Start-to-end simulations of experiments at the European XFEL

Carsten Fortmann-Grote, Adrian P. Mancuso

Scientific Instrument SPB-SFX

July 3rd 2018

EUCALL Workshop on Theory and Simulation of Photon-Matter Interaction

Outline

- Introduction: Diffractive Imaging Experiments at the European X-ray Free Electron Laser
- The SIMEX experiment simulation platform
- Elements of s2e simulations ("Start to end" or "Source to Experiment")
	- **Photon Sources**
	- ◼ Photon propagation
	- Photon Matter Interaction and Signal Production
	- **Detectors**
- ◼ Applications to Imaging experiments
	- \Box Pulse length dependence of diffraction data "interpretability"
	- Imaging of hydrated molecules
	- Imaging on inorganic particles

European XFEL

Summary and Outlook

uropea **XFEI**

ESRF

Seven EUCALL work packages address problems and research opportunities common to x-ray and optical laser community **FELS OF EUROPE**

- WP 1 Management of the EUCALL Project
- WP 2 Dissemination and Outreach
- WP 3 Synergy of Advanced Laser Light Sources
- WP 4 SIMEX: Simulation of Experiments
	- Start-to-end simulation platform for photon-science experiments
- WP 5 UFDAC: Ultra-fast Data Acquisition

European XFEL

- Data processing for femtosecond and attosecond pulsed photon sources
- WP 6 HIREP: High Repetition Rate Sample Delivery
	- Integrated concept for decentralized sample characterization and fast sample positioning
- WP 7 PUCCA: Pulse Control and Characterization
	- Pulse arrival time measurement, wavefront sensing, transparent intensity monitor

Lund

Laseriab

A1

Nuclear Physics

attosecond

European XFEL SASE Beamlines and Scientific Instruments

Carsten Fortmann-Grote Jul 7, 2018

The three canonical SPB/SFX-type experiments

Weakly scattering objects (Biomolecules)

Nanocrystallography (SFX)

"Not-so-weakly" scattering objects (Cluster, Particles)

Why image biomolecules?

Why image single biomolecules?

- Structure of a molecule \Rightarrow function
- Understanding the structure allows, e.g., Rational Drug Design, Understanding of human biochemistry.
- Photons (X-rays) extract volumetric information from intact systems.
- Single Particle Imaging seeks to image molecules and structures that are unable to be imaged by other means. These are structures < microns in size and include membrane proteins (that don't crystallize).

Review: A. P. Mancuso, et al, J. Biotechnol. 149 (2010) 229-237

Influenza virus structure - A protein from the influenza virus

Image: J. Varghese et al, CSIRO Health Science & **Nutrition**

Non-crystalline material scatters fewer x-rays than crystalline material

Scattered x-rays is proportional to N^2 $(-100 \times 100 \times 100$ elements)

One molecules scatters like... 1 (~ a million times less than above)

- Conclusion: Need a lot more x-rays to see a single particle
- First guess solution: Just leave the x-ray tap on for longer!

European XFEL

Radiation damage: A multiphysics - multiscale problem

European XFEL

Neutze et al. Nature (2000)

- Electronic structure
- Ionization
- Nanoplasma
- Coulomb explosion
- Hydrodynamics

Ultrashort pulses (few fs) may outrun secondary ionization and hydrodynamic expansion

Free Electron Lasers produce intense pulses, short enough to support "diffract-before-destroy"

with pulse durations as short as femtoseconds

Milestone Experiments

Proof of principle: Chapman et al., Nature Physics 2, 839 (2006)

Coherent imaging of biological samples with femtosecond pulses at the **FLASH FEL: Manuco et al., New J. Physics 12, 035003 (2010)**

Three-Dimensional Reconstruction of the Giant Mimivirus Particle with an X-Ray FEL: Ekeberg et al., PRL 14, 098102 (2015)

Why we want the 3D structure

Artists: Tim Nobel & Sue Webster

Single Particle Coherent Diffractive Imaging 3D comes for free

- A sample injector provides one molecule at a time in the interaction region.
- Each molecule arrives in an unknown orientation
	- \rightarrow 3D sampling
- Coherent x-ray photons scatter from the molecule
- Scattered photons are collected in a pixel area detector
- 2D patterns are merged into a 3D diffraction volume.
- Phase retrieval algorithms reconstruct the 3D electron density map

European XFEL

The orientation problem

"Are the photon counts different because the molecule presented a different orientation to the xray beam; is the difference attributable to the statistics of a shot-noise limited signal; or does some combination of the two apply?"

