraction of useful information from the data streams and 
triggering automated alerts at run-time to help stakeholders 
(e.g. driver, logistic center, insurance company or vehicle 
owner). In other words, a missing technology in fleet 
management is advanced real-time analytics on telematics data 
streams coming from vehicles and their contexts. Such modern 
solutions may contribute to the road safety, vehicle security, 
fleet business efficiency, logistics optimization, cleaner 
environment, efficient insurance strategies, and so on.  

In the current setups used by traditional analytics tools, all 
actions to manage a vehicle and reduce costs are possible only 
after analyzing sensory data on the server side, typically not in 
real-time. By introducing real-time analytics processed on the 
nodes at the extreme edge of the network [3], and hence fast, 
safe communication with stakeholders such as driver, benefits 
(e.g. accident prevention or cost optimization) would be put to 
the advanced level with additional services enabled, not being 
possible with today’s infrastructure. 

To overcome above problems, this paper presents a new 
telematics system which provides a real-time data-intensive 
computing framework at the extreme edge of the network. The 
proposed edge computing framework is able to observe driving 
dynamics (e.g. acceleration, braking, turning, etc.), perform 
real-time analytics and trigger alerts to drivers and fleet 
managers on situations where new decisions should be made. 
Since not all of the data could be processed on the edge 
component itself, further demanding processing tasks (such as 
long-term storage of sensory data on the cloud and complete 
offline data analytics) would be performed on the cloud side, 
shown in Fig. 1. 

The rest of the paper is organized as follows. Section II 
presents summary of related work supporting data-intensive 
telematics systems. Section III describes the use case. Section 
IV presents the architecture of our proposed edge computing 
approach, followed by implementation in Section V. Finally, 
conclusion appears in Section VI. 

 

Fig. 1. Cooperation of both edge and cloud technologies 

522

2018 42nd IEEE International Conference on Computer Software & Applications

0730-3157/18/$31.00 ©2018 IEEE
DOI 10.1109/COMPSAC.2018.10288



II. RELATED WORK 

Currently, road safety is considered as one of major societal 
issues. There is an estimation that each death on Europe's roads 
results in four persons with permanent injuries (e.g. the brain or 
spinal cord), and eight persons with serious injuries [4]. 
Therefore, telematics systems such as driver behavior 
monitoring and fleet performance management have gained 
increasing attention nowadays. However, in telematics 
applications, data stream processing for real-time analytics is a 
challenging issue since stream Big Data has high velocity, 
large volume and complex data types [5]. 

Current systems able to perform real-time analytics on 
telematics data may employ a set of constraints predefined 
according to previous empirical observations. For example, 
Bergasa et al. [6] proposed a system called DriveSafe capable 
of alerting inattentive drivers. They established three different 
levels (low, medium and high) for acceleration, braking and 
turning operations according to distraction event thresholds. 
Dai et al. [7] also presented an approach for abnormal 
movement detection that uses accelerometer monitoring data 
sensed by a mobile phone to recognize drunk driving patterns 
through violating a set of thresholds. These approaches are 
easy to implement, and they also have a low computational 
complexity. However, these approaches have their own 
intrinsic limitation since defining right, accurate values for 
necessary thresholds used in such systems is critical in order to 
reach a high rate of precision. 

Moreover, various research works [8, 9, 10] have 
implemented machine learning algorithms to detect critical 
driving events such as hard braking and sudden acceleration. 
These approaches are able to provide continuous quality 
improvement in the results. However, they have to be trained 
prior to their use in real-world environments, and hence they 
require historical monitoring data and some time in order to 
converge towards an appropriate driven model. In this work, 
our proposed real-time data-intensive telematics system uses a 
combination of both threshold-based and machine learning 
approaches in order to take advantages of both mechanisms. 

III. USE CASE 

The data generated by vehicles’ sensors (e.g. accelerometer 
and magnetometer, etc.) need to be processed at run-time to 
recognize important driving actions in an instant. This is 
because one of the major causes for vehicle accidents is 
inattention or distraction. In this work, edge nodes deployed in 
vehicles are employed to analyze data at run-time next to the 
location where the sensory data are generated. 

Simultaneously, some of tasks such as highly computing-
intensive analytics on telematics data can be directly forwarded 
to the cloud. In this way, the edge node also operates as 
intermediary to transmit the data to the cloud for further 
analytics, shown in Fig. 2. Moreover in another situation, if the 
edge node cannot appropriately execute computing operations 
(e.g. because it is running out of storage space), computing 
tasks provided on the edge node should be terminated and 
started on the cloud infrastructure. 

 
Fig. 2. Real-time data-intensive telematics system 

A. Edge side 
In this work, an edge node is a platform called MACH 

(Motorhome Ai Communication Hardware), shown in Fig. 3, 
which is developed in the OPTIMUM project [11]. 

