
Order in the particle zoo

Thomas Schindelbeck, Mainz, Germany,  schindelbeck.thomas@gmail.com 

Abstract
The standard model of physics classifies particles into elementary leptons and hadrons composed of quarks.
In this article the existence of an alternate ordering principle will be demonstrated giving particle energies to
be  quantized  as  a  function  of  the  fine-structure  constant,  α.  The  quantization  can  be  derived  using  an
appropriate wave function that acts as a probability amplitude on the electric field. The value of α itself can
be approximated numerically by the gamma functions of the integrals for calculating particle energy.
The model may be used to calculate other particle properties as well, in particular particle interaction. The
expansion  of  the  gamma  function  provides  quantitative  terms  for  strong,  Coulomb  and  gravitational
interaction.
Necessary input parameters for all calculations can be reduced to elementary charge and electric constant.

1 Introduction
Particle  zoo is  the  informal  though fairly common nickname to  describe what  was formerly known as
"elementary particles". The standard model of physics [1] divides these particles into leptons, considered to
be  fundamental  "elementary particles"  and  the  hadrons,  composed  of  two  (mesons)  or  three  (baryons)
quarks. Well hidden in the data of particle energies lies another ordering principle, based on a description of
particles as electromagnetic objects. 
Particles  are  interpreted  as  some  kind  of  standing  electromagnetic  wave  originating  from  a  rotating
electromagnetic field with the E-vector pointing towards the origin. Neutral particles are supposed to exhibit
nodes separating corresponding equal volume elements of opposite polarity. To obtain quantifiable results,
the electromagnetic field will be modified with an appropriate exponential function, Ψ(r, ϑ, φ), serving as
probability amplitude of the field. The two integrals needed to calculate energy in point charge and photon
representation exhibit the following two relations:  
1) Their product - resulting from energy conservation - is characterized by containing the product of the two
gamma functions Γ+1/3 |Γ-1/3| ≈ α-1/(4π), 
2) their ratio features a quantization of energy states with powers of 1/3 n over some base α0, a relation that
can be found in the particle data with α0 = α  as:

Wn /We  ≈ 3 /2( yl
m)-1/3 Π k=0

n α^(-1/3k )          n = {0;1;2;..}       1 (1)

with We = energy of electron, Wn = energy of particle n and yl
m representing the angular part of Ψ(r, ϑ, φ). For

spherical symmetry y0
0 = 1 holds, corresponding particles are  e, µ,  η,  p/n,  Λ, Σ and Δ 2. The factor 3/2 is

related to angular momentum |J| = 1/2. 
Apart from calculating energies the model may be used to describe other particle properties. At distances
comparable to particle size, typically femtometer for hadrons, direct interaction of particle wave functions
has to be expected. Interpreting this as strong interaction and considering the basic spatial characteristics of
the functions may provide a possible explanation why leptons, in particular the tauon, are not subject to this
interaction.  Expanding the incomplete gamma function appearing in the integrals for calculating particle
energy  gives  quantitative  terms  for  the  strong  and  Coulomb  interaction  and  a  possibility  to  derive  a
quantitative expression for gravitational attraction as well, suggesting a common base for all three forces. 

2 Results
2.1 Basic calculations
The model is essentially based on a single assumption: 
Particles can be described by using an appropriate exponential wave function, Ψ(r), that acts as a 
probability amplitude on an electromagnetic field. 
An appropriate form of Ψ can be deduced from three boundary conditions:

1 Results of table 1 are calculated with coefficients according to 2.6 including minor correction factors of order ≤ 1.005.
2 The relation of the e, µ, π masses with α was noted in 1952 by Y.Nambu [2]. M.MacGregor calculated particle and 
constituent quark mass as multiples of α and related parameters [3]. This article is a shortened + revised version of [4].
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1.) To be able to apply Ψ to a point charge Ψ(r = 0) = 0 is required, this gives

Ψ (r) ~ exp(
−β /2

r y ) (2)

2.) To ensure integrability  an integration limit is needed. This may be achieved by Ψ(r) being the solution of 
a 2nd order differential equation of general form 

 −ΔΨ (r)  +  
β /2

r x ∇ Ψ (r) −  
β /2

σ r y Ψ (r) =  0 (3)

giving a general solution for particle n as:

Ψ n(r)=exp(−(βn /2

r x
+[(β n/2

r x )
2

– 4
βn/2

σ r y ]
0.5

)/2) (4)

3.) Ψ should be applicable regardless of the expression chosen to describe the electromagnetic object. In 
particular requiring a point charge and a photon representation of a localized electromagnetic field (particle) 
to have the same energy, the exponent of r is required to be x=y=3 (see (14)), giving finally:

Ψ n(r)=exp(−(βn /2

r3
+[(β n/2

r3 )
2

– 4
βn/2

σ r 3 ]
0.5

)/2) (5)

In all integrals over Ψ(r) given below equ. (6) may be used as approximation for (5) up to r = rl:

Ψ (r<r l)  ≈ exp(−βn/2

r3 ) (6)

Phase will be neglected on this approximation level, properties of particles will be calculated by the integral 
over Ψ(r)2 (hence factor 2 in (2)ff) times some function of r and can be given in very good approximation by:

∫
0

r l

Ψ (r)2 r−(m+1)dr  ≈ ∫
0

r l

exp(−β /r l
3)r−(m+1)dr  = Γ (m /3, β/r l

3
)  β−m/3

3
  =  ∫

β/r l
3

∞

t
m
3

 −1
e−t dt  β−m/3

3
(7)

with m = {..-1;0;1;..}. The term Γ(m/3, β/rl
3)) denotes the upper incomplete gamma function, given by the 

Euler integral of the second kind with β/rl
3 as lower integration limit. For m ≥ 1 the complete gamma 

function Γm/3 is a sufficient approximation, for m ≤ 0 the integrals have to be integrated numerically.
Coefficient βn is a particle specific factor, for particle n it may be given as partial product of a starting value 
for a reference particle carrying the dimensions, βe, chosen to be the electron, times dimensionless 
coefficients, αn, of succeeding particles representing the ratio of βn and βn+1:

βn = βe α1α2.. αn = βe Πk=0
n αk = βe Πn= βdim αe Πn          

3 (8)

Coefficient σ is a constant  (σ = 1.772E+8[-]) related to J= 1/2 4 and can be calculated from setting the root 
term in (5) to zero and using the relation between radial coordinate and Euler integral, equation (7) for m= -1

rl  ≈ 1.51 |Γ-1/3| βn
1/3/ (3α) (9)

to replace rl , giving:

σ  = 8 rl,n
3 /βn= 8(1.51 |Γ-1/3| βn

1/3/ (3α))3 (10)

Particle energy is expected to be equally divided into electric and magnetic part, Wn = 2Wn,el = 2Wn,mag . To 
calculate energy the integral over the electrical field E(r) of a point charge is used as a first approximation. 
Using (7) for m = 1 gives:

Wpc,n = 2ε0∫
0

∞

E (r)2 Ψ n(r)2 d3 r = 2b0∫
0

rl ,n

Ψ n (r)
2 r−2 dr = 2 b0 Γ1/3 βn

-1/3 /3     5 (11)

3  βe will be further split into a dimension-attatched part βdim and a dimensionless part αe by (28).
4 Semi-classically, angular momentum J = r x p ≈ rW/c0, requires an integral over Ψ2 r-1, yielding a constant sensitive to 
variations of the integration limit of the Euler integral, (7): β/rl

3 = 8/σ rather than of equally sized terms in Ψ.
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Using equation (7) for m = -1 to calculate the Compton wavelength, λC, in the expression for the energy of a 
photon,  hc0/λC , gives:

λC,n = ∫
0

λC , n

Ψ n (r)2 dr  = ∫
β / λC, n

3

∞

t -4/3e-t dt  βn
1/3

/3  = 36 π2  |Γ-1/3| βn
1/3 /3 (12)

WPhot,n = hc0/λC,n  =
hc0

∫
λC , n

Ψ n(r )2dr

=
3hc0

36 π 2
|Γ−1/ 3|βn

1/3 (13)

 The energy of a particle has to be the same in both photon and point charge description. Equating (11) with 
(13) and rearranging to emphasize the relationship of α with the gamma functions ( Γ1/3 = 2.679; |Γ-1/3| = 
4.062) gives (note: h => ħ):

