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Outline

Introduction: Diffractive Imaging Experiments at the European X-ray Free Electron Laser
The SIMEX experiment simulation platform

Elements of s2e simulations (“Start — to — end” or “Source — to — Experiment”)
| Photon Sources
| Photon propagation
| Photon — Matter Interaction and Signal Production

| Detectors

Applications to Imaging experiments
| Pulse length dependence of diffraction data “interpretability”
| Imaging of hydrated molecules
| Imaging on inorganic particles

Summary and Outlook
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Seven EUCALL work packages address problems and
research opportunities common to x-ray and optical laser
community

WP 1 - Management of the EUCALL Project s
eli M.
i €li

Nuclear Physics
L]

> ) eli

WP 2 - Dissemination and Outreach

WP 3 - Synergy of Advanced Laser Light Sources

bt
& < attosecond

WP 4 - SIMEX: Simulation of Experiments

| Start-to-end simulation platform for photon-science experiments

WP 5 - UFDAC: Ultra-fast Data Acquisition

| Data processing for femtosecond and attosecond pulsed photon sources
WP 6 - HIREP: High Repetition Rate Sample Delivery

| Integrated concept for decentralized sample characterization and fast sample positioning
WP 7 - PUCCA: Pulse Control and Characterization

| Pulse arrival time measurement, wavefront sensing, transparent intensity monitor

This project has received funding from the
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European XFEL SASE Beamlines and Scientific Instruments
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linear accelerator SASE 2 SASE 1 SASE 3
for electrons (10.5, 14.0, 17.5 GeV) 0.05 nm - 0.4 nm 0.05 nm - 0.4 nm 0.4 nm - 4.7 nm
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High Energy

HED Density Science

Materials Imaging

MID and Dynamics

Optional space for
two undulators and
four instruments

Femtosecond
FXE X-ray Experiments

Single Particles, Clusters,
SPB and Biomolecules and

Serial Femtosecond
SFX Crystallography

Small Quantum

SQS Systems

Spectroscopy &
SCS Coherent Scattering
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The three canonical SPBISFX-type experiments

Weakly scattering objects Nanocrystallography (SFX) “Not-so-weakly” scattering objects
(Biomolecules) (Cluster, Particles)

Single photon hits

Liquid Jet

~

~
~

~
Aerosol injector -

. ~
Aerosol injector -

Interaction Point

Tiled detector

Tiled detector

Interaction region Interaction region

XFEL pulse XFEL pulse

Simulated diffraction pattern
around a Bragg peak produced
from an icosahedral nanocrystal
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Why image biomolecules?

Why image single biomolecules?
Structure of a molecule = function

Understanding the structure allows, e.g., Rational
Drug Design, Understanding of human
biochemistry.

Photons (X-rays) extract volumetric information
from intact systems.

Single Particle Imaging seeks to image molecules

and structures that are unable to be lmgged by Influenza virus structure
other means. These are structures < microns in - A protein from the
size and include membrane proteins (that don't influenza virus
: Image: J.Varghese et al,
crystallize). CSIRO Health Science &
Review: A. P. Mancuso, et al, J. Biotechnol. 149 (2010) 229-237 Nutrition
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Non-crystalline material scatters fewer x-rays
than crystalline material

Scattered x-rays is proportional to N2
(~ 100 x 100 x 100 elements)

=4 One molecules scatters like... 1
(~ a million times less than above)

* Conclusion: Need a lot more x-rays to see a single particle
* First guess solution: Just leave the x-ray tap on for longer!

n " This project has received funding from the
L European XFEL . i European Union’s Horizon 2020 research and
*

* innovation programme under grant agreement
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Radiation damage: A multiphysics — multiscale problem

— Photoelectron Auger electron ) 0 Neutze et al. Nature (2000)
38.3:873
0.0 0.0 .0 . Ele_ctro_nlc structure
OO0 0O Q * lonization
Lz_ 8 888 8 * Nanoplasma
—— 550 00 * Coulomb exp_losmn
* Hydrodynamics

Element T, (fs)

c 107 Ultrashort pulses (few fs) may outrun secondary
N 7.1 . . . . .

o is lonization and hydrodynamic expansion

P 2.0

S 1.3
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Free Electron Lasers produce intense pulses, short
enough to support “diffract-before-destroy”

free-electron lasers

—
—

3 t =
synchrotron . generation
radiation sources

2. generation o

L 1. generation Il ‘

modern X-ray tubes |

W™ first X-ray tube

relative peak brilliance (first X-ray tube

[ year

with pulse durations as short as femtoseconds

* . . . .