Currently, MACH is successfully installed in prototype 
motorhome vehicles of the Adria Mobil Company [12]. 
Therefore, all sensors such as accelerometer and magnetometer 
are connected to MACH at the edge of the network. MACH 
includes one compute module (Raspberry Pi 3 model B [13]) 
and a custom extension (VESNA) [14] which is able to 
communicate with different hardware devices through various 
protocols such as RS232, RS485, LTE, Bluetooth, GPIO, SPI, 
I2C, CAN, LIN, CI-BUS. Raspberry Pi 3 model B is the third-
generation Raspberry Pi which is a powerful credit-card sized 
single board computer with these features: Quad Core 1.2 GHz 
Broadcom BCM2837 64bit CPU, 1GB RAM, 4 USB 2 ports, 4 
Pole stereo output and composite video port, etc. VESNA is 
also a fully flexible, modular, high-performance platform for 
the implementation of Wireless Sensor Networks (WSNs) 
developed by the SensorLab at the Jozef Stefan Institute. 

B. Cloud side 
All MACHs are connected to whether a private or public 

cloud with higher storage and processing capacity. This private 
or public cloud infrastructure provides a long-term storage of 
possibly anonymized monitoring information and performs 
offline data analytics based on actual data and related metadata. 
All machines used in this work on the cloud side belong to a 
non-profit cloud-based infrastructure provider called ARNES 
(the Academic and Research Network of Slovenia). 

 

Fig. 3. Edge computing platform (MACH) which is deployed in the vehicle 
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IV. ARCHITECTURE 

The proposed architecture to run a real-time data-intensive 
telematics system at the extreme edge of the network, shown in 
Fig. 4, includes various components at different layers namely 
Edge Infrastructure Layer, Cloud Infrastructure Layer, Cloud-
Edge Communication Layer, and Control Layer. These 
components shown in Fig. 4 operate as follows. 

A. Edge computing application 
This component is the application which is deployed on the 

edge node. The edge computing framework itself is application 
agnostic in that this framework is not dedicated to a single type 
of software system or purpose [15]. In order to offer a fast 
response time for the service and provide efficient resource 
utilization, the application deployed on the edge node closer to 
the end-users is preferred over a centralized approach using 
faraway cloud-based infrastructures. In our logistic system, 
edge application may provide different services such as real-
time anomaly detection, driver behavior profiling, and so on. 

B. Monitoring Probe running on the edge node 
A set of metrics related to both edge-based infrastructure 

and application deployed on the edge node is measured 
continuously by the Monitoring Probe. Monitoring Probe 
periodically sends the monitoring data in the form of messages 
to the Message Broker from which it can be distributed to any 
other components such as the Autonomic Resource Manager. 
Infrastructure-related metrics are CPU, memory, disk, etc. 
Moreover, application-related parameters present information 
about the situation of the application deployed on the edge 
resource. Monitoring of edge nodes used in the proposed 
telematics solution is critical to achieve efficient resource 
utilization and avoid any issues in delivering provided services. 

C. On/Offloading Agent 
An On/Offloading Agent is installed on every edge 

resource. On/Offloading Agent is responsible for registering 
the edge node in the Cloud and Edge Resources Repository 
through On/Offload Processing component. Moreover, it 
responds to the Mobile On/Offload Processing component’s 
requests for the on/offloading tasks which can be start, stop or 
migration of application between edge nodes and datacenters. 
Such communication between the Mobile On/Offload 
Processing component and On/Offloading Agent is made via 
the Message Broker. 

 

Fig. 4. Proposed architecture for real-time data-intensive logistic system 

D. Cloud computing application 
This component is the application which is deployed on the 

cloud. The capability of the application running on the cloud 
would be using cloud-based infrastructure to run further 
demanding processing tasks such as long-term storage and 
more data processing operations that the edge node may not be 
able to perform. 

E. Monitoring Probes running on the cloud 
A set of metrics related to both cloud-based infrastructure 

and application deployed on the cloud is measured 
continuously by the Monitoring Probe [16]. Monitoring Probe 
periodically sends the monitoring data in the form of messages 
to the Message Broker. 

F. Mobile On/Offload Processing component 
The Mobile On/Offload Processing component provides the 

interface for registration and monitoring of edge nodes by 
communicating with On/Offloading Agent installed on every 
edge node. It also maintains a database called Edge Resources 
Repository to store the current state of all registered edge nodes 
and their features. 

G. Message Broker 
Message Broker is a scalable, central part of the distributed, 

logistic system which has a sender and one or more receivers 
for a single message. It decouples data providers and data 
consumers. Message Broker can be implemented using open 
source solutions such as RabbitMQ [17]. 

