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Why and when I got interested in this topic 

• First time I saw an Area Under the Roc Curve (AUC)

• My reaction: 
–What is the AUC? Which other scientific domains use it and why?

– Is the AUC relevant in HEP? Can we develop HEP-specific metrics?

The 2015 LHCb Kaggle ML Challenge:

- Develop an event selection in a search for 

ML binary classifier problem 

- Evaluation: the highest weighted AUC is the winner 
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Overview – the scope of this talk

• Different domains and/or problems  Need different metrics

–Always keep your final goal in mind

• Focus on a specific HEP example: event selection to minimize 

statistical error  in an analysis for the point estimation of 

–Do not focus on: tracking, systematic errors, trigger, searches…

• Whenever you take a decision, base it on the minimization of 

–Metrics for physics precision  final goal: minimize 

–Metrics for binary classifier evaluation  (is the AUC relevant?)

–Metrics for binary classifier training  (are standard ML metrics relevant?)
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Example: event selection using a Decision Tree for a parameter fit

Proposal: use metrics based on Fisher Information in all three steps

(Fisher Information about  ~is I=1/()2 – maximize I to minimize )

PHYSICS

- Precision

Parameter estimation:

measurement error 

TRAINING

- (either) Gini impurity

Economics: inequality

Ecology: diversity

- (or) Shannon information

Information theory: entropy 

EVALUATION

- ROC Curve (Receiver Operating Characteristic)

Signal detection: radar detection

Psychophysics: sensory detection

- AUC (Area Under the ROC Curve)

Radiology, Medicine: diagnostic accuracy

Training, Evaluation, Physics:

one metric to bind them all?
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CHEP plenary this morning
I will argue against AUC’s for evaluation in HEP

I will describe one problem in analysis statistical optimization 

I will discuss the retention of 

Fisher information in classifiers 
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Binary classifier evaluation – reminder

Discrete classifiers: the confusion matrix

Scoring classifiers: ROC and PRC curves

true class: Positives

(HEP: signal Stot)

true class: Negatives

(HEP: background Btot)

classified as: positives

(HEP: selected)

classified as: negatives

(HEP: rejected)

True Positives (TP)

(HEP: selected signal Ssel)

False Positives (FP)

(HEP: selected bkg Bsel)

False Negatives (FN)

(HEP: rejected signal Srej)

True Negatives (TN)

(HEP: rejected bkg Brej)

Binary decision: 

signal or background

Continuous output: 

probability to be signal

Vary the binary decision

by varying the cut

on the scoring classifier 

Prevalence

Insensitive to 

prevalence!
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Binary classifier evaluation in other domains

Medical Diagnostics (MD)  e.g. diagnostic accuracy for cancer
–Symmetric: all patients important, both truly ill (TP) and truly healthy (TN)

–ROC-based analysis (because ROC insensitive to prevalence)

• AUC interpretation: probability that diagnosis gives greater suspicion to a 

randomly chosen sick subject than to a randomly chosen healthy subject

Information Retrieval (IR)  e.g. find pages in Google search
–Asymmetric: distinction between relevant and non-relevant documents

–PRC-based evaluation: precision and recall (= purity and efficiency in HEP)

• Single metric: e.g. Mean Average Precision ~ area under PRC (AUCPR)

Oversimplification:                                                           (MD)      vs.     (IR) 
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Evaluation: (main) specificities of HEP

1. Qualitative asymmetry: signal interesting, background irrelevant
–Like Information Retrieval: use purity and efficiency (precision and recall)

• True Negatives and the AUC are irrelevant in HEP event selection

2. Distribution fits: several disjoint bins, not just a global selection
–Analyze local signal efficiency and purity in each bin, not just global ones

–Frequent special case: fits involving distributions of the scoring classifier

3. Signal events not all equal: they may have different sensitivities
–Example: only events close to a mass peak are sensitive to the mass

Illustrated in the following by three examples (1=FIP1, 1+2=FIP2, 1+2+3=FIP3) 
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Evaluation: Fisher Information Part (FIP)

• Evaluation of an event selection from its effect on the error ෠θ
–Compare to “ideal” case where there is no background