4 π Γ 1/3|Γ−1/3|
0.998

 = 
9hc0

18 π b0

=
ħ c0

b0

= α-1       (14)

2.2 Quantization with powers of 1/3n over α
Inserting (8) in the product of the point charge and photon expression of energy, Wn

2, gives:

W n
2  = 2b0 hc0  

∫
r l , n

Ψ n(r)2r−2 dr

∫
λC, n

Ψ n(r)2 dr

~
1

βn
2/3 ~

α0
1/3 α1

1/3 .....α n
1/3

α0 α1 ....α n

          n = {0;1;2;..} (15)

The last expression of (15) is obtained by expanding the product Πτ,n
- 2/3 included in βn

- 2/3 with Πn
1/3 From this

term it is obvious that a relation αn+1 = αn
1/3 such as given by equation (1) yields the only non-trivial solution

for Wn
2 where all intermediate particle coefficients cancel out and Wn becomes a function of coefficient α0

only. By comparison with experimental data α0 may be identified as α0  = αe   ≈ α9  and the α-product can in
general be given by:

α3 α1 ....α ^(9 /3n)α ^ (3 /3n)

α9 α3 α1 ....α ^(9 /3n)
= α ^(3/3n)/α 9                                   n = {0;1;2;..} (16)

The corresponding term for particle energies will be given by (using (14)):

W n  = 
4 π b0

2

α
 
∫
r l , n

Ψ n (r)
2 r−2 dr

∫
λC, n

Ψ n(r)2 dr

 = ((2b0)
2 Γ1/3

2

9 [α 4 π  |Γ−1/3|Γ1 /3] βn
2/3 )

0.5

 = 

 = 2b0

Γ 1/3

3 βn
1/3

 = 2b0

Γ 1/3

3 βdim
1/3

α ^(1.5/3n
)/α4.5  = W e  

3
2

 Πk=0
n α^(-1/3k )

     n = {0;1;2;..}      (17)

giving equation (1). For factor ≈ 3/2 see 2.6.
Extending the model to energies below the electron with a coefficient of α3 in (1) gives a state with energy ~
0.2eV which is roughly in a range expected for a neutrino [5]. 

Up to here only spherical symmetry and Ψ(r) is considered. The ratio of the volume integrals attributed to Y1
0

and Y0
0  gives a factor of 1/3. Assuming Y1

0 to be a sufficient approximation for the next angular term and  Wn

~ 1/rn ~ 1/Vn
1/3 (V = volume) to be applicable for non-spherically symmetric states as well, will give W 1

0/W0
0

= 31/3  =1.44 . A change in angular momentum is expected for this transition which is actually observed with
ΔJ = ± 1 except for the pair µ/π with Δ J = 1/2.
Results for particles assigned to y0

0,  y1
0 are presented in table 1.

2.3 Additional particle states
In general  it  is  not  expected that  partial  products  can explain all  values  of  particle  energies  and linear
combination states have to be considered. 

5 b0 = e2/(4πε) to be used as abbreviation in the following
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Table  1:  Particles  up to  tauon energy6;  values  for  y0
0 (bold),  y1

0;  col.  3:  energy values  of  [6]  except*:
calculated from (1); electron value** calculated with (28);

The first particle family that does not fit to the partial product scheme are the kaons at ~ 495MeV. Assuming
them to be a linear combination of two π-states with a supposed charge distribution of +|+, -|- and +|- would
yield  the  basic  symmetry properties  of  the  four  kaons as  given  below,  providing  two neutral  kaons  of
different structure and parity:

   +         -         -          +
K+     +       + K-    -        - KS

o    +      + KL
o     +        -  (+/- = charge)

   +         -         -    -
Analogous, for the charged kaons, K+, K-, a configuration for wave function sign equal to the configuration
for charge of KS

o  and KL
o might be possible, giving two analogous variants of + and - parity of otherwise

identical particles. Such configurations for the kaons might give a simple explanation for the unusual decay
modes observed in the experiments.

