$\overline{\text{Ultrafast fragmentation}}$ of N_2^{2+} .

Murali Krishna Ganesa Subramanian, Robin Santra and Ralph Welsch

Centre for Free Electron Laser science, DESY, Hamburg

3rd July 2018

> Traditional molecular dynamics assumes Born-Oppenheimer approximation.

- > Fails in cases, such as photoexcited dynamics, electron transfer, and surface chemistry.
- > To develop a machinery which is computationally efficient to study non-adiabatic dynamics.
- > Time-resolved X-ray/IR pump-probe experiments on N_2 at SLAC using Linac Coherent Light Source (LCLS)¹.

M. Glownia and others, Opt. Express, 18, 17620, (2010)

- > Traditional molecular dynamics assumes Born-Oppenheimer approximation.
- > Fails in cases, such as photoexcited dynamics, electron transfer, and surface chemistry.
- > To develop a machinery which is computationally efficient to study non-adiabatic dynamics.
- > Time-resolved X-ray/IR pump-probe experiments on N_2 at SLAC using Linac Coherent Light Source (LCLS)¹.

M. Glownia and others, Opt. Express, 18, 17620, (2010)

- > Traditional molecular dynamics assumes Born-Oppenheimer approximation.
- > Fails in cases, such as photoexcited dynamics, electron transfer, and surface chemistry.
- > To develop a machinery which is computationally efficient to study non-adiabatic dynamics.
- > Time-resolved X-ray/IR pump-probe experiments on N_2 at SLAC using Linac Coherent Light Source (LCLS)¹.

M. Glownia and others, Opt. Express, 18, 17620, (2010)

- > Traditional molecular dynamics assumes Born-Oppenheimer approximation.
- > Fails in cases, such as photoexcited dynamics, electron transfer, and surface chemistry.
- > To develop a machinery which is computationally efficient to study non-adiabatic dynamics.
- > Time-resolved X-ray/IR pump-probe experiments on N_2 at SLAC using Linac Coherent Light Source (LCLS)¹.

¹J. M. Glownia and others, Opt. Express, **18**, 17620, (2010)

Motivation

> 1s core e⁻ X-ray photoionization of N₂ followed by Auger decay onto valence N₂²⁺ states in the presence of IR probe.

Perform mixed quantum-classical molecular dynamics and compare with Quantum Dynamics (QD)¹.

¹A. M. Hanna, O. Vendrell, A. Ourmazd and R. Santra, Phys. Rev. A, 95, 043419, (2017) Murali Krishna Ganesa Subramanian, Robin Santra and Ralph Welsch

Tully's Fewest Switches Surface Hopping (FSSH)

> <u>Electrons</u> \rightarrow quantum mechanically and <u>nuclei</u> \rightarrow ensemble of classical trajectories R(t), evolves on potential energy surface (PES).

> A trajectory hops from $\mathrm{S}_0=j$ to $\mathrm{S}_1=k$ with probability $P_{j
ightarrow k}$

$$\mathcal{P}_{j
ightarrow k} = rac{-\Big[\sum_{k
eq j} -2 \Re[
ho_{jk} \dot{ec{R}} \cdot ec{d}_{kj}] - 2 \Re[i
ho_{jk} ec{E}(t) \cdot ec{\mu}]\Big] \Delta t}{
ho_{jj}}$$

Tully's Fewest Switches Surface Hopping (FSSH)

> <u>Electrons</u> \rightarrow quantum mechanically and <u>nuclei</u> \rightarrow ensemble of classical trajectories R(t), evolves on potential energy surface (PES).

> A trajectory hops from $S_0 = j$ to $S_1 = k$ with probability $P_{j \rightarrow k}$

$$P_{j
ightarrow k} = rac{- \Big[\sum_{k
eq j} -2 \Re [
ho_{jk} \dot{ec{R}} \cdot ec{d}_{kj}] - 2 \Re [i
ho_{jk} ec{E}(t) \cdot ec{\mu}] \Big] \Delta t}{
ho_{jj}}$$

Wigner sampling of the ground state normal mode coordinate of N₂.

Wigner sampling reproduces initial quantum wavepacket.

 $\Delta E = 0.14$ eV (Wigner) & $\Delta E = 0.12$ eV (Quantum wavepacket).

- > Wigner sampling of the ground state normal mode coordinate of N₂.
- Wigner sampling reproduces initial quantum wavepacket.

