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Why and when | got interested In this topic

T. Blake at al., Flavours of Physics: the machine learning
challenge for the search of v — ppp decays at LHCH
(2015, unpublished). https://kaggle2.blob.core.windows.net/
P competitions/kaggle /4488 fmedia/lhcb_description_official.
pdf (accessed 15 January 2018)
4 Weight=0.5
R ey The 2015 LHCb Kaggle ML Challenge:
N VS - - Develop an event selection in a search for t—>puup
g Weight=1.5
o s | ML binary classifier problem
i/ / / / WW y TP . . .
o A, » - Evaluation: the highest weighted AUC is the winner

Figure 3: Weights assigned to the different segments of the ROC curve for
the purpose of submission evaluation. The x axis is the False Positive Rate
(FPR), while the y axis is True Positive Rate (TPR).

* First time | saw an Area Under the Roc Curve (AUC)

* My reaction:

—What is the AUC? Which other scientific domains use it and why?
—I|s the AUC relevant in HEP? Can we develop HEP-specific metrics?
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Overview —the scope of this talk

* Different domains and/or problems — Need different metrics
—Always keep your final goal in mind

* Focus on a specific HEP example: event selection to minimize
statistical error A€ in an analysis for the point estimation of @
—Do not focus on: tracking, systematic errors, trigger, searches...

* Whenever you take a decision, base it on the minimization of 46
—Metrics for physics precision — final goal: minimize A6
—Metrics for binary classifier evaluation — (is the AUC relevant?)
—Metrics for binary classifier training — (are standard ML metrics relevant?)
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Training, Evaluation, Physics:
one metric to bind them all?
Example: event selection using a Decision Tree for a parameter fit
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Classifier output D
TRAINING < EVALUATION <«
- (either) Gini impurit - ROC Curve (Receiver Operating Characteristic) PHYSI_C_S
Economics: inequa){ity Signal detection: radar detection - Precision o
m;/ersity Psychophysics: sensory detection Parameter estimation:
] (O—QMr) Shanﬁon nformation - AUC (Area Under the ROC Curve) measurement error 46

Radiology, Medicine: diagnostic accuracy

Information theory: entropy

Proposal: use metrics based on Fisher Information in all three steps
(Fisher Information about & ~is 1, =1/(46)?> — maximize | ,to minimize 46)
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weamuinecooane CHEP plenary this morning

.....
o
-

& os | will argue against AUC's for evaluation in HEP
%w &
.Shos X
Ny What does a classufuer do?
3 iy ) = | _'_ " / i & y '
03
0.2
B —
Background eff.
score
ML playground F
R ViR 7 The classifier “compresses” the two multidimensional

“blobs” maximising the difference, without sideallm
any loss of information

ML in HEP , David Rousseau, CHEP 2018, Sofia 9

| will discuss the retention of
Fisher information in classifiers

data

| will describe one problem in analysis statistical optimization

ML in HEP , David Rousseau, CHEP 2018, Sofia 39
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Binary classifier evaluation — reminder

Discrete classifiers: the confusion matrix

‘ B'nlarV decll(smn: . true class: Positives true class: Negatives
signal or backgroun (HEP: signal Stot) (HEP: background Btot)
PPV = TPT—fFP classified as: positives True Positives (TP)
P (HEP: selected) (HEP: selected signal Ssel)
TPR= TP PN
g TN oo classified as: negatives True Negatives (TN)
TN EP (HEP: rejected) (HEP: rejected bkg Brej)
Stot
Prevalence w5 = Seos + Boor

Scoring classifiers: ROC and PRC curves

1 1
. = s
Continuous output: S 0.8} . 208 .
g . 2 S
probability to be signal 206/ ROC 1 S0 .
: :
. .. c 0.4} - =04 —
Vary the binary decision 2 5
. — -+ Btot = Stot a -+ Btot = Stot X
by varying the cut & 0.2-—— Btot = Stot * 10 Insensitive to | > 02— Btot = Stot *10 ., g
on the Scoring classifier L RSTIRY Btot = Stot * 100 prevalence! g | e Btot = Stot * 100 T
! [ e ) A N R B KALLTE TP
0O 0.2 0.4 0.6 0.‘8 1 00 0.‘2 O.|4 0!6 0.|8 1
FPR (background efficiency) TPR (efficiency or recall)
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Binary classifier evaluation in other domains

Medical Diagnostics (MD) — e.g. diagnostic accuracy for cancer
—Symmetric: all patients important, both truly ill (TP) and truly healthy (TN)

—ROC-based analysis (because ROC insensitive to prevalence)

« AUC interpretation: probability that diagnosis gives greater suspicion to a
randomly chosen sick subject than to a randomly chosen healthy subject

Information Retrieval (IR) — e.g. find pages in Google search
—Asymmetric: distinction between relevant and non-relevant documents