N. Loh and V. Elser, Phys. Rev. E, 80, 026705 (2009).

EMC: orientation of 2D patterns into 3D volume

N. Loh and V. Elser, Phys. Rev. E, 80, 026705 (2009).

Simulations of X-Ray Laser Experiments

[10] Konijnenberg, S. Advanced Optical Technologies, 6, 423 (2017)

The phase problem

Scattering phase is lost in the intensity measurement

$$
I_c(q/2,\Omega) = \Omega \frac{d\sigma_T(\theta)}{d\Omega} \int_{-\infty}^{\infty} I_i(t) \left(|F_c(q/2,t)|^2 + S_c(q/2,t) + N_c^{free}(t) \right) dt
$$

$$
F_c(\vec{q},t) = \int d^3 \vec{r} n(\vec{r},t) e^{-i\vec{q}\cdot\vec{r}} = |F_c(\vec{q},t)| e^{i\Phi(\vec{q},t)}
$$
\nwanted

\n

Implementation: libspimage, Hawk GUI

QQ F. Maia et al., J. Appl. Cryst. 43, 1535 (2010)

Orientation and phasing are sensitive to experimental artifacts

- X-ray source properties (spatial, temporal, spectral, stochastics)
- ◼ X-ray optics imperfections (e.g. mirror height profile)
- Electronic radiation damage processes
- Detectors (nonlinear gain, noise, e-h plasma effects at high intensities)

Simulations can help address these questions

- ◼ Study how each imperfection affects measurable quantities **in isolation**
- ◼ Look at combined effect of **entire experimental setup**

⇒ Start-to-end experiment simulations

Systematic exploration of parameter space

And more:

- Serve beamline users and operators to optimize configurations
- ◼ Complement data analysis (combine forward simulation with inversion algorithms)

Our simulation tools facilitate complete "source – to – detector" simulations of SPB-SFX experiments

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654220

Diffraction

SIMEX supports start-to-end simulation of various types of photon experiments at various light sources

Sold Yoon et al. Scientific Reports 6 24791 (2016) Fortmann-Grote et al. Proc. NOBUGS 2016, 29 (2016) m Fortmann-Grote et al. Proc. SPIE, 2017, 102370S-34

SIMEX provides user interfaces and data formats for start-to-end photon experiment simulations

Calculators: python APIs to advanced simulation codes Data interfaces using metadata standards

European XFEL

Interfaced simulation codes

SIMEX is developed as a GPL'ed open source project

An example: Simulation of single-particle imaging at SPB-SFX

The test case: SPI of 2NIP with 5 keV photons at SPB-SFX

FEL Source

- Pulse duration 3 fs, 9 fs, 30 fs
- Photon energy 4.96 keV

Sample

- Two-nitrogenase protein (2NIP)
- ~5000 non-H atoms \Box Schlessman et al. J. Mol. Biology (1998)
- Iron-Sulfur ligand "SF4"
- Known crystallographic structure

European XFEL

Beamline optics

- Pair of offset mirrors
- KB nano-focussing
- Mirror height profiles included \bullet

Simulation

- 40 pulses from FAST XFEL Pulse Database
- Propagation: WPG (SPB-SFX beamline) \bullet
- PMI: ~1000 Sample trajectories 100 snapshots \bullet per trajectory
- Apply random rotation of atom coordinates to each trajectory
- 200 diffraction patterns per trajectory
	- \rightarrow 200000 patterns

XFEL Source Simulations - FAST Code

Q Saldin et al. NIMP **A429**, 233 (1999)

Resonance approximation П

$$
j_1(r, t) = \tilde{j}_1(r, t) \exp(i\omega(z/c - t)) + C.C.
$$

\n
$$
E(r, t) = \tilde{E}(r, t) \exp(i\omega(z/c - t)) + C.C.
$$

Self-consistent solutions of electric field and current density in resonance approximation Н

$$
\widetilde{E}(z, \mathbf{r}_{\perp}, t) = i \frac{\omega}{c^2} \int_0^z \frac{dz'}{z - z'} \int dr_{\perp} \widetilde{f}_1(z', \mathbf{r}'_{\perp}, t - \frac{z - z'}{c}) \exp\left[\frac{i\omega |\mathbf{r}_{\perp} - \mathbf{r}'_{\perp}|^2}{2c(z - z')}\right]
$$
\n
$$
\frac{d\mathbf{P}}{dt} = q(\widetilde{\mathbf{E}} + \mathbf{V} \times \widetilde{\mathbf{B}})
$$

The XFEL Pulses Database serves precomputed SASE pulses

 13111334771

Coherent Wavefront Propagation

implemented in SRW (github.com/ochubar/SRW) La Chubar et al. NIMP A593, 30 (2008) python interface: WPG (github.com/samoylv/WPG) Q Samoylova et al. J. Appl. Cryst. (2016)

Huygens-Fresnel convolution integral

$$
E_{\perp}(x_2, y_2, \omega) \simeq \iint dx_1 dy_1 \, K(x_2, y_2, x_1, y_1, \omega) \, E_{\perp}(x_1, y_1, \omega)
$$