 $\Delta E = 0.14 \text{ eV}$ (Wigner) & $\Delta E = 0.12 \text{ eV}$ (Quantum wavepacket).

- > Wigner sampling of the ground state normal mode coordinate of N₂.
- Wigner sampling reproduces initial quantum wavepacket.

 $\Delta E = 0.14 \text{ eV}$ (Wigner) & $\Delta E = 0.12 \text{ eV}$ (Quantum wavepacket).

> Wigner sampling of the ground state normal mode coordinate of N₂.

Wigner sampling reproduces initial quantum wavepacket.

 $\Delta E = 0.14$ eV (Wigner) & $\Delta E = 0.12$ eV (Quantum wavepacket).

Ground and core hole state of N_2 (relative to -2971.64 eV).

Assume: trajectories are lifted vertically upwards to N_2^+ .

8 N_2^{2+} states.

 $X^{1}\Sigma_{g}^{+}$ and $1^{1}\Sigma_{u}^{+}$ - local minimum in the Franck-Condon region.

> $1^1 \Delta_g$, $2^1 \Sigma_g^+$ and $1^1 \Pi_u$ - outside the Franck-Condon region.

Ground and core hole state of N_2 (relative to -2971.64 eV).

Assume: trajectories are lifted vertically upwards to N_2^+ .

8 N_2^{2+} states.

 $X^1\Sigma_g^+$ and $1^1\Sigma_u^+$ - local minimum in the Franck-Condon region.

> $1^1 \Delta_g$, $2^1 \Sigma_g^+$ and $1^1 \Pi_u$ - outside the Franck-Condon region.

Ground and core hole state of N_2 (relative to -2971.64 eV).

Assume: trajectories are lifted vertically upwards to N_2^+ .

> 8 N_2^{2+} states.

> $X^1\Sigma_g^+$ and $1^1\Sigma_u^+$ - local minimum in the Franck-Condon region.

> $1^1 \Delta_g$, $2^1 \Sigma_g^+$ and $1^1 \Pi_u$ - outside the Franck-Condon region.

Ground and core hole state of N_2 (relative to -2971.64 eV).

Assume: trajectories are lifted vertically upwards to N_2^+ .

> 8 N_2^{2+} states.

 $> X^1\Sigma_g^+$ and $1^1\Sigma_u^+$ - local minimum in the Franck-Condon region.

> $1^1 \Delta_g$, $2^1 \Sigma_g^+$ and $1^1 \Pi_u$ - outside the Franck-Condon region.

Ground and core hole state of N_2 (relative to -2971.64 eV).

- Assume: trajectories are lifted vertically upwards to N_2^+ .
- > 8 N_2^{2+} states.
- $> X^1\Sigma_g^+$ and $1^1\Sigma_u^+$ local minimum in the Franck-Condon region.

 $> 1^1 \Delta_g$, $2^1 \Sigma_g^+$ and $1^1 \Pi_u$ - outside the Franck-Condon region.

Ground and core hole state of N_2 (relative to -2971.64 eV).

- Assume: trajectories are lifted vertically upwards to N_2^+ .
- > 8 N_2^{2+} states.
- $> X^1\Sigma_g^+$ and $1^1\Sigma_u^+$ local minimum in the Franck-Condon region.

 $> 1^1 \Delta_g$, $2^1 \Sigma_g^+$ and $1^1 \Pi_u$ - outside the Franck-Condon region.

Auger spectrum

FSSH vs QD

Auger spectrum

FSSH vs QD

 N_2^{2+} yield as a function of Auger energy

FSSH vs QD

 N_2^{2+} yield as a function of Auger energy

Gaussian shaped IR-pulse.

IR pulse	$I_0 \ [10^{14} \ { m W} \ { m cm}^{-2}]$	$\Delta_{\rm IR}$ (FWHM)
		[fs]
k = 0	-	-
k = 1	3.37	7.07

Gaussian shaped IR-pulse.

IR pulse	$I_0 \ [10^{14} \ { m W}]$	Δ_{IR}
	cm^{-2}]	(FWHM)
		[fs]
k = 0	-	-
k = 1	3.37	7.07
k = 2	0.84	28.28

Gaussian shaped IR-pulse.

IR pulse	<i>I</i> ₀ [10 ¹⁴ W	$\Delta_{\rm IR}$
	cm^{-2}]	(FWHM)
		[fs]
k = 0	-	-
k = 1	3.37	7.07
k = 2	0.84	28.28
k = 3	0.56	42.43

✓ SFB

> Total N_2^{2+} yield.