H. Autonomic Resource Manager & Cloud and Edge 
Resources Repository 
The Autonomic Resource Manager collects monitoring data 

(sent by Monitoring Probes) about all available cloud resources 
and edge nodes, and submits this information to the Cloud and 
Edge Resources Repository. 

I. Autonomic Data Intensive Application Manager 
This component knows the specifications and the desired 

placement of computing tasks (e.g. data analytics jobs) on the 
cloud. The Autonomic Data Intensive Application Manager is 
capable of recognizing situations where new resources must be 
acquired, or existing resources must be released. There are 
conditions where an edge node is not able to provide 
computing operations. For example if it is overloaded due to an 
increase in the number of sensors connected to the vehicle 
during execution and hence there are no spare cycles or storage 
capacity on the edge resource, or the edge node cannot improve 
the application QoS anymore. In such conditions, the 
Autonomic Data Intensive Application Manager sends 
reconfiguration instructions to the Mobile On/Offload 
Processing component which translates them into platform-
dependent deployment instructions. Then, these platform-
dependent deployment instructions (e.g. start, stop or migration 
of telematics application) will be issued to the On/Offloading 
Agent running on the edge node. 
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V. IMPLEMENTATION AND RESULTS 

The proposed data-intensive telematics system extracts 
important information (such as sudden acceleration/braking or 
aggressive left/right turn) through real-time analytics. In order 
to perform real-time anomaly detection and extract driving 
events from input sensory data at run-time, the pattern 
matching approach [18] has been chosen as the baseline 
method which was innovatively extended in this work to 
diminish computing overhead on the edge node. Our proposed 
new approach, shown in Fig. 5, also considers a set of 
predefined constraints to detect abnormal situations. Using 
such constraints (e.g. thresholds for different metrics such as 
acceleration and magnetic field of vehicle, etc.) to detect an 
abnormal situation reduces the runtime computing overhead. 
This is because the majority of computation will be performed 
only when any of predefined thresholds is violated. Offering a 
low overhead system is a significant requirement in an edge 
computing framework since edge nodes in practice have their 
own resource restrictions such as limited computing power. 

A. Input sensory data 
The input data used by the extended pattern matching 

approach is taken by different sensors such as accelerometer 
and magnetometer, etc. In this work, the LSM303DLHC 
device [19] integrated with MACH is employed to provide 3-
axis acceleration and magnetic field. 

Accelerometer provides measurements of the vehicle's 
acceleration at run-time. In this regard, we focus on vehicle's 
movements along the longitudinal and lateral axes which 
respectively represent forward-and-backward and side-to-side 
movements. Longitudinal acceleration allows us to detect 
vehicle braking and accelerating events. Lateral acceleration is 
also used to recognize left/right turning and lane changing 
events. Magnetometer provides measurements of direction at 
which the vehicle is pointing towards. The data measured by 
magnetometer sensor is applied as an extra indicator of driving 
events in lateral aspect. The accelerometer and magnetometer 
measurements are sampled at the rate of 5 Hz where each 
sample is recorded every 200 ms in order to create a time series 
of data points (e.g. acceleration and magnetic field of vehicle). 

 
Fig. 5. Extended pattern matching approach 

B. Data pre-processing 
Raw input sensory data collected from different sensors 

such as accelerometer and magnetometer should be pre-
processed since the negative effect of undesired noises in 
measurements needs to be smoothed out. To this end, the 
simple moving average method [20] which is a widely used 
approach to smooth out noisy volatility is employed. Moreover, 
a low-pass filter with a 1 Hz cutoff may be used since the raw 
signals could be very noisy due to vehicle interior vibrations. 
Alternatively, the row signals could be cleaned using a Kalman 
filter with a state vector formed by for example three-axis 
components of accelerometer or magnetic field. 

C. Constraints checking 
Constraints database includes all associated conditions 

predefined for driving events that need to be continuously 
checked. For example, an absolute value of acceleration at the 
rate of more than 0.3 G can be considered as sudden 
acceleration/braking event [21]. Or an observation of a change 
in instantaneous direction of heading that is more than 30 deg/s 
may refer to an aggressive left/right turn or aggressive lane 
change [22]. If a speed detector would be used to measure the 
speed of vehicle running on the road, constraints database 
should also consist of road speed limit. It should be noted that 
the minimum time periods during which these values have to 
be exceeded are also determined in this database. 

On occurrence of an identified abnormal situation when 
attention is required, the Dynamic Time Warping (DTW) [23] 
algorithm as a machine learning processing task should be 
performed in the next step for the fast extraction of required 
information. 