Free – space propagation

$$
\mathbf{K}(x_2, y_2, x_1, y_1, \omega) \simeq -\frac{ik}{2\pi z} \exp\left\{\frac{ik}{2z} \left[(x_2 - x_1)^2 + (y_2 - y_1)^2 \right] \right\}
$$

Thin optical elements (thin lense, CRL)

$$
\mathbf{K}(x_2, y_2, x_1, y_1, \omega) = \mathbf{T}(x_1, y_1, \omega) \, \delta(x_1 - x_2) \, \delta(y_1 - y_2)
$$

Thick optical elements (e.g. grazing incidence mirror) $\mathbf{K}(x_2, y_2, x_1, y_1, \omega) \cong \mathbf{G}(x_1, y_1, \omega)$ \times exp[(iω/c) $\Lambda(x_2, y_2, x_1, y_1, \omega)$]
 $\times \delta[x_1 - \tilde{x}_1(x_2, y_2)] \stackrel{\star}{\sim} \frac{\tilde{x}^*}{\tilde{x}_1} \left[(x_2, y_1, y_2) \right]$ has received funding from the
lion's Horizon 2020 research and ogramme under grant agreement

Wavefront propagation from SASE1 Undulator to SPB-SFX upstream interaction region

 0.1 mn $0.1 m$ 0.1 mn Before 0.1_m 0.1 mr After

Figure 6. Intensity and phase maps of the SASE FEL X ray slices in a 9 fs pulse before and after propagating through the optics. The phase is color-coded. The distances between slices are about 0.2 fs.

Sold Yoon et al. Scientific Reports 6 24791 (2016)

Radiation-matter interaction: XMDYN & XATOM

- Ions move according to Newtonian mechanics
- Monte-Carlo simulation for electronic transitions according to rates/crosssections from
- Hartree-Fock-Slater electronic structure code (XATOM)
- Output:
	- Atom positions $R_i(t)$
	- form factors $f(\mathbf{k},t)$
	- structure factors $S(k, t)$

Q Jurek et al. J. Appl. Cryst. (2016)

Q Son et al. Phys. Rev. A 83, 033402 (2011)

Sold Yoon et al. Scientific Reports 6 24791 (2016)

Detector Simulations

Divide the radiation detection process into three stages:

X-ray/matter interaction

- Energy deposition in the detector material
- Based on Geant4 v10.0, using Livermore models based on Evaluated Photon Data Library (EPDL)
- Validation for previous versions exist (Pia & Batic et al., nano5, 2009, 2012, 2013)

Charge carrier transport

- Drift due to bias voltage, lateral diffusion
- Carriers accumulate to a measurable signal

Detector electronics

- Amplify and shape the signal **Electronics Simulation**
- Phenomenological approach

Simulations run in individual devices in Karabo. Together they form a X-ray Detector Simulation Pipeline.

Q Joy et al. J. Instr. **10** (2015) **Q Rüter et al. IEEE Conf. Nuclear Science Symposium 2015 (2016)**

sample molecule 2NIP

SQ Yoon et al. Scientific Reports 6 24791 (2016)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654220

35

European XFEL

The coefficient of variation quantifies the consistency of the oriented 3D diffraction volume

Oriented 3 fs diffraction patterns show 2-3 times larger variation compared to 9 fs data

Summary

- \Box Coherent diffractive imaging is a powerful technique to resolve the molecular and atomic structure of various kinds of matter.
- \Box Experiments at X-FELs have demonstrated "diffract-then-destroy" on structured targets, cells, and viruses
- Simulations support efforts to achieve sub-nm level resolution single-particle imaging.
- \Box The simulation platform SIMEX facilitates simulation of a wide range of photon experiments at various light sources.
- Applications demonstrate the usability and usefulness of this simulation toolbox.
- \Box Future developments target a tight integration of our simulation tools with data analysis frameworks (\rightarrow integrated analysis) and application in teaching and training.

Acknowledgements

A. Andreev, A. Sharma, K. Appel, M. Nakatsutsumi, L. Samoylova, U. Zastrau, T. Rüter, J. Bielecki, A. Mancuso, J. Branco, M. Bussmann, M. Garten, A. Grund, A. Hübl, K. Steiniger, R. Briggs, S. Pascarelli, M. Sander, M. Wulff, A. Buzmakov, Z. Jurek, R. Santra, B. Ziaja-Motyka, N.D. Loh, J. Reppin, F. Schlünzen, S. Yakubov, E. Schneidmiller, M. Yurkov, C.H. Yoon, T. Gorkhover, P. Fuoss, A. Dotti, P. Ho, L. Young, C. Bostedt, E. Shevchenko, T. Rajh, J. E, F. Quigong, Y. Zheng, S. Luo

Thank you for your attention