—PRC-based evaluation: precision and recall (= purity and efficiency in HEP)
* Single metric: e.g. Mean Average Precision ~ area under PRC (AUCPR)

1

1 1
Oversimplification: |AUC = / €sdep = 1—/Ebdes (MD) vs. (IR) AUCPR:/pdeS
0 0 0
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Evaluation: (main) specificities of HEP

1. Qualitative asymmetry: signal interesting, background irrelevant

—Like Information Retrieval: use purity and efficiency (precision and recall)
* True Negatives and the AUC are irrelevant in HEP event selection

2. Distribution fits: several disjoint bins, not just a global selection
—Analyze local signal efficiency and purity in each bin, not just global ones
—Frequent special case: fits involving distributions of the scoring classifier

3. Signal events not all equal: they may have different sensitivities
—Example: only events close to a mass peak are sensitive to the mass

lllustrated in the following by three examples (1=FIP1, 1+2=FIP2, 1+2+3=FIP3)
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Evaluation: Fisher Information Part (FIP)

- Evaluation of an event selection from its effect on the error A8
—Compare to “ideal” case where there is no background

 FIP: fraction of “ideal” FI that is retained by the real classifier
—Range in [0,1] = 0 if no signal, 1 if select all signal and no background
—Qualitatively relevant: higher is better - maximize FIP to minimize A8

—Numerically meaningful: related to AB

 For a binned fit of 6 from a (1-D or multi-D) histogram:
—Consider only statistical errors — sum information from the different bins

m 2
1 [/0S;
(real classifier) Z €ipi X S. (89)
FIP — 20 == :

I{gideal classifier) i 1 /9S; 2
L S; \ 00 Remember from the previous slide:

1. Qualitative asymmetry: use € and p (as in IR)
2. Distribution fit: need local € and p; in each bin

3. Signal events not all equal: need sensitivity %%
L
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[FIP1] Cross-section In counting experiment

» Counting experiment: measure a single number N,
—Well-known since decades: maximize £.,*p to minimize statistical errors

* FIP special case:

—Counting experiment (1 bin) — global signal efficiency and purity

. . ce 1 0S; 1
—Cross-section fit 6=0g, — all events have equal sensitivity Ea_al =—
i S S

m 2
1 /05,
(real classifier) Z €ipi X § (69)
FIP = 20 = 1

Iéidea,l classifier) m o4 0S; 2
2 Si ( 59)

FIP1=¢.*p
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Examples of issues in AUCs — crossing ROCs

« Cross-section measurement by counting experiment
—Maximize FIP1=¢,*p — Minimize the statistical error Ac?

« Compare two classifiers: red (AUC=0.90) and blue (AUC=0.75)
—The red and blue ROCs cross (otherwise the choice would be obvious!)

» Choice of classifier achieving minimum Ac? depends on S, /By,
—Signal prevalence 50%: choose classifier with higher AUC (red)
—Signal prevalence 5%: choose classifier with lower AUC (blue)
—AUC is irrelevant — and ROC is only useful if you also know prevalence

1 1

1
|§;g;=gi§g*|§;g;¢§;9;; I I 5tot=0.05*!5t0t+Bt0t!|
Z | — MAX=0.684 (RED) 2 | — MAX=0.400 (RED)

_ 0.8 '30-3— --- MAX=0.500 (BLUE) '30-3* --- MAX=0.499 (BLUE) FIP1 | AUC
g g BLUE:
S 06 Pt . 206 2 06 Range
A RED: | ¢ g % LOWEST e 091] YES | YES
E HIGHEST | 5 | .. e s 2 po? in [0,
204 ROC 504 Eff¥Pur &o04- EfffPur -~ Higher
E AUC : RED: 2 2 is better Vs

02 £ 02 LOWEST | £o2- :

— AUC=0.900 (RED) | & Ao? £ . Numerically YES
. | —T- AUCI=D.750 I(BLUE) . | | | . | — meanigful
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
FPR (1 - background rejection) TPR (signal efficiency) TPR (signal efficiency)
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Optimal partitioning in distribution fits

 Does information |, increase Iif | split a bin into two (n — n +ng)?