PRl This project has received funding from the
* *
* *

I B W European XFEL European Union’s Horizon 2020 research and

innovation programme under grant agreement
bl No 654220

11



Simulations of X-Ray Laser Experiments Carsten Fortmann-Grote Jul 7, 2018 12

Milestone Experiments
| Proof of principle: Chapman et al., Nature Physics 2, 839 (2006)

'| Coherent imaging of biological samples with femtosecond pulses at the
FLASH FEL: Manuco et al., New J. Physics 12, 035003 (2010)

| Three- Dlmen5|onl Reconstructlon of the Giant Mimivirus Particle
with an X-Ray FEL: Ekeberg et al., PRL 14, 098102 (2015)

(n) (h)
~125 nm
This project has received funding from the
L European Union’s Horizon 2020 research and

innovation programme under grant agreement
No 654220
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Why we want the 3D structure

Carsten Fortmann-Grote Jul 7, 2018

Artists: Tim Nobel & Sue Webster
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Single Particle Coherent Diffractive Imaging

3D comes for free

A sample injector provides one
molecule at a time in the
interaction region.

Each molecule arrives in an
unknown orientation
- 3D sampling

Coherent x-ray photons scatter
from the molecule

Scattered photons are collected
in a pixel area detector

2D patterns are merged into a
3D diffraction volume.

Phase retrieval algorithms

reconstruct the 3D electron
density map

L | European XFEL

Particle injection

O

X-ray pulse

Diffraction pattern
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The orientation problem

Carsten Fortmann-Grote Jul 7, 2018

||

O =MW

“Are the photon counts different because the molecule presented a different orientation to the x-
ray beam; is the difference attributable to the statistics of a shot-noise limited signal; or does

some combination of the two apply?”
N. Loh and V. Elser, Phys. Rev. E, 80, 026705 (2009).

I B Y European XFEL
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EMC: orientation of 2D patterns into 3D volume

3D model W (p) Model tomographs W,
Expansion

random initialization
Measurements K.

Compression
Md;\m /

N 2, Pi(WKy
\ ! =
o M: W,‘j — Wij = M gata
2 Pu(W)

k=1 . . . . LS
normalized likelihood function

Witi(p) =C-M-E- W;(p) Maximization
N. Loh and V. Elser, Phys. Rev. E, 80, 026705 (2009).
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L1 Konijnenberg, S. Advanced Optical Technologies, 6, 423 (2017)

The phase problem

, , F{3
Object space:
support constraint

O

Diffraction space:
amplitude constraint

Scattering phase is lost in the
intensity measurement

1(a/2.0) =@ [ 30y (02,0 + a/2.0) + N (0))
Y =0
F.(q,t) = / Brn(Ft) e T = |F.(q,t)] '@V W) 2
A A A 70
wanted measured 22 Implementation: libspimage, Hawk GUI

L1 F. Maia et al., J. Appl. Cryst. 43, 1535 (2010)
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Orientation and phasing are sensitive to experimental
artifacts

X-ray source properties (spatial, temporal, spectral, stochastics)
X-ray optics imperfections (e.g. mirror height profile)
Electronic radiation damage processes

Detectors (nonlinear gain, noise, e-h plasma effects at high intensities)

***** This project has received funding from the
* * European Union’s Horizon 2020 research and
* * innovation programme under grant agreement
No 654220

L | European XFEL

* 4 Kk

18



Simulations of X-Ray Laser Experiments Carsten Fortmann-Grote Jul 7, 2018

Simulations can help address these questions

Study how each imperfection affects measurable quantities in isolation
Look at combined effect of entire experimental setup
= Start-to-end experiment simulations