D. DTW procssing 
Reference patterns stored in a separate database should be 

predetermined for all driving events. In order to construct 
reference patterns for each driving event (such as sudden 
acceleration/braking or aggressive left/right turn), sufficient 
data set should be collected in advance before the system starts 
working. In other words, a reference pattern needs to be made 
for each driving event for the pattern matching algorithm. 
Generated reference patterns [18] are then employed as 
templates to match incoming signals taken from sensors such 
as accelerometer, shown in Fig. 6, Fig. 7 and Fig. 8. 

 

 
Fig. 6. Reference pattern for sudden brake 
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Fig. 7. Reference pattern for sudden left turn 

 

 

Fig. 8. Reference pattern for sudden right turn 

 

The DTW algorithm is applied to find patterns in time 
series of data points. A DTW-based similarity checking 
mechanism measures the difference between two time series, 
namely the incoming sensory data and the reference patterns. 
DTW is an algorithm to provide a similarity measure between 
two signals that also allows for stretched and compressed 
sections of two given sequences. In other words, the main 
advantage of DTW is its ability to automatically cope with time 
deformations of two signals corresponding to movements 
performed at two different speeds. For example, similarities in 
movements could be detected, even if the vehicle is moving 
faster or slower than the reference pattern, or if there are 
accelerations and decelerations during the course of an 
observation. 

E. Triggering alerts 
This step is aimed at reacting on recognized events and 

reporting actionable alerts in real-time. Fig. 9 shows the real-
time anomaly detection scenario by which in addition to the 
driver, these alerts can be sent to other entities such as logistic 
center, vehicle owner, insurance company, etc. 

All stakeholders such as logistic center and vehicle owner 
are able to access to the graphical interface (shown in Fig. 10) 
which represents real-time information about current alerts and 
other data associated with the vehicle’s status, acceleration 
history, driving direction, current location, etc. 

 

Fig. 9. Capablity of triggering run-time alerts to different stakeholders of 

telematics system  

 

Fig. 10. Graphical interface showing real-time alerts and other information 

 

Fig. 11. Driver profiling 

F. Driver profiling 
Different characteristics of drivers can be considered to find 

out how they drive on the road, such as the rate of braking, 

vehicle acceleration, lane change patterns and so on. For 

example, it should be noted that an unsafe driver performs 

hard acceleration, sudden braking and steering maneuvers 

more frequently than a safe and also moderate driver. All these 

features performed by the driver can be analyzed and allow us 

to form a profile which represents the driver's behavior. 

Drivers’ profiles stored in a specific database may be applied 

to show useful information on how safe their driving could be, 

how economic they drive in terms of fuel consumption, how 

much they care about vehicle maintenance, how efficient their 

driving is in terms of environmental impact, etc. Such a 

system can provide feedback to different stakeholders such as 

526



driver and logistic center. Moreover, driver profiling scenario 

can also be used to generate whether a training system or an 

award system which may motivate drivers to keep trying to 

attain high standards of driving excellence (see Fig. 11). 

VI. CONCLUSION 

This paper presents a new telematics system in the context 
of advanced real-time data-intensive analytics at the extreme 
edge of the network. This system extracts important 
information through real-time analytics on transport-logistic 
data streams (e.g. acceleration, magnetic field of vehicle, etc.) 
coming from different sensors. This new system is able to 
trigger alerts at run-time and notify stakeholders such as drivers 
and logistic centers on situations where new decisions should 
be made or attention is required (e.g. dangerous maneuvering, 
sudden lane change, etc.). Moreover, this telematics system 
orchestrated upon edge computing framework proposes a 
method for drivers’ behavior profiling, where the major 
outcome is detailed understanding of their behavior with 
possible feed-back loop to improve drivers’ activities. In this 
case, results as driver’s profile will be provided back to the 
driver through in-vehicle screen (e.g. via a tablet or mobile 
phone) as well as to the logistic center (e.g. via a Web-based 
graphical interface showing real-time alerts and other 
information). 

We have begun extending our proposed method towards 
using visual information processing. The primary scenario will 
be inclusion of visual information, where the major outcome to 
recognize and detect situations is not possible with the rest of 
the in-vehicle sensory information. In particular, the most 
interesting scenario will be the security of a vehicle which is 
often undetectable due to the limited observation power of 
traditional methods. However, introduction of one or more 
cameras with a real-time video feed to the edge will 
significantly add complexity to the use case. 

Our work is included in the advanced software solution of 
an ongoing European Horizon 2020 project: PrEstoCloud [24]. 
The main objective of the PrEstoCloud project is to create 
substantial research contributions in the cloud and edge 
computing system environments and real-time Big Data 
technologies in order to provide a dynamic, distributed 
architecture for proactive resource management. To this end, 
the PrEstoCloud solution reaches the extreme edge of the 
network for efficient Big Data processing. 
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