. . 10 10
—Information gain is Al, = (pL—ﬂ — SR) w LTR

s; 00 PRS, SR 00 nrp+ngr

* Partition events using optimal binning variables (- two examples)

—For cross-sections (_g = i) . separate bins with different p;, (—>FIP2")
—For a generic parameter 0 : separate bins with different p, _a_zi (=“FIP3”)

* Practical ML consequences (focus on cross-section example):
—Use the scoring classifier (i.e. ~p !) to partition events, not to reject them
—Train the scoring classifier to maximize the total Fisher information of the

histogram binning, i.e. train it to maximize its partitioning power
» Use Fisher Information as a node splitting criterion for decision tree training
* Use the decision tree more as a regression tree than as a classification tree

A. Valassi — Fisher information metrics CHEP 2018 — 10t July 2018 12/17




[FIP2] cross-section fit on the 1-D scoring
classifier distribution — evaluation

* FIP special case

. 1 9s; 1
—Cross-section: constant = —i = —

s, 005 O
—Fit on all events: £=1 in all bins
—Fit scoring classifier: use ROC and prevalence to determine purity p,
* Region of constant ROC slopeiS//egion of constant signal purity

=
o

>
e 0.8 de: proportional to
:> FIP2 — w #signal events in bin
|
£ 0.6 de /de,: related
E to purity in bin
c 0.4
1 1 o ROC
Compare FIP2 to AUC: |AUC = / adey =1 f pde, a
0 0 o 0.2
o
|—
0.0 I I

| I
0.0 0.2 0.4 0.6 0.8 1.0
FPR (background efficiency)
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[FIP2] cross-section fit on the 1-D scoring
classifier distribution — training

* Is there a gain if | split a node into two (n — n +ng)?
—Same question as in optimal partitioning: do | gain by splitting a bin?

» Gain depends on “impurity” function H(p): 4 =—niH(pr) —nrH(pr) +nH(p)

—two standard choices: Shannon information (entropy) and Gini impurity
—| suggest a third option: Fisher information I;_about the cross-section o

 Surprise: different functions, but Gini and Fisher gains are equal!

—— Negative Entropy

(stnr — sgnL)?  Adgini 1.0
— —— 2 * Negative Gini

nL nR (TI,L + TLR) 2 05 —— Fisher Information about o;

AFisher =

—So0, Gini is OK for cross-sections (or searches?)
. .- . . . . 0.0 Gini, Entropy: symmetric
—But more intuitive physics interpretation for Fisher Fisher: asymmetic

05 (only the signal is relevant!)

—H(pi)

—No practical gain here, but important principle
 And proof-of-concept for generic parameter 6 0% o2 o4 o6 o8 10
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[FIP3] generic parameter fits including the
scoring classifier distribution — work in progress

* Not a cross-section, e.g. a coupling fit: signal events not all equal
—[FIP2] Fit for o, — should partition events into bins with different p,

—[FIP3] Fit for 8 — should partition events into bins with different p, 195

s, 00

» Example: 2-D fit for 8 of the p and =2 distributions
1 0s

—Train a regression tree for T (on MC weight derivative) using signal alone
10s

—Train a regression tree for p using signal (weighted by gﬁ) and background
—Use Fisher Information about 6 as the gain function in both cases

Boundary between classification and regression even more blurred
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Software technicalities

* | use Python (SciPy, iminuit, bits of rootpy) on SWAN at CERN
—Thanks to all involved in these projects!

« Custom impurity not available in sklearn DecisionTree’s
—Planned for future sklearn releases (issue #10251 and MR #10325)?

—I implemented a very simple DecisionTree from scratch, starting from
the excellent ICSC notebooks by Thomas Keck (thanks!)

* | plan to make the software available when | find the time...
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https://github.com/scikit-learn/scikit-learn/issues/10251
https://github.com/scikit-learn/scikit-learn/pull/10325
https://github.com/thomaskeck/MultivariateClassificationLecture

—H(p)

A paper will be on arxiv
soon with all details

Conclusions and outlook
* Fisher Information: one metric to bind them all

1.0 1.0 £ —
—— Negative Entropy o 2 106 Fit 0,=0.9987+0.0122 fb
—— 2* Negative Gini = H — expected error from FIP2: 0.0122
—— Fisher Information about o, Y o8- ides =} Il Expected signal (N\=10000)
0.5+ 5 ' © 105 B Expected backgroukd (N=30000)
o Tder o & Observed (N=3976
&£ 0.6 o
] n 10
00 & s & ¢
g 0.4+ T 2 10° FIP2=0.668
@ ROC des
0.5+ _ FIP2 = | ————— 2
x 0.2 14 L= den 10
|_ 0 s d,Es
-1.0 ‘ : | ‘ 0.0 L | T | I 10"
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
pi FPR (background efficiency)
0.0 0.2 0.4 1.0

PHYSICS
- Fisher Information
= measurement error

» Use scoring classifiers to partition events, not to reject them
—The boundary between classification and regression is blurred

- Fisher Information
= measurement error

- Fisher Information
= measurement error

» We must and can define our own HEP specific metrics
—| described one case, there are others (searches, systematics, tracking...)
—Focus on signal. Describe distribution fits. Signal events are not all equal.
—Can we please stop using the AUC now? ©

o)
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Backup slides
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Backup — statistical error in binned fits