Systematic exploration of parameter space

And more:

Serve beamline users and operators to optimize configurations

Complement data analysis (combine forward simulation with inversion
algorithms)

This project has received funding from the
I European XFEL European Union’s Horizon 2020 research and
innovation programme under grant agreement

No 654220
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Our simulation tools facilitate complete “source - to — detector”
simulations of SPB-SFX experiments

sSimS2E: The prototype for SIMEX
LT Yoon et al. Scientific Reports 6 24791 (2016)

Signal generation

Target/Sample Diffraction
Biomolecules
Photon propagation
Photon Source Coherent wavefront =
XFEL
—

This project has received funding from the
European Union’s Horizon 2020 research and c
innovation programme under grant agreement |
No 654220
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SIMEX supports start-to-end simulation of various
types of photon experiments at various light sources

L1 Yoon et al. Scientific Reports 6 24791 (2016)
) Fortmann-Grote et al. Proc. NOBUGS 2016, 29 (2016)

[Rg) Fortmann-Grote et al. Proc. SPIE, 2017, 102370S-34

Signal generation

Spectroscopy
Diffraction
Photon Source Photon propagation [nelastic scattering
XFEL Fully coherent ,
Synchrotron Raytracing e B
Optical Laser Hybrid e g =
Pump-probe _ 3 PR
— X-ray pulse WS ; ‘
ey = Target/Sample e
ecoons srom . to siecron Atoms, molecules, clusters
Solids

Liquids, Plasmas, WDM

This project has received funding from the
European Union’s Horizon 2020 research and -
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SIMEX provides user interfaces and data formats
for start-to-end photon experiment simulations

Photon source ' .
« FEL Photon propagation Photon-Matter Interaction

*  Wave optics * Molecular Dynamics

* Synchrotron _ _
+ Plasma source * Ray optics * Particle-In-Cell
+ Optical Laser * Hybrid * Radiation-Hydrodynamics
Sample trajectory
Source radiation field Focus radiation field v HESlele SEh s -

* Atom positions
* Density, temperature, pressure

Data analysis Signal generation
* Structure solving Detector * Scattering ‘

* Dynamics * Pixel detector * Absorption

* Thermodynamics * Emission
Ideal Signal

Detector response * Scattered light intensity

* Secondaries (e, ions)

Results

Calculators: python APIs to advanced simulation codes

Data interfaces using metadata standards

This project has received funding from the
I European XFEL European Union’s Horizon 2020 research and

innovation programme under grant agreement
No 654220
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Interfaced simulation codes

X-ray source

FEL
FEL
Synchrotron

FAST
Genesis/Ocelot
Oasys

Yurkov, Schneidmiller (DESY)
S. Reiche / G. Geloni et al.
L. Rebuffi, M. Sanchez-Rio

Propagation

coherent wavefront prop.
X-ray tracing

WPG/SRW
Oasys

Samoylova, Buzmakov, Chubar
L. Rebuffi, M. Sanchez-Rio

X-ray photon matter interaction

Atoms, molecules, clusters

XMDYN & XATOM

Z.Jurek etal. (CFEL)

MCMD

P.Ho etal (ANL)

HF/LDA H. Quiney et al. (U Melbourne)
1D Rad-Hydro Esther Colombier et al. (CEA)
Optical photon matter interaction |2D Rad-Hydro Multi2D R. Ramiz et al.
3D PIC P1IConGPU M. Bussmann et al. (HZDR)
molecule, cluster scattering |SingFEL C.H. Yoon (LCLS)
Plasma SAXS paraTAXIS T. Kluge et al. (HZDR)
Signal generation Plasma Compton/Thomson | XRTS G. Gregori, CFG

Crystal diffraction
EXAFS

FEFF8L

CrystFEL/pattern_sim

T. White et al. (CFEL)
J.J. Rehr et al. (U Washington)

Detector simulation

2D Pixel detectors

X-CSIT, Karabo

T. Ruter et al. (XFEL)

Analysis/Reconstruction

Pattern orientation
Phasing

EMC
DM

N.D. Loh (Singapore)

