

Theory and Simulation of Photon-Matter Interaction01 - 05 July 2018, ELI-ALPS, Szeged, Hungary

DUBLIN

COLLIDING LASER-PRODUCED PLASMA (CLPP) AS TARGETS FOR LASER-GENERATED EXTREME ULTRAVIOLET SOURCES

Haider M. Al-JubooriSpacLab, University College Dublin (UCD), Dublin, Ireland

haider.al-juboori@ucd.ie

5th July 2018

Layout

- Laser Produced Plasma– Orientation.
	- Principles.
	- -Properties.
	- Applications.
- -Colliding Laser Produced Plasma (CLPP)- key points.
- -CLPP: Target geometry and stagnation layer.
- Conversion Efficiency (CE).
- **Summary**

Laser Produced Plasma- Orientation

Layout

Laser Produced Plasma– Orientation.

- Principles.
- -Properties.
- Applications.
- Colliding Laser Produced Plasma (CLPP)- key points.
- LPP and CLPP Conversion Efficiency (CE).
- CLPP: Target geometry and stagnation layer.
- Summary

In-Band Conversion Efficiency (CE)

Slab Targets

e.g. $CE^{\sim}2.3\% / 2\pi$ sr for 100% Sn @ Φ = 1.6x10¹¹Wcm⁻² $CE^{\sim}2.9\%$ /2π sr for 5% Sn @ Φ = 2x10¹¹Wcm⁻² (Hayden et al. 2006, JAP 99, 9)

 $CE \approx 2.6\%$ for 100% Sn @ Φ = 1.6x10¹¹Wcm⁻² (Tao et al. 2008, APL 92, 251501)

CF increased after multiple shots on same target position to $^{\sim}4.5\%$. Lateral expansion reduced.

CO₂ pulse with $\tau = 25$ -55ns, typically FWHM = 30 ns $\Phi = 6 \times 10^9$ Wcm⁻²

(Harilal et al. 2010 APL 96, 111503)

(Nishihara et al 2008 Phys. Plasmas 15, 056708) **Maximum CE in a mass limited droplet** ~6-7% allowing for -10 excitation emission cycles/ion.

If kinetic losses are supressed, CE ~20% at 25≤T_a≤32 eV. CE values of 11.5% under optimised conditions (Basko (2016) Phys. Plasmas 23, 083114)

Haider Al-Juboori CLPP as targets for laser-generated EUV sources

To optimise CE :

- Minimise kinetic losses \rightarrow low target density
- Minimise opacity effects \rightarrow ion density $< 10^{18}$ Wcm⁻²
- Mist or vapour target \rightarrow dual pulse irradiation
- Laser wavelength should be long to optimise laser plasma coupling \rightarrow CO₂ laser
- Low density implies large plasma scale length and gentle gradients \rightarrow reflection losses reduced

Colliding Plasma Target

Layout

Laser Produced Plasma– Orientation.

- Principles.
- Properties.
- -Applications for LPP & CLPP.
- Colliding Laser Produced Plasma (CLPP)- key points.
- LFP and CLPP Conversion Efficiency (C-E).
- CLPP: Target geometry and stagnation layer.
- Summary

Colliding Plasmas – Orientation

'From the very BIG'

 NGC2346 -Planetary Nebula Distance - 2,000 light yearsExtent ~ 0.4 light years

Result of the collision of two stars– believed that one became a red giant and started to swallowed itspartner in the binary system.

Credit: Hubble Wide Field & Planeary Camera - Massimo Stiavelli (NASA)

Colliding Plasmas – Orientation

'To the very small'

'Hohlraums – Fusion energygeneration'

Multiple laser plasmas formed inside ^a single high-Z cavity e.g., Au) which provide an array of extremely bright X-ray sources. The fuel pellet is compressed by the X-ray radiation pressure. Advantage is more uniform compression with concomitant amelioration of instabilities…

10

Target Geometry for HVM of EUVL

At high repetition rates, it is not possible to use solid (slab) targets.

For EUV, rep. rate = 10^5 Hz

Layout

- Laser Produced Plasma– Orientation.
	- Principles.
	- Properties.
	- Applications.