2.4 Expansion of the incomplete gamma function Γ(1/3,βn/r3)
The series expansion of Γ(1/3,βn/r3) in the equation for calculating particle energy (11) gives [7]:

Γ (1/3,  β n/(r3))  ≈ Γ 1/3  - 3( βn

r3 )
1/3

+ 3
4 (

βn

r 3 )
4 /3

 = Γ 1/3  - 3
βn

1/3

r
 + 3

4

βn
4/ 3

r4 (18)

and for the potential energy part of Wn(r),  Wn,pot(r) = Wn(r)/2:

W n, pot (r) ≈ W n /2  - b0

3 βn
1/3

3 βn
1/3 r

 + b0
3
4

β n
4/3

3 βn
1/3 r4

 = W n /2  - 
b0

r
 + b0

βn

4 r4
      (19)

The 2nd term in (19) drops the particle specific factor βn and gives the electrostatic energy of two elementary
charges at distance r. The 3rd term is an appropriate choice for the 0th order term of the differential equation

6 up to Σ'0 all resonance states given in [6] as **** included; Exponent of -3/2, 27/2 for Δ and tau is equal to the limit of
the partial products in (1) and (34); rl calculated with (9);
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n

J

-1 2E-7 * - 1/2 3.6E+9

0 0.51  Reference 1.0001 1/2 1413

1 105.66 1.0001 1/2 6.84

1 139.57 1.0920 0 5.17
K 495 0

2 547.86 0.9934 0 1.32

2 775.26 1.0195 1 0.93

2 782.65 1.0031 1 0.93
K* 894 1

3 938.27 1.0018 1/2 0.77

n 3 939.57 1.0004 1/2 0.77
958 0

1019 1

4 1115.68 1.0108 1/2 0.65

5 1192.62 1.0048 1/2 0.61

Δ ∞ 1232.00 1.0027 3/2 0.59
1318 1/2

3 1383.70 0.9798 3/2 0.52

4 1672.45 0.9725 3/2 0.43

N(1720) 5 1720.00 1.0048 3/2 0.42

∞ 1776.82 1.0026 1/2 0.41

W
n,Lit      

 
[MeV] 

 Π
k=0

n α (̂-1/3k)                 
equ (1)

 Π
τ,n                                                  

equ (34) W
calc

/ W
Lit

 
rl [fm]

ν  α+3

e+-  α9

µ+-  α-1  α9α3

π+-  1.44 α-1  α9α3/3

η 0  α-1α-1/3  α9α3α1

ρ0  1.44 (α-1α-1/3)  α9α3α1 /3
ω0  1.44 (α-1α-1/3)  α9α3α1 /3

p+-  α-1α-1/3α-1/9  α9α3α1α1/3

 α-1α-1/3α-1/9  α9α3α1α1/3

η'

Φ0

Λ0  α-1α-1/3α-1/9α-1/27  α9α3α1α1/3α1/9

Σ0  α-1α-1/3α-1/9α-1/27α-1/81  α9α3α1α1/3α1/9α1/27

 α-3/2  α27/2

Ξ

Σ*0  1.44 (α-1α-1/3α-1/9)  α9α3α1α1/3 /3
Ω-  1.44 (α-1α-1/3α-1/9α-1/27)  α9α3α1α1/3α1/9 /3

 1.44 (α-1α-1/3α-1/9α-1/27α-1/81)  α9α3α1α1/3α1/9α1/27 /3
tau+-  1.44 (α-3/2)  α27/2 /3



below and is supposed to be responsible for the localized character of an electromagnetic object.  In chpt.
3.1.2 some arguments are given that demonstrate a relationship of the properties of the wave functions used
in this model with the  “strong force” of the standard model. It may be assumed that the 3 rd term of  (19)
represents this strong force.

2.5 Differential equation
The approximation Ψ(r<rl) of equation (  6  ) provides a solution to a differential equation of type

−
r
6

d2 Ψ (r)

dr2
 +  

β /2
2 r 3

dΨ (r)
dr

 −  
β /2
r 4

Ψ (r) =  0  (20)

However the correct discriminant form of Ψ(r) of equ. (5) would be provided by a slightly different equation
(revised by 6 in 2nd, 2 in 1st and σ in 0th order term) :

−r
d2 Ψ (r)

dr2
 +  β /2

r3

dΨ (r)
dr

 −  β /2
σ  r4

Ψ (r) =  0  (21)