European XFEL

* X 5%
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SIMEX is developed as a GPL'ed open source project

() GitHub -eucallsof' x

[ SIMEX Users Manu X

€| Travis Cl % AboutUs Blog Status Help Carsten Fortmann-Grote x

eucall-software / simex_platform
My Repositorie + Current  Branche Build History  Pull Requests More options =
| openPMD/openPMD-api H 234 Default Branch
Duration: 3 hrs 23 min 24
dration S s £ sec v/ master # 677 passed f3beaSe
[ Finished: 6 days ago v v v v v
ir 58 builds [i1 3 months ago @© GitHub
«/ openPMD/openPMD-validator # 173
Duration: 3 min 19 sec Active Branches
{5 Finished: 6 days ago
v python3 # 716 passed 6d21552
v | (M v |
+/ openPMD/openPMD-viewer # 391 7 37 builds [77] about a month ago @© Carsten Fortmann-Grote
Duration: 11 min 9 sec
& Finished: 19 days ago v py3_numba # 697 passed 3a06¢ce0 v | |
7 3builds about a month ago @© Carsten Fortmann-Grote
 eucall-software/simex_platf H 716
v/ develop # 674 passed 547971
Duration: 56 min 45 sec NV Vi X Vi v
[i Finished: about a month ago f* 189 builds 3 months ago @© Carsten Fortmann-Grote
 eucall-software/pysingfel H 7 V diffractors # 670 passed dcae21ld
e ‘ © ot . A X A < o
Duration: 12 min 57 sec if7 36 builds 3 months ago arsten Fortmann-Grote
Finished: about a month ago
v hydro # 662 passed efa8a7f
) | 7| 7| 7 B
7 121 builds [i] 3 months ago @© Richard Briggs
v crystfel ## 564 passed 7729¢99
) v b X
7 17 builds 5 months ago @© Carsten Fortmann-Grote
e DA AU St g e U DU S ML ST W G I AR D AT | UM W IV T DU WAL LI U I LU A
the simulation code and install on his system.

This project has received funding from the
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An example:
Simulation of single-particle imaging at
SPB-SFX

This project has received funding from the
European Union’s Horizon 2020 research and

innovation programme under grant agreement
No 654220

L | European XFEL
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The test case: SPI of 2NIP with 5 keV photons at SPB-SFX

FEL Source
* Pulse duration 3 fs, 9 fs, 30 fs
* Photon energy 4.96 keV

Beamline optics
* Pair of offset mirrors
* KB nano-focussing
e Mirror height profiles included

Sample
 Two-nitrogenase protein (2NIP) i i
Simulation
° ~5000 non-H atoms 2 Schlessman et al. J. Mol. Biology (1998)

* 40 pulses from FAST XFEL Pulse Database
* Propagation: WPG (SPB-SFX beamline)

*  PMI: ~1000 Sample trajectories 100 snapshots
per trajectory

*  Apply random rotation of atom coordinates to
each trajectory

e 200 diffraction patterns per trajectory
- 200000 patterns

* lron-Sulfur ligand “SF4*
* Known crystallographic structure

This project has received funding from the
European Union’s Horizon 2020 research and
innovation programme under grant agreement
No 654220
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XFEL Source Simulations — FAST Code L1 Saldin et al. NIMP A429, 233 (1999)

Resonance approximation

ji(r 1) = ji(r, ) explio(z/c — t)) + C.C.
E(r,t) = E(r,t)exp(io(z/c —t)) + C.C.