• FIP: fraction of “ideal” FI that is retained by the real classifier
–Range in [0,1]  0 if no signal, 1 if select all signal and no background

–Qualitatively relevant: higher is better  maximize FIP to minimize ෠θ

–Numerically meaningful: related to ෠θ

• For a binned fit of θ from a (1-D or multi-D) histogram:
–Consider only statistical errors  sum information from the different bins

Remember from the previous slide:

1. Qualitative asymmetry: use ε and ρ (as in IR)

2. Distribution fit: need local εi and ρi in each bin

3. Signal events not all equal: need sensitivity
1

𝑆𝑖

𝜕𝑆𝑖

𝜕𝜃
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• Counting experiment: measure a single number Nmeas

–Well-known since decades: maximize εs*ρ to minimize statistical errors

• FIP special case: 
–Counting experiment (1 bin)  global signal efficiency and purity

–Cross-section fit θ=σs  all events have equal sensitivity 
1

𝑆
𝑖

𝜕𝑆𝑖

𝜕𝜎𝑠
=

1

𝜎𝑠

[FIP1] Cross-section in counting experiment

 FIP1 = εs*ρ
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Examples of issues in AUCs – crossing ROCs

• Cross-section measurement by counting experiment
–Maximize FIP1=εs*ρ  Minimize the statistical error Δσ2

• Compare two classifiers: red (AUC=0.90) and blue (AUC=0.75)
–The red and blue ROCs cross (otherwise the choice would be obvious!)

• Choice of classifier achieving minimum Δσ2 depends on Stot/Btot

–Signal prevalence 50%: choose classifier with higher AUC (red)

–Signal prevalence 5%: choose classifier with lower AUC (blue)

–AUC is irrelevant – and ROC is only useful if you also know prevalence

FIP1 AUC

Range 

in [0,1]
YES YES

Higher 

is better
YES NO

Numerically

meanigful
YES NO

RED: 

HIGHEST 

AUC RED: 

LOWEST 

Δσ2

BLUE: 

LOWEST 

Δσ2
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Optimal partitioning in distribution fits

• Does information I increase if I split a bin into two (n  nL+nR)?

–Information gain is I = ρ𝐿
1

s𝐿

𝜕sL

𝜕θ
− ρR

1

sR

𝜕sR

𝜕θ

2
∗

𝑛𝐿𝑛𝑅

𝑛𝐿+𝑛𝑅

• Partition events using optimal binning variables ( two examples)

–For cross-sections (
1

s
i

𝜕si

𝜕σs
= 

1

σs
) : separate bins with different ρi (“FIP2”)

–For a generic parameter θ : separate bins with different ρi

1

𝑠
𝑖

𝜕𝑠𝑖

𝜕𝜃
(“FIP3”)

• Practical ML consequences (focus on cross-section example):
–Use the scoring classifier (i.e. ~ρ !) to partition events, not to reject them

–Train the scoring classifier to maximize the total Fisher information of the 

histogram binning, i.e. train it to maximize its partitioning power
• Use Fisher Information as a node splitting criterion for decision tree training

• Use the decision tree more as a regression tree than as a classification tree
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[FIP2] cross-section fit on the 1-D scoring 

classifier distribution – evaluation

• FIP special case

–Cross-section: constant 
1

s
i

𝜕si

𝜕𝜎𝑠
=

1

𝜎𝑠

–Fit on all events: εi=1 in all bins

–Fit scoring classifier: use ROC and prevalence to determine purity ρi

• Region of constant ROC slope is a region of constant signal purity

dεs: proportional to

#signal events in bin

dεs/dεb: related 

to purity in bin

Compare FIP2 to AUC:
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[FIP2] cross-section fit on the 1-D scoring 

classifier distribution – training

• Is there a gain if I split a node into two (n  nL+nR)?
–Same question as in optimal partitioning: do I gain by splitting a bin?

• Gain depends on “impurity” function H(ρ):
–two standard choices: Shannon information (entropy) and Gini impurity 

–I suggest a third option: Fisher information 𝐼𝜎𝑠 about the cross-section σs

• Surprise: different functions, but Gini and Fisher gains are equal!

–So, Gini is OK for cross-sections (or searches?)