« Data: observed event counts n; in m bins of a (multi-D) distribution f(x)
—expected event counts y, = f(x;,0)dx depend on a parameter 8 that we want to fit
—[NB here f is a differential cross section, it is not normalized to 1 like a pdf]

« Fitting 0 is like combining the independent measurements in the m bins

—expected error on n; in bin x;is An; = \/y; =/f(xi,8) dx
—expected error on f(x;,0) in bin x; is Af = f * An/n, = Vf / dx

. ~ . . 1 af\? 1 8f2\/cﬂz of\? dz
—expected error on estimated 6; in bin x;Is 57:— = (%) N (—9) (Tf) = (@) =
2

(bin dx)

— expected error on estimated 8 by combining the m bins is (ﬁ) /% (ﬁ)Qdm

* A bit more formally, joint probability for observing the n;is P(:¢) = ][ —-
— Fisher information on 6 from the data available is then =

m

olog Pns0)]” & N~ L (am T l(af)
Ig_E[ % } l.e. I@—Eyé((?g) _ff o

— The minimum variance achievable (Cramer-Rao lower bound) is (a6 = var(d) >

6
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Optimal partitioning — information inflow

- Information about 6 in a binned fit » =-3"2 (%)

» Can | reduce AB by splitting bin y; into two bins? v = w: + 2

@ . . " ‘g 1 /0w \? 1 [8z:\° 1 AN w;+z;) 2 _ (u"é” z)—“'h)‘d
—Is the “information inflow” positive? (%) = (%) o ("% ) = s 20

. . . ~ . 1 Jw; 1 0z
—information increases (error AB decreases) if .7 72

1 8@,-‘ 1 651'

* In the presence of background: |7 -»5 %

i - : - 1 0s 1 0s
—information increases if pw—a—gv * Py ——=
s, 00

a
—therefore: try to partition the data into bins of different p, Sl ase'
- for cross-section measurements, Si@f - gi split into bins of dlfferent P

« Two important practical conseguences:
—1. use scoring classifiers to partition the data, not to reject events
—2. Information can be used also for training classifiers like decision trees
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More detailed slides

(Draft uploaded on July 2"9)
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Training, Evaluation, Physics:
one metric to bind them all?
An oversimplified example: Decision Tree for a cross-section fit
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—— 2 * Negative Gini impurity ROC
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o
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o

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1

pi [Signal purity in node i] ° FPR (background efficiency) o o2 o o o' s
Classifier output D
TRAINING EVALUATION
- (either) Gini impurity - ROC Curve (Receiver Operating Characteristic) PHYSI_C_S
Economics: inequality Signal detection: radar detection - Precision -
Ecology: diversity Psychophysics: sensory detection Parameter egtimation:
- (or) Shannon information - AUC (Area Under the ROC Curve) measurement error
Information theory: entropy Radiology, Medicine: diagnostic accuracy

Different problems need different metrics — Always keep the final goal in mind!
Main idea of this talk: use physics precision (Fisher information)
also for evaluation and training: MINIMIZE MEASUREMENT ERRORS!
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Limited scope of this talk

* Different problems also within HEP require different metrics

* In this talk, | will focus on one specific problem:
—Optimize event selection to minimize statistical errors in point estimation

 Three specific examples (I will focus on the second one)
—[FIP1] Total cross-section measurement in a counting experiment
—[FIP2] Total cross-section measurement by distribution fit

—[FIP3] Generic model parameter fit (e.g. mass/coupling) by distribution fit
* Even more specific: FIP2 and FIP3 use fits of the scoring classifier distribution
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Binary classifier evaluation — reminder

Discrete classifiers: Binary decision: Scoring classifiers:
the confusion matrix signal or background ROC and PRC curves
Continuous output:
true class: Positives true class: Negatives probability to be signal
(HEP: signal Stot) (HEP: background Btot)

Vary the binary decision by varying
the cut on the scoring classifier

classified as Positives True Positives (TP)
(HEP: selected) (HEP: selected signal Ssel) 1 |
classified as Negatives True Negatives (TN) E‘ 0.8} -
(HEP: rejected) (HEP: rejected bkg Brej) <
£ 06 ROC |
g
5 0.4 =
P TP P TR TS Different domains n ---. Btot = Stot N
(Sse) Sscd | (Bued LG B - Focus_ on different_ concgpts & 0.2 —— Btot = Stot * 10 Insenslmve tlo |
FN RN TN BN | TN — Use different terminologies I Btot = Stot * 100 prevaience:
; RN R ; | | \

Examples from three domains:
- Medical Diagnostics (MED)

FPR (background efficiency)