Self-consistent solutions of electric field and current density in resonance approximation

! . r2
~ R0) z—z w|lr, — 1|
E(z,r ,t) = 1— dr Z Kt — exp -

( 1 ) C2 OZ— J‘ L.Il 1 c 2('(2_2)

P _ E+VvxB

This project has received funding from the
European Union’s Horizon 2020 research and

innovation programme under grant agreement
No 654220
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The XFEL Pulses Database serves precomputed SASE pulses

X = B — xpD:XFEL Photon X =3
& C )} & Secure | https://inxfel.eu/xpd w
_ * FLASH @ 84 eV
European New Request Help ~ Where are my requests
XFEL » XFEL SASE1

 5.0keV

input folder XFEL_S1_04.96keV_12.0GeV_0100pC_SASE_U_BLI_2014-05-01_FAST v e 8.9keV
Start time (fs) 0 * 124 kev
* 248 keV

End time (fs) 33
Number of XY nodes 25 * XFEL SASE3
* 0.53 keV
Slices sampling 12 . 071 keV
* 0.77 keV
Point of output in z 35 '
* 0.80 keV
From Run number 1 v * 1 18 keV
To Run number 1 v
Email carsten.grote@xfel.eu
HDFS filename's prefix (optional) | 5yey/ 100pc_nz35_25nodes_12slices
»

This project has received funding from the
European Union’s Horizon 2020 research and
innovation programme under grant agreement
No 654220
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Coherent Wavefront Propagation
iImplemented in SRW (github.com/ochubar/SRW) L1 chubar et al. NIMP A593, 30 (2008)
python interface: WPG (github.com/samoylv/WPG) £ samoylova et al. 3. Appl. Cryst. (2016)

Huygens-Fresnel convolution integral

E (x5,y,, w) >~ ffdxl dy, K(x,, y,, X, y1, ) E (x, y;, ®)
Free — space propagation
ik

ik
K(XZ’ y‘2sxlvyl’ C()) = _EGXP{Z[(XZ _xl)2 + (yz _yl)z]}

Thin optical elements (thin lense, CRL)
K(x,, y5, X1, y1, ) = T(xy, y;, @) 8(x; — x,) 8(y; — y»)

Thick optical elements (e.g. grazing incidence mirror)
K(x,, v,,x,, v, @) 2G(x, y,, ®)

X exp[(iw/c') A(X5, y5, X, Vis (U_)]

L X (S[K‘I - '%l (.\'2, }"‘2

* X % ) has received funding from the
* ( ‘ v ) - .
P \ A2 Y2 ) Jion’s Horizon 2020 research and
* >gramme under grant agreement
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Wavefront propagation from SASE1 Undulator to SPB-SFX
upstream interaction region

Side view Focal
plane
|
' o
| s
OM1 OM2 Powerslits  NHE NVE : 3
— I I
| E— I . :
|
- | — — —
plane | \
. - |
Top view elliptical | (
|
.
plan-e , :
- ! too e LI B LA oo ooy
| w— | 5
plane- | &
- elliptical |
plane |
|
2465 257.9 903.9 904.7 927 928 9327 !

Distance from source point [m]
Figure 6. Intensity and phase maps of the SASE FEL X ray slices in a 9 fs pulse before and after propagating through the
optics. The phase is color-coded. The distances between slices are about 0.2 fs.

12 Yoon et al. Scientific Reports 6 24791 (2016)

This project has received funding from the
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Radiation-matter interaction:
XMDYN & XATOM

lons move according to Newtonian

mechanics

Monte—Carlo simulation for electronic
transitions according to rates/cross-

sections from

Hartree-Fock-Slater electronic structure

code (XATOM)
Output:
] Atom positions R(t)

| form factors f(k,t)

| structure factors S(k, t)

L | European XFEL
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L1 Jurek et al. J. Appl. Cryst. (2016)
L1 Son et al. Phys. Rev. A 83, 033402 (2011)

172
XMDYN Program | XATOM [—3VZ 4+ V(O)ly(r) = ey (r)
* 1/3
) Z p(r) 3
Loading | Call with electron config. V(ir)= —= Pr === p(r)
input parameter init. on the fly ( ) r + |r — r’| 2|\
} Ny
| _ p(r) = 9l (x)di(r)
RE-Block Call wlilh elelctron config. ic T
> parameter update on the fly
all config.
¥ d
Call with electron config. _PI(T) = Z [FI’ﬂIPI’(t)_ FI‘,I/P[(T)]
MC-Block "o dt -
parameter update on the fly I'#1
* 2T 2
Co-Block Call wlilh ele'ctron config. F1_>[’ - ? | <'(/)I/ |Hrad | w[> |
parameter update on the fly

Saving
snapshot
No
b Last timestep?