–But more intuitive physics interpretation for Fisher

–No practical gain here, but important principle
• And proof-of-concept for generic parameter θ

Gini, Entropy: symmetric

Fisher: asymmetric

(only the signal is relevant!)
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• Not a cross-section, e.g. a coupling fit: signal events not all equal
–[FIP2] Fit for σs  should partition events into bins with different ρi

–[FIP3] Fit for θ  should partition events into bins with different ρi
1

s
i

𝜕si

𝜕θ

• Example: 2-D fit for θ of the ρ and 
1

s

𝜕𝑠

𝜕θ
distributions

–Train a regression tree for 
1

𝑠

𝜕𝑠

𝜕𝜃
(on MC weight derivative) using signal alone

–Train a regression tree for ρ using signal (weighted by 
1

𝑠

𝜕𝑠

𝜕𝜃
) and background

–Use Fisher Information about θ as the gain function in both cases

Boundary between classification and regression even more blurred

[FIP3] generic parameter fits including the 

scoring classifier distribution – work in progress
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Software technicalities

• I use Python (SciPy, iminuit, bits of rootpy) on SWAN at CERN

–Thanks to all involved in these projects!

• Custom impurity not available in sklearn DecisionTree’s

–Planned for future sklearn releases (issue #10251 and MR #10325)? 

–I implemented a very simple DecisionTree from scratch, starting from  

the excellent iCSC notebooks by Thomas Keck (thanks!) 

• I plan to make the software available when I find the time…

https://github.com/scikit-learn/scikit-learn/issues/10251
https://github.com/scikit-learn/scikit-learn/pull/10325
https://github.com/thomaskeck/MultivariateClassificationLecture
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Conclusions and outlook
• Fisher Information: one metric to bind them all

• Use scoring classifiers to partition events, not to reject them
–The boundary between classification and regression is blurred

• We must and can define our own HEP specific metrics
–I described one case, there are others (searches, systematics, tracking...)

–Focus on signal. Describe distribution fits. Signal events are not all equal.

–Can we please stop using the AUC now? 

TRAINING

- Fisher Information

= measurement error

EVALUATION

- Fisher Information

= measurement error

PHYSICS

- Fisher Information

= measurement error

A paper will be on arxiv

soon with all details
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Backup slides
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Backup – statistical error in binned fits

• Data: observed event counts ni in m bins of a (multi-D) distribution f(x)

– expected event counts yi = f(xi,θ)dx depend on a parameter θ that we want to fit

– [NB here f is a differential cross section, it is not normalized to 1 like a pdf]

• Fitting θ is like combining the independent measurements in the m bins

– expected error on ni in bin xi is Δni = yi = f(xi,θ) dx

– expected error on f(xi,θ) in bin xi is Δf = f * Δni/ni = f / dx

– expected error on estimated ෡θi in bin xi is 

– expected error on estimated ෠θ by combining the m bins is 

• A bit more formally, joint probability for observing the ni is

– Fisher information on θ from the data available is then

• i.e.

– The minimum variance achievable (Cramer-Rao lower bound) is 
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• Information about θ in a binned fit 

• Can I reduce ෠θ by splitting bin yi into two bins?

–Is the “information inflow” positive?

–information increases (error ෠θ decreases) if

• In the presence of background:

–information increases if ρw
1

sw

𝜕sw

𝜕θ
≠ ρz

1

sz

𝜕sz

𝜕θ

–therefore: try to partition the data into bins of different ρi
𝟏

𝒔
𝒊

𝝏𝒔𝒊

𝝏θ

• for cross-section measurements, : split into bins of different ρi

• Two important practical consequences:
–1. use scoring classifiers to partition the data, not to reject events

–2. information can be used also for training classifiers like decision trees

Optimal partitioning – information inflow
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More detailed slides
(Draft uploaded on July 2nd)
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Fisher information metrics
for binary classifier evaluation and training

Event selection for HEP precision measurements

Andrea Valassi 
(CERN IT-DI-LCG)

CHEP 2018, Sofia – Machine Learning and Physics Analysis session

Draft uploaded on July 2nd

https://indico.cern.ch/event/587955/sessions/266675
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An oversimplified example: Decision Tree for a cross-section fit

Different problems need different metrics  Always keep the final goal in mind!