Mr. A. hav ncer?
TPR:% PPV:% TNR:%:l—FPR Ble= ave cance l— gy -~ W
+ + - - Information Retrieval (IR) 'g
Google documents about “ROC” ‘- 0.8 -
HEP: “efficiency” HEP: “purity” HEP: “background rejection” - HEP event selection (HEP) 8 *
— .
S S . Ba select Higgs event candidates ao06- PRC X
“7 S "7 S+ Ba 7 Bu N ‘
204 =
e
3 pr—
IR: “recall” IR: “precision” — o ---+ Btot = Stot
= 0.2——— Btot = Stot * 10
o
MED: prevalence a | e Btot = Stot * 100
MED: “sensitivity” — MED: “specificity” S, 0 l | ‘ ISLILIVIY
tot 0 0.2 0.4 0.6 0.8 1

Ty = ——————
Stot + Btot

TPR (efficiency or recall)
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Binary classifier evaluation in other domains

Medical Diagnostics (MD) — diagnostic accuracy
—Symmetric: all patients important, both truly ill (TP) and truly healthy (TN)

—Traditional acc= v 1w Was too sensitive to prevalence: moved to ROC
* But now ROC is questioned as too insensitive to prevalence (imbalanced data)
—ROC-based analysis: sensitivity and specificity
» Accuracy metric: e.g. AUC = probalbility that diagnosis gives greater suspicion
to a randomly chosen sick subject than to a randomly chosen healthy subject

Information Retrieval (IR)
—Asymmetric: distinction between relevant and non-relevant documents

—PRC-based evaluation: precision and recall
* Single metric: e.g. Mean Average Precision ~ area under PRC (AUCPR)

1 1 T
Oversimplification: | AUC :/ESdEb = 1—/6,50555 (MD) vs. (IR) AUCPR,:fpdES
0 0 0
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Evaluation: (main) specificities of HEP

1. Qualitative asymmetry: only the signal has interesting physics
—HEP event selection is like Information Retrieval: background is irrelevant
* True Negatives and the AUC are irrelevant in HEP event selection
—Classical evaluation metrics: signal efficiency and purity (the PRC in IR!)
*ROC alone is not enough — also need prevalence to interpret the ROC

2. Distribution fits: several disjoint bins, not just a global selection
—Analyze local signal efficiency and purity in each bin, not just global ones

—Counting experiments (e.g. FIP1) vs. distribution fits (e.g. FIP2, FIP3)
» Special case: fits involving distributions of the scoring classifiers

3. Signal events not all equal: they may have different sensitivities
—Example: only events close to a mass peak are sensitive to the mass
—Total cross-section (e.g. FIP1, FIP2) vs. generic parameter fit (e.g. FIP3)
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Fisher Information Part (FIP)

« Consider a measurement 6 of one physics parameter 6
—F|Sher |nf0rma'[i0n abOUt 9 |S 1/Aé2 (keep this simple, not formal)

- Evaluate an event selection from the effect on the error A8
—Compare to an “ideal” case where there is no background

 FIP: fraction of “ideal” FI that is retained by the real classifier
—Range in [0,1] - 0 if no signal, 1 if select all signal and no background
—Qualitatively relevant: higher is better - maximize FIP to minimize A8

—Numerically meaningful: related to AB — (gt casifen2 o (Afideal lasiten) 2

* For a binned fit of © from a (1-D or multi-D) histogram:
—With expected event counts in i bin y, = €*S, + b,= £*S./ p,
—Consider only statistical errors — sum information from the different bins

O i emember from the previous slide:
I(real classifier) Z €ipi X S; (69) P

FIp — 2o _ =l 1. Only signal is interesting: background appears via p,

gydeal clessifier) Em:; (@)2 2. Distribution fit: need local ¢; and p;

7 Si 00

. .. 1058,
3. Signal events are not all equal: need sensitivity Ea_el
l
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[FIP1] Cross-section In counting experiment

» Counting experiment: measure a single number N,

—Well-known since decades: maximize £.,*p to minimize statistical errors

Nmeas - E,EbO'b 1 1 1 85231
s )meas — = —L sP = So sP =
(0) Les - (Acy)?2 o, cspP o2 tot€sp .

1
Jf Ssel + Bsel

* FIP special case: FIP1 =g ,*p
—Counting experiment — global signal efficiency and purity

—Cross-section fit =0, — all events have equal sensitivity Si%f —gis
= 1 (9S)\°
I(real classifier) Z €ipi X E (W)
FIP = gdeal classifier) == m 2 - FIP1 = 8s.kp
7 Z i (55}')
£ S;\ 06
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Examples of issues in AUCs — crossing ROCs

« Cross-section measurement by counting experiment
—maximize FIP1=g,*p — minimize the statistical error Ac?

« Compare two classifiers: red (AUC=0.90) and blue (AUC=0.75)
—The red and blue ROCs cross (otherwise the choice would be obvious!)

