

Perovskite Oxides: Spin Transport and Dynamics

Jiwuer Jilili, Mousumi Upadhyay Kahaly

Computational and Applied Materials Science (CAMS)

2018.07.03.

Outline

- Introduction & Motivation
- Computational perspective
- ► LaNiO₃/CaMnO₃; BiMnO₃/SrTiO₃
- Electronic structure and spin transport

► Summary

ei

http://pubs.rsc.org/en/content/articlelanding/2017/cp/c6cp08698e/unauth#!divAbstract https://phys.org/news/2014-03-x-ray-laser-electricity-magnetism.html

Perovskite Oxides

ei

A(yellow): rare-earth or alkali-metal cation B(black): transition metal cation

Manganites: $LaMnO_3$, $CaMnO_3$ Titantes: $SrTiO_3$, $LaTiO_3$, $CaTiO_3$ Ferrites: $BiFeO_3$, $LuFe_2O_4$

											Transiti Metal	on Is							
	Group	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	Period 1	1 H																	2 He
	2	3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
	3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 CI	18 Ar
'n	4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
,11	5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
	6	55 Cs	56 Ba	57-71	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
3	7	87 Fr	88 Ra	89-103	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
10) ₃																		
				57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
				89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

Band gap tuning: optoelectronic application; Efficient solar cells; Transparent conducting oxides.

SrTiO₃: 3.2 eV; CaMnO₃: 3.1 eV; BiMnO₃: 0.9 eV; LaMnO₃: 1.7 eV

Perovskite Oxides: spin orderings

e

NM:SrTiO₃, PbTiO₃...

FM: La(Sr)MnO₃, BiMnO₃, SrRuO₃

AFM: LaMnO₃, CaMnO₃...

Motivation

i ei

https://en.wikipedia.org/wiki

Variety of novel properties: •Strongly correlated electron system •High spin polarization •2-dimensional electron gas •Metal-insulator transition •Interfacial ferromagnetism

Wide application range: Electronics, Spintronics(spin current in magnetic devices), Photonics, Optoelectronics, Photovoltaics...

Power conversion effeciency ~ 22% (2017)

Computational perspective

eli

Density functional theory (DFT)

- Computational quantum mechanical modelling
- Compute the electronic structure of matter

• Ground state properties of a system

 $\implies \text{Electron density} \\ n(\mathbf{r}) = \sum_{i} \psi_{i}^{*}(\mathbf{r}) \psi_{i}(\mathbf{r})$

Functionals: Functions of another functions

Exchange interactions, magnetic moments, magnetic ground states...

⇒ Excited state properties (DFPT)

Time-dependent DFT (TDDFT)

(Quantum Espresso, VASP, Wien2K...)

https://www.spsnational.org/the-sps-observer/spring/2015/theory-experiment

🏼 eli

Spin wave excitations: measuring methods

Spin: an intrinsic angular momentum of the electron

The two possible spin polarisations of the electron

http://cronodon.com/Atomic/quantum_angular_momentum.html

Experimental techniques: neutrons, electrons, photons scattering experiment

Springer Verlag (2005)

Theoretical methods:

Ab initio calculations:(DFT,time-dependent DFT, Frozen magnon approach...) Atomistic spin dynamics; Micromagnetics simulations;

Experimental findings

Large-amplitude spin dynamics driven by a THz pulse in resonance with an electromagnon^[1]

- •Time-resolved resonant soft x-ray diffraction
- •Intense THz pulses (1.8)

ei

- •Using electric field of light on a sub picosecond time scale
- •Control the spin dynamics of the multiferroic TbMnO₃

(0a0)

(0q0)

Schematic of the experiment

1.8 THz

pump

Н_{тнг}[[001] 1 2 Frequency (THz)

probe

LaAlO₃/SrTiO₃ heterointerface

A high-mobility electron gas at the $LaAlO_3/SrTiO_3$ heterointerface^[2]

ei

https://www.slideshare.net/nirupam12/ charge-spin-and-orbitals-in-oxides

- •Pulsed laser deposition
- •Polarity discontinuity
- •Hole-doped interface $(SrO)^{0}/(AlO_{2})^{-}$ is insulating
- •Electron-doped interface $(LaO)^+/(TiO_2)^0$ is conducting
- •High-mobility electron gas >10000cm²/v.s [2] A. Ohtomo et al, Nature **427**, 423, 2004

LaNiO₃/CaMnO₃ Superlattices

Interfacial Ferromagnetism in LaNiO₃/CaMnO₃ Superlattices^[3]

• Pulsed laser deposition

ei

- CaMnO₃: AFM insulator, LaNiO₃: paramagnetic metal
- Thickness dependent metal-insulator transition
- Ferromagnetism at interface

[3] A. J. Grutter et al, PRL **111**, 087202 (2013)