Main idea of this talk: use physics precision (Fisher information) 

also for evaluation and training: MINIMIZE MEASUREMENT ERRORS!

TRAINING

- (either) Gini impurity

Economics: inequality

Ecology: diversity

- (or) Shannon information

Information theory: entropy 

EVALUATION

- ROC Curve (Receiver Operating Characteristic)

Signal detection: radar detection

Psychophysics: sensory detection

- AUC (Area Under the ROC Curve)

Radiology, Medicine: diagnostic accuracy

PHYSICS

- Precision

Parameter estimation:

measurement error

Training, Evaluation, Physics:

one metric to bind them all?
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Limited scope of this talk

• Different problems also within HEP require different metrics

• In this talk, I will focus on one specific problem:
–Optimize event selection to minimize statistical errors in point estimation 

• Three specific examples (I will focus on the second one)
–[FIP1] Total cross-section measurement in a counting experiment

–[FIP2] Total cross-section measurement by distribution fit

–[FIP3] Generic model parameter fit (e.g. mass/coupling) by distribution fit
• Even more specific: FIP2 and FIP3 use fits of the scoring classifier distribution



A. Valassi – Fisher information metrics CHEP 2018 – 10th July 2018 25/17

Binary classifier evaluation – reminder

true class: Positives

(HEP: signal Stot)

true class: Negatives

(HEP: background Btot)

classified as Positives

(HEP: selected)

classified as Negatives

(HEP: rejected)

True Positives (TP)

(HEP: selected signal Ssel)

False Positives (FP)

(HEP: selected bkg Bsel)

False Negatives (FN)

(HEP: rejected signal Srej)

True Negatives (TN)

(HEP: rejected bkg Brej)

Discrete classifiers:

the confusion matrix

Scoring classifiers:

ROC and PRC curves

Different domains

 Focus on different concepts

 Use different terminologies

Examples from three domains:

- Medical Diagnostics (MED)

does Mr. A. have cancer?

- Information Retrieval (IR)

Google documents about “ROC”

- HEP event selection (HEP)

select Higgs event candidates

MED: prevalence

Continuous output: 

probability to be signal

Vary the binary decision by varying 

the cut on the scoring classifier 

Binary decision: 

signal or background

Insensitive to 

prevalence!
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Binary classifier evaluation in other domains

Medical Diagnostics (MD)  diagnostic accuracy
–Symmetric: all patients important, both truly ill (TP) and truly healthy (TN)

–Traditional                           was too sensitive to prevalence: moved to ROC

• But now ROC is questioned as too insensitive to prevalence (imbalanced data)

–ROC-based analysis: sensitivity and specificity

• Accuracy metric: e.g. AUC = probability that diagnosis gives greater suspicion 

to a randomly chosen sick subject than to a randomly chosen healthy subject

Information Retrieval (IR)
–Asymmetric: distinction between relevant and non-relevant documents

–PRC-based evaluation: precision and recall 

• Single metric: e.g. Mean Average Precision ~ area under PRC (AUCPR)

Oversimplification:                                                           (MD)      vs.     (IR) 
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Evaluation: (main) specificities of HEP

1. Qualitative asymmetry: only the signal has interesting physics
–HEP event selection is like Information Retrieval: background is irrelevant

• True Negatives and the AUC are irrelevant in HEP event selection

–Classical evaluation metrics: signal efficiency and purity (the PRC in IR!)
• ROC alone is not enough – also need prevalence to interpret the ROC

2. Distribution fits: several disjoint bins, not just a global selection
–Analyze local signal efficiency and purity in each bin, not just global ones

–Counting experiments (e.g. FIP1) vs. distribution fits (e.g. FIP2, FIP3)
• Special case: fits involving distributions of the scoring classifiers

3. Signal events not all equal: they may have different sensitivities
–Example: only events close to a mass peak are sensitive to the mass

–Total cross-section (e.g. FIP1, FIP2) vs. generic parameter fit (e.g. FIP3)
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Fisher Information Part (FIP)