To proceed from the heuristic mathematical approach of equation (20) to one based more on physics, the
second order term is expected to represent  a quantum mechanical  term for kinetic energy including the
impulse operator. Mass may be replaced by the term We /(2 c0

2) = We,kin /c0
2, giving 

W kin=(2ħ2 c0
2  

2  W e
) d2 Ψ (r)

dr2 (22)

To recover (21) the following procedures are used as approximation
1.) We => Γ- Γ+ 2 b0 /(9 r) which is an approximation for r ≈ rm  

7
;

2.) The 3rd term of equ. (19), [b0 β r-4/4], modified by 1/σ, and equivalently [b0 β r-3/4] will be chosen for the
0th and 1st order terms of the differential equation;
3.) Since β,  technically βe, of the resulting expression has to match (21), βe may be redefined as βe*.
This gives as differential equation  (using (14)):

−( 9ħ2 c 0
2 r

Γ-1/3 Γ +1/32b0
)d2Ψ (r)

dr2
 +  

b0 βe *

4r 3

dΨ (r)
dr

 − 
b0 βe *

4 σ  r4
Ψ (r)  =  0 (23)

−
d2 Ψ (r)

dr2
 +  

[Γ -1/3 Γ +1/3 4 π ]b0
2 βe *

72 π ħ2c0
2 r4

dΨ (r)
dr

 −  
[Γ -1/3 Γ+1/3 4 π ]b0

2 βe*

72 π ħ2 c 0
2 σ  r5

Ψ (r)  ≈  

−
d2 Ψ (r)

dr2
 +  

α βe*

72 π r4

dΨ (r)
dr

 − 
α βe *

72 π σ  r5
Ψ (r)  = 0 

(24)

This gives βe* ~ 72π/α βe ≈ (2π)3/α βe. Factor (2π)3 will be canceled in (25) below leaving ~ α unaccounted
for, giving evidence that the quantum mechanical operator of kinetic energy and the 3 rd term of the expansion
of (19) for potential energy are approximately appropriate terms for the differential equation.

2.6 Model coefficients σ and τ 
To get additional insight into the relationships of this model, βn may be expressed as  

βn = 2 (2π)-3 σ τn b0
2 (25)

with parameter τn taking the role of the particle specific coefficient.

In the following electromagnetic units are required that have to be based on their relation to c 0, such as given
e.g. in Planck or cgs units. In this work SI units are kept with the modification:

c0
2  = (εc μc)-1 (26)

with εc = (2.998E+8 [m²/Jm] )-1 = (2.998E+8)-1 [J/m] 
μc = (2.998E+8 [Jm/s²] )-1 = (2.998E+8)-1 [s2/Jm] 

i.e. the numerical values for c0, 1/εc, 1/μc are identical, the units of εc, μc are expanded by [Jm], allowing to
give τe as ab initio term. From b0  follows for the square of the elementary charge:  ec

2 = 9,67E-36 [J2]. 

7 βn in (11) replaced via term  rmax,n  ≈  Γ- βn
1/3 /3  
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2.6.1 τe 
In chapter 2.2 it has been noted that τe is proportional to α9 and using α9 as starting value α0 produces a series
that describes particle energies reasonably well. 
Using constants ec and εc as defined above, τe may be defined as :

τ e '  = (2
3)

3 α9

ec ε c

= 1.676E+6 [m/J2]                      (27)

To account for the Wµ/We  relationship, factor 2/3 in  (27) should be replaced by 3/2, i.e. in the following

τ e  = (3
2)

3 α 9

ec εc

 = 
αe

ec ε c

= 1.909E+7 [m/J2]             (28)

will be used, giving ψ as 

Ψ n(r)  = exp(−{( (2
3)

6 σ τn b0
2

(2 π )3 r3)+[( (2
3)

6 σ τn b0
2

(2 π )3 r 3)
2

–  (2
3)

6 4 τn b0
2

(2π )3 r 3 ]
0.5

}/2) (29)

With (28) We may be expressed as

We =
ec

2

2 π ε c

 ∫
0

r l ,n

Ψ e(r)2r−2 dr = 
π2/3 Γ +

k τ Γ -

ec

α 2
 ≈  

20.5 ec

α 2
(30)