» Choice of classifier achieving minimum Ac? depends on S, /B,
—Signal prevalence 50%: choose classifier with higher AUC (red)
—Signal prevalence 5%: choose classifier with lower AUC (blue)
—AUC is irrelevant — and ROC is only useful if you also know prevalence

=
-

T I = T
: “-'. : Stot=0.50*(Stot+Btot) Stot=0.05*(Stot+Btot) ‘
P —— ToyMod MAX=0.684 —— ToyMod MAX=0.400

- B e . . ===+ SigDet MAX=0.500 ===+ SigDet MAX=0.499
208 Et : =081 BkgDet MAX=0.666 308 ... BkgDet MAX=0.005 1 FIP1|AUC
= St . T RANDOM MAX=0.500 E RANDOM MAX=0.050
2 £ S Ran
Sosf . RED: Sos- RED: X %os BLUE: . Sy | YES|YES
A : : § in
> S HIGHEST ROC 2 |LOWEST < . .- S |LOWEST .- Eff*Pur - [0,1]
g ] g (YWD Al £ 20
G 0.4l : . Loal o | Loal - - ngher
g 5 e g P ' is better
o —— ToyMod AUC=0.900 o T g : i
g 02 --. SigDet AUC=0.750 F 0.2 e Fo2p \ 7 Numerlca”y

----- BkgDet AUC=0.750 e Eff*Pur H YES

RANDOM AUC=0.500 S N B T, mean'ngI
% 02 04 06 08 1 % 02 03 0.6 08 O 3 B w— 08 1

FPR (1 - background rejection or 1 - specificity) TPR (efficiency) TPR (efficiency)
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Optimal partitioning — information inflow

» Does z-Y; (%) increase if | split y; into two bins? v =w: + =

—Informatlon increases and error AB decreases if f% = ‘;’Z
—In the presence of background, AB decreases if pwias—w #* Py Sl %Sg
14
* Hence: try to partition the data into bins of different p; — ;e'

—For cross-section measurements, ;o' = - : split into bins of dlfferent o;

* As the scoring classifier represents p, fit its distribution! (next slide: FIP2)

« Two important practical consequences:
—1. use scoring classifiers to partition the data, not to reject events
—2. Information can be used also for training classifiers like decision trees
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[FIP2] cross-section measurement by fitting
the 1-D scoring classifier distribution

a5;
1< cal classifier) ZP S(BB)

* FIP special case o prren 5
—Cross-section: constant ;- = } S e - Zimt s2/ni _ S pisi
—Fit on all events: €=1 in all bins 2imt Si iz Si

—Fit the scoring classifier' use ROC™ and prevalence to determine the
local purity s =5 oy IN a bin with s; = St des

ttttt

* Region ot constant ROC slope is a region of constant signal purity

Lod
€g 1.0 .
—) |FIP2 = = -
1 1—7s dep > _
0 —I_ T dE c 0.8 deg: proportional to
- - Q #signal events in bin
|9
1 1 E 0.6 de//de,: related
Compare FIP2 to AUC: |AUC = / edey, = 1—/ epdes = to purity in bin
0 0 c 0.4
[®)]
o
S x 0.2
*Technicality (my Python code): convert ROC to convex hull = Z. : foc &
- ensure decreasing slope, i.e. decreasing purity goo | 0.0
- avoid staircase effect that would artificially inflate FIP2 el " 0.0 0'2 0'4 0|6 OIB 10
bins of 100% purity: only signal or only background) BT R ' ' ' o :
( ' O o o 1 FPR (background efficiency)
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FIP2 for training decision trees

* Decision Tree — partition training set into nodes of different p,
—The best split (n,s)=(n_,s,)+(Ng,Sg) MAXIMIZES A— _y; H(p;) — nrH(pr) + nH(p)

« Current metrics are Gini and entropy: add Fisher information!
—negative Gini impurity — — _, 5,y = n,x[~2p:(1 — p1)]
—Shannon information —> _niH(p:) = ns x ps logs pi + (1 — pi) loga(1 — pi)]
—Fisher information on o5 — ., H(p) = nix[p?] L0
* Functions look different, but (moduio a constant factor)... g 40
—... information gain is the same for Fisher and Gini!

2 2 2 2
s s sp + sg SLNR — SRNL
Apicher L R ( ) ( )

nL nNR nr + ng nrngr(nr + ng)

Acini SL SR SL+ SR e 00 02 04 06 08 10
——=-sp(1——)=sr(1———)+(se+sr) |l — ———— | = AFisher : : : : : :
2 nr, ng nr +ng pi

 But interpretation is clearer for Fisher: reduce the error on the fit
1 651

—And this is a proof-of-concept for FIP3: split into nodes of different p; — 520

Technicality: user-defined criteria for DecisionTree’s will only be available in future sklearn releases
— | implemented a DecisionTree from scratch, reusing the excellent iCSC notebooks by Thomas Keck (thanks!)
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https://github.com/thomaskeck/MultivariateClassificationLecture