• Consider a measurement ෠θ of one physics parameter θ
–Fisher Information about θ is 1/෠θ2 (keep this simple, not formal)

• Evaluate an event selection from the effect on the error ෠θ
–Compare to an “ideal” case where there is no background

• FIP: fraction of “ideal” FI that is retained by the real classifier
–Range in [0,1]  0 if no signal, 1 if select all signal and no background

–Qualitatively relevant: higher is better  maximize FIP to minimize ෠θ

–Numerically meaningful: related to ෠θ 

• For a binned fit of θ from a (1-D or multi-D) histogram:
–With expected event counts in ith bin yi = εi*Si + bi = εi*Si / ρi

–Consider only statistical errors  sum information from the different bins

Remember from the previous slide:

1. Only signal is interesting: background appears via ρi

2. Distribution fit: need local εi and ρi

3. Signal events are not all equal: need sensitivity 
1

𝑆𝑖

𝜕𝑆𝑖

𝜕𝜃
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

[FIP1] Cross-section in counting experiment

• Counting experiment: measure a single number Nmeas

–Well-known since decades: maximize εs*ρ to minimize statistical errors

• FIP special case: FIP1 = εs*ρ
–Counting experiment  global signal efficiency and purity

–Cross-section fit θ=σs  all events have equal sensitivity 

 FIP1 = εs*ρ
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Examples of issues in AUCs – crossing ROCs

• Cross-section measurement by counting experiment
–maximize FIP1=εs*ρ  minimize the statistical error Δσ2

• Compare two classifiers: red (AUC=0.90) and blue (AUC=0.75)
–The red and blue ROCs cross (otherwise the choice would be obvious!)

• Choice of classifier achieving minimum Δσ2 depends on Stot/Btot

–Signal prevalence 50%: choose classifier with higher AUC (red)

–Signal prevalence 5%: choose classifier with lower AUC (blue)

–AUC is irrelevant – and ROC is only useful if you also know prevalence

RED: 

LOWEST 

ERROR

BLUE: 

LOWEST 

ERROR

RED: 

HIGHEST 

AUC

FIP1 AUC

Range 

in [0,1]
YES YES

Higher 

is better
YES NO

Numerically

meanigful
YES NO
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• Does                   increase if I split yi into two bins?

–Information increases and error ෠θ decreases if

–In the presence of background, ෠θ decreases if  ρw
1

sw

𝜕sw

𝜕θ
≠ ρz

1

sz

𝜕sz

𝜕θ

• Hence: try to partition the data into bins of different ρi

𝟏

𝒔
𝒊

𝝏𝒔𝒊

𝝏θ

–For cross-section measurements, : split into bins of different ρi

• As the scoring classifier represents ρ, fit its distribution! (next slide: FIP2)

• Two important practical consequences:

–1. use scoring classifiers to partition the data, not to reject events

–2. information can be used also for training classifiers like decision trees

Optimal partitioning – information inflow
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[FIP2] cross-section measurement by fitting 

the 1-D scoring classifier distribution

• FIP special case

–Cross-section: constant

–Fit on all events: εi=1 in all bins

–Fit the scoring classifier: use ROC* and prevalence to determine the 

local purity                  in a bin with

• Region of constant ROC slope is a region of constant signal purity

dεs: proportional to

#signal events in bin

dεs/dεb: related 

to purity in bin

*Technicality (my Python code): convert ROC to convex hull

- ensure decreasing slope, i.e. decreasing purity

- avoid staircase effect that would artificially inflate FIP2

(bins of 100% purity: only signal or only background)

Compare FIP2 to AUC:


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FIP2 for training decision trees

• Decision Tree  partition training set into nodes of different ρi

–The best split (n,s)=(nL,sL)+(nR,sR) maximizes

• Current metrics are Gini and entropy: add Fisher information!
–negative Gini impurity 

–Shannon information 

–Fisher information on σs 

• Functions look different, but (modulo a constant factor)…

–… information gain is the same for Fisher and Gini!