Polar discontinuity

LaO

CaO

Role of polar compensation in interfacial ferromagnetism of LaNiO₃/CaMnO₃ superlattices^[4]

MnO₂ •Polar compensation due to polar mismatch: $(MnO_2)^0$, $(LaO)^{+1}$ $(CaO)^{0}$, $(NiO_{2})^{-1}$

- •Magnetic exchange interaction: spin flip process
- •Ferromagnetic signal for all superlattices
- •Ni magnetism

eli

[4] C. L. Flint et al,, Phys. Rev. Materials 1, 024404 (2017)

LaNiO₃, CaMnO₃ bulk (DFT)

- •Coulomb interaction term U: correlated nature of the localized d-orbitals •Ferromagnetism is favorable when U> 0 eV for $LaNiO_3$
- •Antiferromagnetism is favorable $U \le 3$ eV for CaMnO₃
- •Bulk electronic structure is well reproduced

ei

LaNiO₃/CaMnO₃ superlattice

- •O-Mn-O off-centering along z axis toward p-IF up by up to 0.05Å
- More tilted MnO_6 octahedra than NiO_6 octahedra
- •Orthorhombic (a⁻a⁻c⁺) tilt pattern^[5]

ei

- •Insulator to metallic phase transition
- •Charge transfer and polar discontinuity

[5] Glazer, A. M. Acta Cryst. B 28, 3384 (1972)

LaNiO₃/CaMnO₃ superlattice

eli

C		n-type interface						
Spi	Ni 1	Ni 1						
		n-type in	nterface		Ļ	↓		
n-type i	nterface	Ni↓	Ni ↓		Ļ	Ļ		
Ni 1	Ni 1	Ni 1	Ni ↑		Ni 1	Ni 1		
p-type i	nterface	p-type i	nterface		p-type interface			
Mn 1	Mn 1	Mn 1	Mn 1		Mn 1	Mn ↑		
1	1	↑	1		1	1		
1	1	↑	1		1	1		
1	1	1	1		1	1		
1	1	↑	1		1	1		
1	1	↑	1		1	1		
1	1	↑	1		1	1		
1	1	1	1		î	1		
Mn 1	Mn 1	Mn ↑	Mn 1		Mn ↑	Mn 1		

- Charge transfer from LaNiO₃ to CaMnO₃
- Spin exchange in LaNiO₃ layers: AFM ordering
- Magnetic moments: Ni: $0.81 \sim 1.19 u_{B}$; Mn: $3.02 \sim 3.07 u_{B}$
- Interplay between exchange interactions due to mixed valence states at interface

BiMnO₃/SrTiO₃ Heterointerface

(another interesting candidate)

Origin of Interface Magnetism in $BiMnO_3/SrTiO_3$ and $LaAlO_3/SrTiO_3$ Heterostructures^[6]

- •LaAlO₃,BiMnO₃,SrTiO₃ non-magnetic insulators
- •Interfacial magnetism at both systems
- •O vacancy induced magnetism

ei

•Exchange interaction between interface states and localized moments of Mn³⁺

Bulk BiMnO₃, SrTiO₃(DFT)

► SrTiO₃: Cubic perovskite, non-magnetic insulator

- ► BiMnO₃: Highly distorted, ferromagnetic insulator
- ► BiMnO₃: Low temperature monoclinic phase
- ► Small BiMnO₃ band gap
- ► Mn magnetic moments: $3.8u_{\rm B}$
- ► Ferromagnetic VS Antiferromagnetic

Thermoelectricity

Thermoelectricity: direct conversion of heat into electricity or vice vesra

ei

Thermoelectric properties and ZT versus doping concentration at 300 K for n-type Si80Ge20

DOI: 10.1039/b822664b

BiMnO₃/SrTiO₃ superlattice

- ► Different behavior of two spin channels
- ► Sharp DOS near the Fermi level indicates promising thermoelectricity
- ► O vacancy at different layers, spin flip when O vac at BiO layer
- ► Strong hybridization of Mn and Ti

eli

Thermoelectricity

Thermoelectricity: direct conversion of heat into electricity or vice vesra

ei

Thermoelectric properties and ZT versus doping concentration at 300 K for n-type Si80Ge20

DOI: 10.1039/b822664b

Effect of two spin channels

- The contributions in DOS from different orbitals from spin-up and spin-dn channel are different, so different transport behavior is also expected from both the channels.
- Metallic state for one channel corresponds to higher electrical conductivity.
- Semiconducting state corresponds to lower electrical conductivity.

ei

- Thermal excitation of spin moments can alter the magnetic state of materials.
- Corresponding transport properties can alter with different spin channe

https://doi.org/10.1016/j.physleta.2017.07.034

BiMnO₃ lattice distortion and TE figures

• Ferromagnetic spin exchange plays dominant roles in these perovskite IFs.