Limits to knowledge

* FIP2 range is [0,1] — but it does not mean that 1 is achievable
—1 represents the ideal case where there is no background

* In some regions of phase space, signal and background events

may be undistinguishable based on the available observations
—There is a limit ROC which depends on the signal and background pdf's
—There is a limit FIP2 which depends on prevalence and the limit ROC

« Example — toy model, you know the real pdf's and prevalence
—See next slide about overtraining
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0.8
=
9
c
a
5]
£ 0.6
T
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c
204
<
g TRAINING
0.2 100 training sets
training set size:
100 sig, 300 big
0.0 T T T
0.0 0.2 0.4 0.6 0.8 1.
FPR (background efficiency)
10 TMID03 - FIM RandomForest

TM3003

FIM_RandomForest

TMID0

AUC (limit=0.9107)

FIM_Random¥arest

Overtraining

« Using the same metric for training and evaluation also
simplifies the interpretation of overtraining

THzDO3

FIP2 (limit=0.6830)

FIM_RandomForest

« Example: toy model where

=== 0.8743 mean (0.0087 std)

= 0.6324 mean (0.0133 std)
[min, max] = [0.592, 0.660]

50~ mmm 0.9711 mean (0.0106 std) 20 = 0.8198 mean (0.0364 std)
£ [min, max] = [0.942, 0.991] £ [min, max] = [0.731, 0.902]
a a
S 40 | 2
=] : o
= ; S 15
x e you KNnow tne real
430 H o
a H 8 H Rt
5 : $ 10 i -
> H > : ~—~
@ 20 : o : Rl
=¥Y-ou_know the(
104 100 training sets : 5 100 training sets ' ~"~—_~_~- ",—'
training set size: H training set size: H ,—'“"~-
100 sig, 300 bkg 100 sig, 300 bkg Y kn
0 T T T 0 T T Ou” OW e ‘
] 0.0 0.2 04 0.6 0.8 10 0.0 0.2 0.4 0.6 —v" -
AUC FIP2 -
TMID03 - FM RandomForest FIM_RandomForest .
o AUC (limit=0.9107) 50 FIP2 {limit=0.6830)

OU may trace back every
increase to one node split

—You may study the effects of

“% 60— [min, max] = [0.846, 0.891] -g
= 9 S 40
- 3 50 5
g ] o
9 0. = P -
£ 840 830 -
s @ 9 -
e € £t ="
= 230 L=
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-
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-
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0.0 0.2 04 0.6 08 Pt 0.0 0.2 04 0.6 .0 0.0 0.2 0.4 0.6
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[FIP3] parameter fits including the scoring
classifier distribution —work in progress

* FIP2 for o fits: one metric for training, evaluation, physics
—FIP3: one metric for training, evaluation, physics in fits of a generic ©

« Difference with FIP2: include event-by-event sensitivities - s aaz

—[FIP2] Fit for o, — should partition events into bins of different p,

—[FIP3] Fit for 6 — should partltlon events into bins of different p, -

1 651
s, 00

1 0sj
s, 00
« Example: a 1-D fit on pI or (better) a 2-D fit on p, and -

« Challenge: what is the value of = 520 =i for real data events?

—On MC events you can get it from event- by-event MC weight derivatives
—On data, train a regression tree for _?3_9 on signal only and a decision tree
for p, on signal+bkg: use Fisher Information as splitting criterion in both

* The boundary between classification and regression is blurred!
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Conclusions: one metric to bind them all

=
o

1.0

— g :;’:ti 2‘:{ - _E 108 Fit 0,=0.9987+0.0122 fb .
— rIn ation (9] 1 _‘dEs o
05 i S 08 S 10°
_ €06 | 8 .
= @ i
¥ 0.0 — c
T <= e 04 <= 2 o FIP2=0.6683
g ROC L de, :
05 ~ s FIP2 = | —————— 2
E 0.2 [0 1+ 1;33 élTei 10
-1.0 i : ; ‘ 0.0 ! \ T , ! 10t
00 02 04 06 08 10 00 02 04 06 08 10
i FPR (background efficiency) 0.0 02 0.4 0.6 0 1.0
. . . Class.ifier out.p tD .
TRAINING EVALUATION PHYSICS
- Fisher Information - Fisher Information - Fisher Information
= measurement error = measurement error = measurement error

« One metric for training, evaluation, physics: Fisher Information

* FI meets HEP specificities for evaluation: focuses on signal;

describes distribution fits; describes event-by-event sensitivity
—Different problems need different metrics: HEP needs its own metrics

* The boundary between binary classification and regression is

blurred: should partition events into bins of different p, Slg—z
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Additional backup slides

Selected slides from my previous IML talks
in April (https://indico.cern.ch/event/668017/contributions/2947015)
and January (https://indico.cern.ch/event/679765/contributions/2814562)
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FIP2 from the ROC (+prevalence) or from the PRC

FIP2: integrals on ROC and PRC,

* From the previous slide:

* FIP2 from the ROC (+prevalence -.-

Ssel = Shot €5
Bsel = Biot €

s; = dSse1 = Stot des

[—
b; = dBsc1 = Biot dep

 FIP2 from the PRC:

Ssel = Shot €5

8; = dSsel = Stot des

e
FIP2 = Lfnl Pisi
2oi—15i

Stot

_ 1

- Biot @
L+ g a.