2.6.2 σ 
The value of 1.51 in (9)f is close to the ratio of Γ-  /Γ-  = 1.516 suggesting to give the term ~1.51 α-1 Γ- /3 a
geometrical interpretation (using (14)):

1.516 α-1 Γ- /3 =  Γ- /Γ+  4π Γ- Γ+/ka   Γ- /3 ≈ 4π/3 Γ-
3 (31)

i.e. giving a dimensionless representation of particle volume.
In the following 1.516*ka = 1.5133 will be used as parameter for σ:

σ = 8(4π Γ-
3/3 )3 = (1.5133 α-1 Γ- 2/3)3 = (ks α-1 Γ- )3 = 1.772E+8[-]        (32)

2.6.3 Factor 1.5088 of Wµ/We , τn

The factor of Wµ/We = 1.5088 relates to 1.533 via: 

(1.5133
1.5088)

3

 = (1.5133
1.5 )  = k s (33)

indicating that the particle specific term, τ, and the components of σ are not correctly separated yet. This
minor  term will  be  considered  by introducing  appropriate  terms  of  ks in  the  expression  for  the  partial
products of τn and Wn, to give:

τn = yl
m   τe ks Πk=0

n  (k s
−1α)^(3/3 k)                                                             n = {0;1;2;..}     (34)

Wn/We = (yl
m ) -1/3 1.533 Πk=0

n  (k s
1/3 α)^ (−1/3 k)                           n = {0;1;2;..} (35)

2.7 Gravitation
Expressing  energy/mass  in  essentially  electromagnetic  terms  suggests  to  test  if  mass  interaction  i.e.
gravitational attraction can be derived from the corresponding terms. The differential equation of (20)ff has
an imaginary solution for r > rl providing a principal source for interaction. A suitable starting point not only
for Coulomb but gravitational interaction as well is the second term of the expansion of Γ(1/3,βn/r3) from the
integral over r-2, featuring r-1  and implying that the Coulomb term b0 will be part of the expression for FG, i.e.
the ratio between Coulomb and gravitational force has to be a term that can be given as completely separate,
self-contained expression. 
The following is based on 3 assumptions:
1.) The second term of the incomplete gamma function Γ(1/3, β/rl

3) is a suitable starting point, implying an
r-1 potential and FG ~ b0 m1 m2.
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2.) The term for mass in FG will be replaced by We /c0
2. To get a dimensionless term the units of ec and c0 (or

εc) have to be canceled. This can be done by using model parameters 8 though not non-ambiguously. Since
the terms of these model parameters contain ec and εc anyway, the most unbiased approach for canceling is
using ec and c0 (or εc) as reference for canceling directly, effectively dropping them in the equations below. 
3.) The model provides parameters linking electromagnetic constants with particle energy /mass. These, i.e.
in particular the one of the electron, σ and τe, αe, have to be part of the equation for FG  9.
(All equations for two electrons while not indicated otherwise.)

Starting from the second term of the expansion of the incomplete gamma function Γ(1/3, β/r l
3) in the energy

form, (19) and including (We /c0
2)2, gives βe

1/3/βe
1/3 (We /c0

2)2 . We will be replaced by equ. (30), giving: 

βe
1/3

βe
1/3 ([W e]

c0
2 )

2

 = [π 2/3 Γ+

k s Γ - α
2]

2

 
ec

2

c0
4

 [ J2 s2

m2 ]    =>   [ π2/3 Γ +

ks Γ -α
2 ]

2

[ - ] = X2 * FG/ FC (36)

A rough estimation according to the example in note 8 suggests to try αe
 /σ as first approximation for 1/X:

([ π
2/3

Γ +

ks Γ - α
2 ]   

αe

σ
 )

2

[-] = 0.0602 * FG/ FC (37)

Parameter σ contains the parameter for length, Γ-, raised to 3. Assuming that for r-2 in the force term only two
Γ- are needed in the denominator, the excess Γ-  will be dropped, as well as the minor factor ks ,  giving:

([ π
2/3

Γ +

ks Γ - α
2 ]   

ks αe Γ-
2

σ )
2

[-]  = [W e[ -]]2  γ = 1.000222 * FG/ FC (38)

With γ = (ks αe Γ-
2/σ)2 = 3.46 E-52, the classical constant G = r2 FG/(m1 m2) may be expressed as:

G  = b0
γ c 4

ec
2  = 

γ c4

4 π εc

 = 6.676E-11[m5

Js 4]=1.00024 Gexp  = 1.000246.67408(31)E−11[m5

Js 4]        [6] 10   (39)

The long range forces between particles will be given as:

Fm ,n  = 
b0

r2 [1  - γ
W m W n

ec
2 ] = 

1
4 π ε c

[ec
2  - γ W m W n ] (40)

3.Discussion
3.1 Particle interaction
3.1.1 Gravitation
The results above might be interpreted in terms of superposition of particle states.
Coulomb's equation for interaction of charge, which in QED is attributed to a one photon process, could be
an  appropriate  starting  point,  where  an  additional  contribution  to  the  one  photon  interaction  might  be
proportional to the mass mi = Wi/c0

2 of the particles involved. Equation (40) is already in such a form.
However, even simpler,  within this model  particles might  interact via direct contact  in place of photon-
mediated interaction. Though using parameters such as rl all over, the particles are not at all expected to
exhibit a rigid radius. Within the limits of charge and energy conservation a superposition of many states
might  be  conceivable,  extending  the  particle  in  space  with  radius  r l appropriate  for  energy  of  each
superposition state, enabling interaction at distance r l. The “source” particle could provide the energy for a
number of n = Wsource /Wsuperpos superposition states, creating a gravitational potential proportional to Wsource at
position rl,superpos 11. 

8 E.g.: τe ~ 1/(ec εc) is the obvious choice to cancel ec εc in We εc
2 (replacing We /c0

2); εc may be cancelled by (τe/β1/3)0.5; 
considering dimensionless contributions of  r-1 = α2 Γ-

2 /(3(4π)2/3) gives (adding (2/3)3 and dropping Γ-
2): 

τe (τe/β1/3)0.5 3(4π)2/3/α2 (2/3)3 ([We] εc
2) = 0.9932 FG/ FC ≈  ([α-2] α12)2.

9 Effectively this reintroduces the parameters used in the last note, yet is considered to be less biased.
10 The precision for calculating G is higher since (38) includes the error of calculating electron energy with (30).
11 For example: a proton at distance rl,e could not only create one electron superposition state and thus recreate the 
gravitational field of the electron itself but have the capacity of producing ~1836 electron states giving the gravitational 
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As for the attractive character of gravitational force, charge does cancel in  (39) and the e in (30) obviously
has to be unsigned to avoid negative particle energy. Since for the energy of a particle W ~ ∫E 2Ψ2d3r holds
and Ψ ≤ 1, the wave function of a particle might contribute an additional factor to lower total Ψ values on
site of a second particle thereby reducing particle energy and resulting in an attractive force.
Though being quite speculative the mechanism sketched above fits to the expansion of the Γ-function in the
term of particle energy and the calculation of 2.7 demonstrates that it is possible to obtain a result for F G in
the correct order of magnitude.

3.1.2 Short range interaction - strong force
In this model,  on the length scale of particle radius, the wave functions of two particles should start  to
overlap and exert some kind of direct interaction. As demonstrated in table 1, last column, for hadrons the
model yields particle radius in the range of femtometer, the characteristic scale for strong interaction and it
seems likely to identify strong interaction with the interaction of wave functions. Interaction via overlapping
of wave functions constitutes the basis of  chemical  bonding and has been examined extensively [8].  In
general wave functions are signed (not to be confused with electrical charge), for particles above the ground
state regions of different sign exist,  separated by nodes. There are two major requirements for effective
interaction:
1) Comparable size and energy of wave functions,
2) sufficient net overlap: In the overlap region of two interacting wave functions sign should be the same
(bonding)  or  opposite  (antibonding)  in  all  overlapping regions.  If  regions  with same  and opposite  sign
balance to give zero net overlap, no interaction results.
From  condition  1)  and  the  data  of  table  1  it  is  obvious  that  the  wave  functions  of  neutrino  and
electron/positron will not show effective interaction with hadrons due to mismatch of size and energy. In the
case of the tauon the second rule is crucial. According to this model the tauon is at the end of the partial
product series for y1

0 and should consequently exhibit a high, potentially infinite number of nodes, separating
densely spaced volume elements of alternating wave function sign. Though having particle size and energy
in the same order of magnitude as other hadrons, such as the proton, the frequent change of sign of the tauon
wave function will prohibit net overlap and effective interaction.