e

Thermoelectricity

• Figure of merit of approximately 1.5 (600 K) can be achieved in current 'good thermoelectric' systems

eli

- $BiMnO_3/SrTiO_3 \sim 1 (200-400 \text{ K})$
- With modification in induced spin channels, perovskite IF can be very efficient 'thermoelectric material'
- Spin exchange and dynamics play important role
- Thermoelectric materials based on perovskite oxides, spin caloritronics

J. Mater. Chem. **21**, 4037 (2013)

Conclusion

ei

- •Perovskite materials are good candidates for electronic structural, spin transport and dynamical application
- •The interfacial magnetism and metal-insulator transition were achieved in LaNiO₃/CaMnO₃; Role of spin dynamics
- •Good thermoelectric property of BiMnO₃, tunability via different spin channels, doping concentration.
- •Manipulation of TE of superlattice via strain, defect engineering
- •Spin dependent heat transport, spin caloritronics.

Thank you

Investigate: Excited states, optical, charge, spin dynam

Package:Octopus, MD, Qprob etc

https://www.sciencedirect.com/science/article/pii/S03759601163 693

It has been shown also that a spin current can be induced by heating with ultrafast laser pulses [101], [102].

heat-driven spin currents

BoltzTraP code is based on the Semi-classical Boltzmann transport theory

eli

Future scope: Ultrafast magnetization dynamics

Future Plan

Hybrid Perovskites with 2D materials

- *Photo-induced electron—hole pairs in the pristine perovskite recombine within a few picoseconds^[1].
- *Photoelectronic applications
- *Optoelectronic applications

[1] Adv. Mater. 27, 41–46 (2015)

Perovskites for efficient thermoelectrics

Half-metallic perovskite superlattices with colossal thermoelectric figure of merit^[7]

- ► Insulator to a half-metallic transition via Co doping
- ► High value of the spin Seebeck coefficient
- ► Colossal figure of merit of 0.45*10⁻³K⁻¹
- ► Spin-caloritronics

eli

[7] J. Mater. Chem. A, 1, 8406, 2013

CaTiO₃ oxide mineral, 1839, Russia

A: Rare-earth or alkali-metal cation B: 3d, 4d, 5d transition metal cations

ABO₃ pervoskite structure

bulk ABO3, layered perovskites, double perovskite, thin films, superlattices, organo-halide perovskites...

Manganites: LaMnO₃, CaMnO₃, BiMnO₃, La_{1-x}Sr_xMnO₃, SrMnO₃ etc Titantes: SrTiO₃, LaTiO₃, CaTiO₃, BaTiO₃ etc Ferrites: BiFeO₃, LuFe₂O₄ etc Nicklates: LaNiO₃ etc

Experimental findings

Enhanced photovoltaic performance of perovskite CH₃NH₃PbI₃ solar cells with freestanding TiO₂ nanotube array films^[3]

>90% of light absorption
Reduced charge recombination rate
Improved conversion efficiency
Enhanced photovoltaic performance
Solar cell device

ei

[3]Chem. Commun., 50, 6368, 2014

Fig. 3 (a) UV-Vis absorption of $CH_3NH_3PbI_3$ sensitized TiO_2 nanoparticle and TiO_2 nanotube electrode. (b) Normalized adsorption spectra as a function of TiO_2 nanotube thickness compared with TiO_2 nanoparticle electrodes.

BiFeO₃/La_{2/3}Sr_{1/3}MnO₃ superlattice

ei

Ising model: In order to map out the energetic interactions between the magnetic and rotational degrees of freedom, we utilizea modified Ising model. The Ising Model was orginally developed to study properties of interacting lattice systems, such as ferromagnetic materials.19In the model, an arbitrary lattice ofNsites is set up. A given siteican be filledwith a particle with some relevant property specified, such as spin, and is assigned an occupation term, oi, where oi= 0 if siteiis empty, and oi= 1 if siteiis occupied. The energy contribution due to the presence of a particle instead as the field term, hi. Energy contributions due to particle interactions in neighboring sites arecaptured by the nearest-neighbor interaction term, ji, kwhereiandkare two distinct sites. These nearest-neighborinteractions can be attractive or repulsive. Further interactions can also be accounted for, such as next-nearest-neighbor interactions. These would be assigned a different set of interaction termsji, k. The total energy of theN-sitelattice is then calculated as:

The Ising Model allows derivation of a reduced-order Hamiltonian for the system under consideration. Simulatedformation enthapies are used to calculate relevant Ising Model coefficients for the system. Through the use ofcoefficients derived with the Ising Model, the new Hamiltonian can be implemented in a Monte Carlo simulation larger bulk structures. These simulations introduce and allow the quantification of the effect of thermal disorderon the system. Coefficients derived from the Ising Model were then used to simulate larger bulk cells with higher degree of