-1

" Sior + B ) -

—

more relevant to HEP than AUC or AUCPR!

(well-defined meaning for distribution fits)

1
FIPsz
0o l+

des

1—m. dey

s des

Bicl = Sacl (p - 1) bi = dBse) = Stot [des ( ) —e. ] !
P

Compare FIP2(ROC) to AUC

1 1
AUC:/esdeb = lf/ebdes
0 0

pdes

T
FIPQ:/W
01—"35

T
AUCPR:fpdes
0

 Easier calculation and interpretation from ROC (+prevalence) than from PRC

— region of constant ROC slope* = region of constant signal purity

— decreasing ROC slope = decreasing purity
» technicality (my Python code): convert ROC to convex hull** first

1.0 1.0
—_ c
> o T
0 | de = | |
5 0.8 * de,: proportional 3 0.8 dp
iv] dsb to #signal events o des
£ 0.6 in bin 2.0.6
o S
© de/de,: related =
c 0.4 s b e 204
o to purity in bin =
2 ROC ] PRC
o 0.2 4 02— prevalence N=0.5
[ 2 (Btot=Stot)
= o
o
0.0 T | | T 0.0 | | T |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8

FPR (background efficiency)

TPR (efficiency or recall)

1.0

0.0 T T T
*Convert ROC to convex hull 00 02 04 06
- ensure decreasing slope

Compare FIP2(PRC) to AUCPR

1.0
5
£ 0.8 [
3 . ROC
£ 06—
7]
g
S 0.4
o |
& 0.2+ *e original ROC
= ‘ —— ROC convex hull

I
0.8 1.0

FPR (background efficiency)

- avoid staircase effect that would artificially inflate FIP2
(bins of 100% purity: only signal or only background)

*ROC slopes are also discussed in medical literature
in relation to diagnostic likelihood ratios [Choi 1998],
but their use does not seem to be widespread(?)
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10°
101

Events per 0.01 bin

107
10°
10°
104

10°

Events per 0.01 bin

10?
10!

Events per 0.01 bin

FIP2=0.6683

It 5.=0.9987+0.0122 fb
ected error from FIP2: 0.012
Il FExpecte
H Expected background (N=30000)
4 Observed (N=39769)

Sanity check

Three random forests
(on the same 2-D pdf)

0.0 x: — reasonable
Classifier output D .
- — undertrained
_ T0.=1.0026+0.0137 fb — i
E FIP2=0.5223 : ected error from FIP2: 0.013 D overtrained
N B Fxpecte
§ BB Expected background (N=30000) . . . .
. + Observed (N=39769) * Kit o, from the distribution
E of the classifier output
3 Errors consistent with FIP2
: Aé(real classifier)\2 _ L Aé(ideal classifier)\2
0.0 0.2 0.4 0.6 0.8 1.0 ( ) FIP( )
Classifier output D
ﬁ FIP2=0.5870 5.=0.0088+0.0130fb
1 ected error from FIP2: 0.013
E EEm Expecte
} H Expected background (N=30000)
4  Observed (N=39769)

0.0 0.2

A. Valassi —

My development environment: SciPy ecosystem,
0.4 0.6 o8 1.0 iminuit and bits of rootpy, on SWAN at CERN.
Classifier output D Thanks to all involved in these projects!
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M by 1D fit to m — visual interpretation

* Information after cuts: };; Sl

oM

o0si 2

* €, P; — show the 3 terms in each bin i

—fit = combine N different measurements in N bins — local g; p, relevant!
— important thing is: maximise purity, efficiency in bins with highest sensitivity!

Prediction

Fit results
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o 900
3 16 - -
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T ol Effpurlnidn/dm): =g < 500 —— Fit (M=999.920+0,254 GeV)
gl SUM=1/(0.255GeV)? = 8 nn
D08
Green line: local 5 08I Signtcfciency MAXIMUM INFORMATION,
. . . 504 -
effICIenC in the bln € 2 Signal purity MINIMUM ERROR
y 1 & T 02[|7 AVG=0.41 | B
=
5 oo 850 500 950 1000 1050 100 1150 726" 850 200 1160 1150 12
m/GeV [bin width: 4 GeV] Invariant mass m/GeV
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