• But interpretation is clearer for Fisher: reduce the error on the fit

–And this is a proof-of-concept for FIP3: split into nodes of different ρi

1

𝑠
𝑖

𝜕𝑠𝑖

𝜕𝜃

Technicality: user-defined criteria for DecisionTree’s will only be available in future sklearn releases
 I implemented a DecisionTree from scratch, reusing the excellent iCSC notebooks by Thomas Keck (thanks!) 

https://github.com/thomaskeck/MultivariateClassificationLecture
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Limits to knowledge

• FIP2 range is [0,1]  but it does not mean that 1 is achievable
–1 represents the ideal case where there is no background

• In some regions of phase space, signal and background events 

may be undistinguishable based on the available observations
–There is a limit ROC which depends on the signal and background pdf’s

–There is a limit FIP2 which depends on prevalence and the limit ROC

• Example – toy model, you know the real pdf’s and prevalence
–See next slide about overtraining
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Overtraining

• Using the same metric for training and evaluation also 

simplifies the interpretation of overtraining

• Example: toy model where 

you know the real pdf
–You know the limit ROC

–You know the limit FIP2

–You want your validation 

FIP2 as close as possible to 

the limit, but it will be lower

–To get there you maximize 

your training FIP2, but it will 

be higher than the real limit
• You may trace back every 

increase to one node split

–You may study the effects of 

things like min_sample_leaf
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• FIP2 for σs fits: one metric for training, evaluation, physics
–FIP3: one metric for training, evaluation, physics in fits of a generic θ

• Difference with FIP2: include event-by-event sensitivities 
1

s
i

𝜕si

𝜕θ
–[FIP2] Fit for σs  should partition events into bins of different ρi

–[FIP3] Fit for θ  should partition events into bins of different ρi

1

s
i

𝜕si

𝜕θ

• Example: a 1-D fit on ρi

1

s
i

𝜕si

𝜕θ
or (better) a 2-D fit on ρi and 

1

s
i

𝜕si

𝜕θ

• Challenge: what is the value of 
1

s
i

𝜕si

𝜕θ
for real data events?

–On MC events you can get it from event-by-event MC weight derivatives

–On data, train a regression tree for 
1

s
i

𝜕si

𝜕θ
on signal only and a decision tree 

for ρi on signal+bkg: use Fisher Information as splitting criterion in both

• The boundary between classification and regression is blurred!

[FIP3] parameter fits including the scoring 

classifier distribution – work in progress
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Conclusions: one metric to bind them all

• One metric for training, evaluation, physics: Fisher Information

• FI meets HEP specificities for evaluation: focuses on signal; 

describes distribution fits; describes event-by-event sensitivity
–Different problems need different metrics: HEP needs its own metrics

• The boundary between binary classification and regression is 

blurred: should partition events into bins of different ρi

1

s
i

𝜕si

𝜕θ

TRAINING

- Fisher Information

= measurement error

EVALUATION

- Fisher Information

= measurement error

PHYSICS

- Fisher Information

= measurement error
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Additional backup slides

Selected slides from my previous IML talks 

in April (https://indico.cern.ch/event/668017/contributions/2947015)

and January (https://indico.cern.ch/event/679765/contributions/2814562)

https://indico.cern.ch/event/668017/contributions/2947015
https://indico.cern.ch/event/679765/contributions/2814562
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FIP2 from the ROC (+prevalence) or from the PRC

• From the previous slide:

• FIP2 from the ROC (+prevalence             ):

• FIP2 from the PRC:

• Easier calculation and interpretation from ROC (+prevalence) than from PRC
– region of constant ROC slope* = region of constant signal purity

– decreasing ROC slope = decreasing purity
• technicality (my Python code): convert ROC to convex hull** first

Compare FIP2(ROC) to AUC

Compare FIP2(PRC) to AUCPR

**Convert ROC to convex hull

- ensure decreasing slope

- avoid staircase effect that would artificially inflate FIP2

(bins of 100% purity: only signal or only background)

*ROC slopes are also discussed in medical literature 

in relation to diagnostic likelihood ratios [Choi 1998],

but their use does not seem to be widespread(?)

dεs: proportional 

to #signal events 

in bin

dεs/dεb: related 

to purity in bin

FIP2: integrals on ROC and PRC,

more relevant to HEP than AUC or AUCPR!