3.2 Relation to standard model of particle physics and quantum mechanics
The  standard  model  classifies  particles  into  leptons  and  hadrons,  composed  of  two  (mesons)  or  three
(baryons) quarks. The classification into the three groups may be reproduced by this model. 
Mesons constitute a distinct group of particles due to their integer angular momentum which is considered to
be a combination of half-integer contributions in both models. In the standard model leptons are defined as
being particles not subject to strong interaction, being essentially point like. Neutrinos, electron and muon
are the particles of lowest mass which in itself might provide an explanation for this quality.  The tauon
however is  outstanding in possessing a mass almost  twice that  of  the proton and major  decay channels
involving  hadrons.  The considerations  in  chpt.  3.1.2 about  overlap  and wave  function symmetry might
provide a consistent explanation for all leptons not to be subject to strong interaction with hadrons which in
turn should prohibit detection of internal structure of these particles. 
In the model presented the y0

0 and y1
0 groups each include all three particle types. The possibility to calculate

particle energies with a single model using a uniform set of parameters does not support to identify a special
set  of  particles  as  more  “elementary”  than  others.  However,  the  standard  model  of  particle  physics
distinguishes  quite  rigidly  between  leptons  and  hadrons,  postulating  that  a  set  of  physical  objects
characterized by an almost identical set of experimental observables -  such as mass, charge, spin, magnetic
moment, well defined mean life time and the effects of electromagnetism, weak interaction and gravitation -
is based on completely different physical principles. This is quite an extraordinary claim, is it covered by
extraordinary evidence ?
The  postulate  of  leptons  not  being  subject  to  strong  interaction  is  not  verifiable  beyond  experimental
accuracy. Neutrino mass is a precedent for the fallacy to confuse a very small value with zero.
The  three  generation  model,  attributing  a  neutrino  to  each  charged lepton,  is  a  more  severe  argument.

field of the proton at rl,e.  
The superposition states might have any energy, not restricted to those of particles. The life time of such states might be 
given by the uncertainty principle though the states would not be virtual in the sense of violating energy conservation.
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However, the total number of neutrinos is  not  beyond doubt (cosmic neutrinos [5],  MiniBoone [9])  and
neutrino oscillation obscures the earlier assumption of clearly distinct particles. Last not least, a distinctive
interaction of neutrinos with the charged leptons might simply be due to the very weak strong interaction of
the particles involved not requiring any assumption beyond that. 
The standard model describes very successfully hadron properties and the reliability of the model presented
here will depend crucially on reproducing the symmetry properties as represented by the various quarks. On
a rudimentary level this is the case as demonstrated above.

The relation of this model to classical quantum mechanics may be given by interpreting Ψ(r) as probability
amplitude that is the solution of a simple single 2nd order differential equation applied to a field instead of a
particle. This implies that concepts such as orthonormalization and calculation of eigenvalues may not be
applicable. Properties have to be calculated by integration over the spatial extent of the field. 
As a consequence the quantization condition given in 2.2 is not exclusive. The solution of (16)f relates to a
set of rest mass of particles of sufficient stability to be observable experimentally but does not prohibit the
existence of particles with any other mass. As demonstrated in chpt. 2.5 a quantum mechanical approach for
Wkin yields acceptable results. 
As for the number of parameters needed to calculate energy states, the model resembles the simplicity of ab
initio quantum mechanical models, relying essentially on ec and εc as input parameters.

Conclusion
Using the exponential function Ψ(r,ϑ,φ,ec,εc) as probability amplitude for the electric field E(r) gives the
following results:
- a numerical approximation for the value of the fine-structure constant α,
- a quantization of energy levels given by a partial product of terms α^(-1/3n),
- qualitative explanations for particle properties such as the lepton character of the tauon or the decay of
   kaons,
- a possibility to quantitatively express gravitational force entirely in electromagnetic terms,
- an indication of a common base for strong force, electromagnetism and mass/gravitation, given by a
  common set of -electromagnetic- coefficients and the expansion of the incomplete gamma function.
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