‘Yes 7o <_/\/\/‘/ (F ]

.@@

i

Program
end

@
@
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Propagating the

Diffraction boamiine optics
— E(r,t)
P ‘
ionl s |
k2.0 =00 [ (Ea2 0 ez e |
l Radiation |
damage ‘
} of the particle v
: PMI *
" Coherent scattering from XMDYN
bound electrons A
" Incoherent (Compton) |
scattering from bound R (1)
electrons f(k,t)
. Diffraction erns S(k,t)
= Compton scattering from free mdiaﬁ;no;:::ged
electrons particles

L1 Yoon et al. Scientific Reports 6 24791 (2016)

This project has received funding from the
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innovation programme under grant agreement
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Detector Simulations

Divide the radiation detection process into three stages

X -ray/matter interaction
Energy deposition in the detector material

I;ﬁ:ﬂz:t delE;)I:)erct]i):)n * Based on Geant4 v10.0, using Livermore models
based on Evaluated Photon Data Library (EPDL)
Active layer Charge cloud » Validation for previous versions exist (Pia & Batic
(Si) / spreads et al., nano5, 2009, 2012, 2013)
Charge carrier transport
B B B * Drift due to bias voltage, lateral diffusion
Si \ /‘ * Carriers accumulate to a measurable signal
ignal
shaping Pixel > Detector electronics
— boundaries * Amplify and shape the signal

Electronics Simulation
* Phenomenological approach

Simulations run in individual devices in Karabo. Together they form a X-ray Detector Simulation Pipeline.

Particle simulation Charge Simulation Electronics Simulations
Input: Input: Input: ;

Photon distribution Interactions Charge Matrix
Output: Output: Output:

Interactions Charge Matrix Simulated image

L Joy et al. J. Instr. 10 (2015)
L1} Riiter et al. IEEE Conf. Nuclear Science Symposium 2015 (2016)

This project has received funding from the
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innovation programme under grant agreement
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photons per pulse = 1-10" 5-10% 1-10%
0 -5 0 5 10 40 -2 0 20 40
100 1509 b us Lo sl 15008 40000 fu v Ly TRy T
: 9 f 330100 30 f E3.0100
10n] 10102 L0100 T S
) r v | .
£ [ £20100] E20100
| 1] Ls0.1012 Q
10% 7 g 2010 [0 o 1.0101 4 F1.0100
g [ g

T
o

avg. displacement (&)

sample molecule 2NIP

average displacement (A)

Atom Tpuger(FS)
C 10.7 I -
N 7.1 e time (fs) e

O 4.9 diffracted photons = 70+/-12 230+/-28 234+/-29

Photon number histogram

# bound electrons FEL power (W)

o
o

3500

S 1.3

2500

Fe 2.0

£ 1500

Photon number histogram

3500 Photon number histogram

3500

3000 3000

2500 2500

£ 2000 £ 2000

£ 1500 £ 1500

1000, 1000 1000

500 500 500

% % 60 80 100 26 Ta0 9 200 250 £ 00 :

hotons Photons

L1 CFGetal., IUCrJ (2017) £ Yoon et al. Scientific Reports 6 24791 (2016)

o 350 700
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The coefficient of variation quantifies the consistency
of the oriented 3D diffraction volume

5 independent orientation runs Average rms o(q) = rms/average
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Oriented 3 fs diffraction patterns show 2-3 times
larger variation compared to 9 fs data
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Summary

Coherent diffractive imaging is a powerful technique to resolve the molecular and atomic structure
of various kinds of matter.

Experiments at X-FELs have demonstrated “diffract-then-destroy” on structured targets, cells, and
viruses

Simulations support efforts to achieve sub-nm level resolution single-particle imaging.

The simulation platform SIMEX facilitates simulation of a wide range of photon experiments at
various light sources.

Applications demonstrate the usability and usefulness of this simulation toolbox.

Future developments target a tight integration of our simulation tools with data analysis
frameworks (- integrated analysis) and application in teaching and training.
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Thank you for your attention
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