Colliding Laser Produced Plasma (CLPP)- key points.

- LPP and CLPP Conversion Efficiency (CE).
- CLPP: Target geometry and stagnation layer.
- **Summary**

Colliding Plasmas

When two plasmas collide one observes:

- 1- Interpenetration -counter streaming plasmas pass through each other.
- 2. Stagnation -plasmas collide but do not inter-penetrate and form a 'stagnation layer'. Here the local density and temperature rise rapidly.

Could ^a plasma stagnation layer provide ^a suitable target for an EUV or BEUV source?

If n_e ~10¹⁹ cm⁻³ and the stagnation layer persisted for an interaction time matched to CO_2 pulse duration, perhaps a high CE could be attained.

Colliding Plasmas

 \blacktriangleright **Collisionality** (ξ) is determined by both the mean free path (λ_{ii}) and colliding plasma separation (*D*).

Collisionality Parameter:
$$
\xi = \frac{D}{\lambda_{ii}}
$$

$$
\lambda_{ii} = \frac{m_i^2 v_{12}^4}{4\pi e^4 Z^4 n_i ln \Lambda_{12}}
$$

- $\bullet v$ is the ion velocity -laser power density
- Z is the average ionisation -laser power density • *Z*
- \bullet n_i is the ion density
- • Λ_{12} Coulomb logarithm –10 to 30 for lab plasmas

Large ξ , interpenetrate, Small ξ , stagnate

Colliding Plasmas

 \blacktriangleright **Collisionality** (ξ) is determined by both the mean free path (λ_{ii}) and colliding plasma separation (*D*).

Collisionality Parameter: $\enspace \xi \, = \, \displaystyle \frac{D}{\lambda_{ii}}$

Large ξ , interpenetrate, Small ξ , stagnate

Key point:

One can engineer stagnation layercharacteristics; → shape, temperature ,
density etc.**for.specific.annlication**.by: density, ..etc **for specific application**, by:

- $\mathcal{L}_{\mathcal{A}}$ varying geometry (D) and,
- laser-target interaction physics (mfp, λ ii).

Flat Target Colliding Plasma

Visible imaging

Flat CP and reheat spectra

Flat Target Colliding Plasma

Why Low Efficiency!

As Nd:YAG energy increases – Larger stagnation layer better matched to CO² pulse.

Gerry O'Sullivan, et al, International Workshop on EUV and Soft X-Ray Sources (2016 Source Workshop) , Amsterdam, November 8th2016

To make a bigger stagnation layer –need more material and more interpenetration

Colliding Plasma images at Different ∆τ

Nd:YAG only	-100 ns delay			
		250 ns delay	300 ns delay	
-50 ns delay	0 ns delay			
		350 ns delay	400 ns delay	
50 ns delay	100 ns delay	450 ns delay	500 ns delay	
Gerry O'Sullivan, et al, International Workshop on EUV and Soft X-Ray Sources (2016 200 ns delay 150 ns delay Source Workshop), Amsterdam, November 8th2016 CLPP as targets for laser-generated EUV sources				21

Reheating along wedge target stagnation layer

Time Dynamics Imaging: Diff. Target Geometry

Si-Si Flat, laser power at θ=-10 Camera Exposure time = 10ns $\Delta \tau$ = 340 ns, Filter = 450 nm

Si-Si , V-120, laser power at θ=-10 Camera Exposure time = 10ns $\Delta\tau$ = 340 ns, Filter = 450 nm

Si-Si , V-80, laser power at θ=-10 Camera Exposure time = 10ns $\Delta \tau$ = 340 ns, Filter = 450 nm

Stagnation layer emission at Diff Target Geometry.

Haider Al-Juboori CLPP as targets for laser-generated EUV sources

1 25

Summary

- \blacksquare Wedge target colliding plasma better matched to CO₂
- **Better control of initial conditions could give even higher CE.**
- **Shows good energy scaling, energy out increases as input** energy increases.
- Indicates that with optimum control of pre-pulse conditions, and CE>5% is possible