- $> {
 m N}_2^{2+} {
 m yield}_{\parallel}$ (0° $< heta < 30^\circ$ & 150° $< heta < 180^\circ$).
- $>~{
 m N_2^{2+}~yield_{/}}$ (30 $^{\circ}< heta<60^{\circ}~\&$ 120 $^{\circ}< heta<150^{\circ}$).
- $>~{
 m N_2^{2+}}$ yield $_{ot}$ (60 $^\circ < heta < 120^\circ$).

✓ SFB

- > Total N_2^{2+} yield.
- $> N_2^{2+}$ yield_{||} (0° $< \theta < 30^\circ$ & 150° $< \theta < 180^\circ$).
- $>~{
 m N_2^{2+}~yield_{/}}$ $(30^\circ < heta < 60^\circ ~\& 120^\circ < heta < 150^\circ).$

 $>~\mathrm{N_2^{2+}}$ yield $_{\perp}$ - (60 $^\circ < heta < 120^\circ$).

≪SFB

- > Total N_2^{2+} yield.
- $> \ {
 m N_2^{2+}} \ {
 m yield}_{||}$ (0° $< heta < 30^\circ \ \& 150^\circ < heta < 180^\circ$).
- $> \mathrm{N_2^{2+}~yield_{/}}$ (30° $< heta < 60^\circ$ & 120° $< heta < 150^\circ$).

 $>~\mathrm{N_2^{2+}}$ yield $_{\perp}$ - (60 $^\circ < heta < 120^\circ$).

- > Total N_2^{2+} yield.
- $> \ {
 m N}_2^{2+} \ {
 m yield}_{||}$ $(0^\circ < heta < 30^\circ \ \& 150^\circ < heta < 180^\circ).$
- $> \mathrm{N}_2^{2+} \mathrm{yield}_{/}$ (30° $< heta < 60^\circ$ & 120° $< heta < 150^\circ$).
- $>~{
 m N_2^{2+}}$ yield $_{\perp}$ (60 $^\circ< heta<120^\circ$).

FSSH - Adiabatic representation

FSSH - Adiabatic representation

FSSH - Adiabatic representation

DESY.

DESY.

Total N_2^{2+} yield.

> FSSH simulations found to be in very good agreement with QD.

- > FSSH simulations were performed in adiabatic representation.
- > The computation cost was greatly reduced which allows to investigate complex systems irrespective of their size.

> FSSH simulations found to be in very good agreement with QD.

> FSSH simulations were performed in adiabatic representation.

> The computation cost was greatly reduced which allows to investigate complex systems irrespective of their size.

- > FSSH simulations found to be in very good agreement with QD.
- > FSSH simulations were performed in adiabatic representation.
- > The computation cost was greatly reduced which allows to investigate complex systems irrespective of their size.

Thank you for your kind attention!

Tully's Fewest Switches Surface Hopping (FSSH)

- > <u>Electrons</u> \rightarrow quantum mechanically and <u>nuclei</u> \rightarrow ensemble of classical trajectories R(t), evolves on potential energy surface (PES).
- > In the presence of an external field $ec{E}(t).$
- > Solve Time-dependent Schrödinger Equation along R(t).

$$i\hbar\dot{c}_k(t)=\sum_j c_j(t) [V_{kj}-i\hbarec{R}\cdotec{d}_{kj}-ec{E}(t)\cdotec{\mu}]$$

> Probability of hopping $P_{j
ightarrow k}$

$$P_{j \to k} = \frac{-b_{kj} \Delta t}{\rho_{jj}},\tag{1}$$

> where
$$b_{kj} = \sum_{k
eq j} -2 \Re[
ho_{jk} \dot{ec{R}} \cdot ec{d}_{kj}] - 2 \Re[i
ho_{jk} ec{E}(t) \cdot ec{\mu}]$$

(adiabatic representation).

N_2^{2+} yield_{||} - (0 $^\circ < heta < 30^\circ$ & 150 $^\circ < heta < 180^\circ$).

 ${
m N}_2^{2+} {
m yield}_/$ - $(30^\circ < heta < 60^\circ \ \& \ 120^\circ < heta < 150^\circ).$

Additional results

 N_2^{2+} yield $_\perp$ - (60 $^\circ < heta < 120^\circ$).