(well-defined meaning for distribution fits)
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Sanity check

• Three random forests      

(on the same 2-D pdf)
– reasonable

– undertrained

– overtrained

• Fit σs from the distribution 

of the classifier output
– Errors consistent with FIP2

My development environment: SciPy ecosystem, 

iminuit and bits of rootpy, on SWAN at CERN.

Thanks to all involved in these projects!
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M by 1D fit to m – visual interpretation
• Information after cuts: σ𝑖

1

𝑠
𝑖

𝜕𝑠𝑖

𝜕𝑀

2
∗ εi ∗ ρi  show the 3 terms in each bin i

– fit = combine N different measurements in N bins  local εi, ρi relevant!

– important thing is: maximise purity, efficiency in bins with highest sensitivity!

Prediction Fit results

MAXIMUM INFORMATION,

MINIMUM ERROR

IDEAL CASE,

NO BACKGROUND

Red histogram:

information per bin,

ideal case 
𝟏

𝒔𝒊

𝝏𝒔𝒊

𝝏𝑴

𝟐

Yellow histogram:

information per bin,

after cuts εi∗ρi∗
𝟏

𝒔𝒊

𝝏𝒔𝒊

𝝏𝑴

𝟐

Blue line: local 

purity in the bin, ρi

Green line: local 

efficiency in the bin,εi

Ideal case - yellow histogram 

(after cuts) coincides with and 

covers red histogram (ideal)
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• Statistical error in searches by counting experiment  “significance”

– several metrics  but optimization always involves εs, ρ alone  TN irrelevant

• Several other interesting open questions  beyond the scope of this talk
– optimization of systematics?  e.g. see AMS1 in Higgs ML challenge

– predict significance in a binned fit?  integral over Z2 (=sum of log likelihoods)?

Event selection in HEP searches

Z0 – Not recommended? (confuses search 

with measuring σs once signal established)

Z2 – Most appropriate? (also used 

as “AMS2” in Higgs ML challenge)

Expansion in ρ ≪ 1 ? – use 

the expression for Z2 if anything 

Z3 (“AMS3” in Higgs ML) – Most widely used, but strictly valid 

only as an approximation of Z2 as an expansion in Ssel/Bsel ≪ 1 ?
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• Different meaning of absolute numbers in the confusion matrix
– Trigger  events per unit time i.e. trigger rates

– (Physics analyses  total event sample sizes i.e. total integrated luminosities)

• Binary classifier optimisation goal: maximise εs for a given Bsel per unit time
– i.e. maximise TP/(TP+FN) for a given FP  TN irrelevant

• Relevant plot  εs vs. Bsel per unit time (i.e. TPR vs FP)
– ROC curve (TPR vs. FPR) confusing – AUC irrelevant

– e.g. maximise εs for 4 kHz trigger rate, whether L0 rate is 1 MHz or 2MHz

Trigger

IIUC, 4kHz is

εb (FPR) = 0.4%

of 1 MHz L0 hw rate

Maximise εs at 4 kHz
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M by 2D fit – use classifier to partition, not to cut 

• Showed a fit for M on m, after a cut on D  can also fit in 2-D with no cuts

– again, use the scoring classifier D to partition data, not to reject events

• Why is binning so important, especially using a discriminating variable?

– next slide...

Prediction Fit resultsPrediction

Ideal case:                      ± 0.200

1D fit(m), no cut(D):        ± 0.292

1D fit(m), optimal cut(D): ± 0.254

2D fit(m,D), no cuts:        ± 0.233 
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Optimal partitioning – optimal variables

• The previous slide implies that q = ρ
1

𝑠

𝜕𝑠

𝜕θ
is an optimal variable to fit for θ

– proof of concept  1-D fit of q has the same precision on M as 2-D fit of (m,D)

– closely related to the “optimal observables” technique 

• In practice: train one ML variable to reproduce 
1

𝑠

𝜕𝑠

𝜕θ
?

– not needed for cross-sections or searches (this is constant)

Ideal case:                      ± 0.200

1D fit(m), no cut(D):        ± 0.292

1D fit(m), optimal cut(D): ± 0.254

2D fit(m,D), no cuts:        ± 0.233

1D fit(q):                          ± 0.236


