


Advances at EUCALL RIs

Graham Appleby – European XFEL Facility

This project has received funding from the *European Union's Horizon 2020* research and innovation programme under grant agreement No 654220

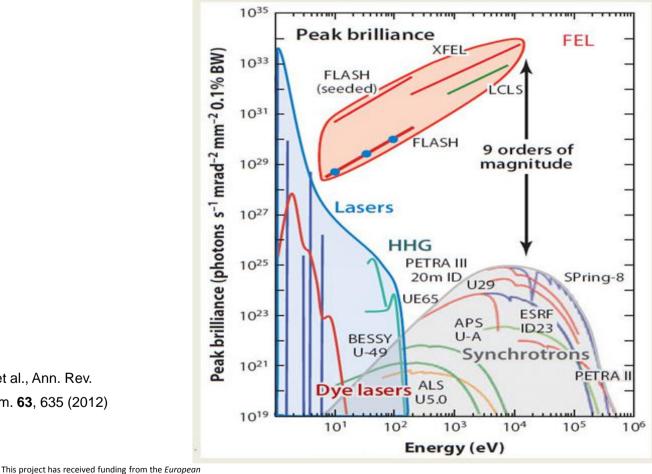
Overview

- Light sources and their developments
 - Synchrotron, XFEL, optical laser driven sources
 - EUCALL
 - Comparison of capabilities and strengths
- Highlight of Experimental capabilities
- Challenges
 - Non-linearity
 - Ultrafast magnetism
- Summary

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654220

Light Sources in Europe

- Accelerator-based RIs (SR, FEL)
 - Successful and large user program
 - Increasing complexity (OLs, FELs, ...)
 - X-rays reach diffraction limit & non-linear regime
 - Optical laser methods applied
- Optical-laser based RIs (ELI, LLE faci.)
 - High power laser (HPL)
 - New and ramping up
 - HPLs as sources of UV and x-ray beams
 - UV/x-ray methods provided to users



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654220

Comparison of light sources

Strength in laser driven sources: - Ultra short pulses (fs, as)

- Well synchronized with other lasers, for advanced pump-probe experiments

[jitter free]

J. Ullrich et al., Ann. Rev. Phys Chem. 63, 635 (2012)

Union's Horizon 2020 research and innovation

programme under grant agreement No 654220

European Cluster of Advanced Laser Light Sources

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654220

Graham Appleby, European XFEL, 02/07/2018 Theory and Simulation of Photon-Matter Interaction, ELI-ALPS

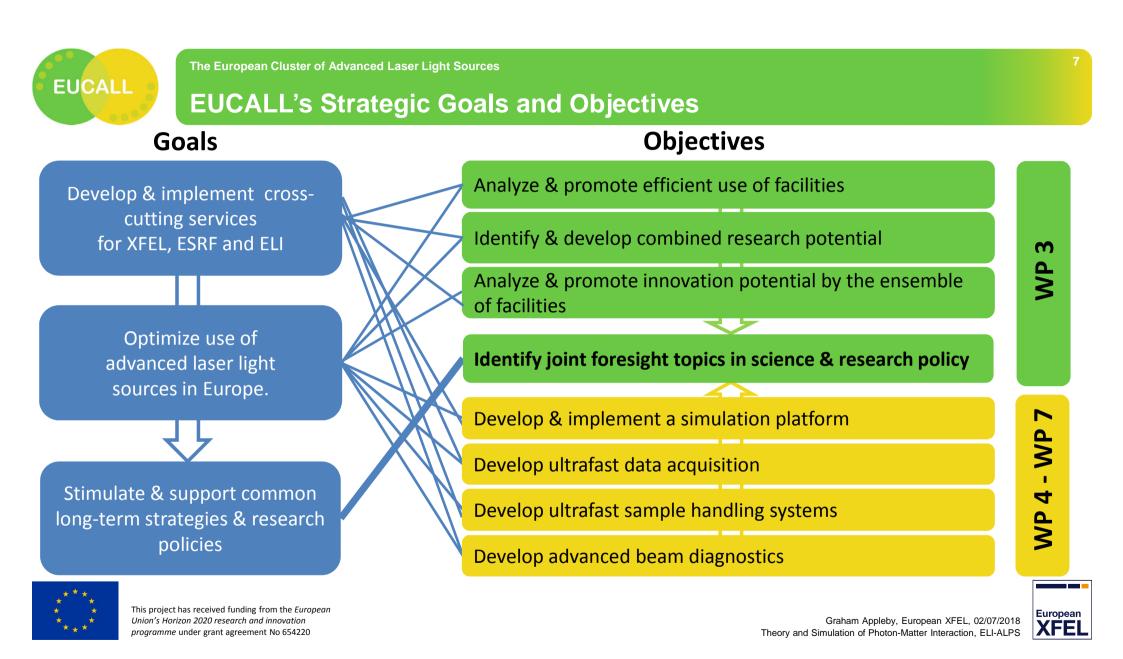
European Cluster of Advanced Laser Light Sources

EUCALL is a network between large-scale user facilities for:

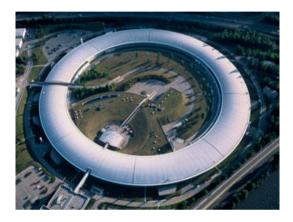
- free-electron laser (FEL) radiation
- synchrotron radiation (SR)
- optical laser radiation

Under EUCALL, they work together on:

- common technologies and research opportunities
- tools to sustain this interaction in the future


Facts and figures:

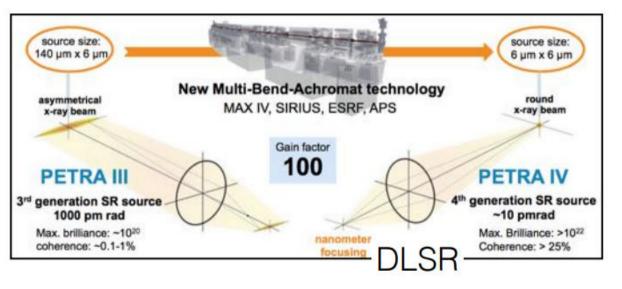
- 7M€ from Horizon 2020 for project period Oct 2015 Oct 2018
- 11 partners from nine countries, two further clusters, two associate partners


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654220

Synchrotron facilities

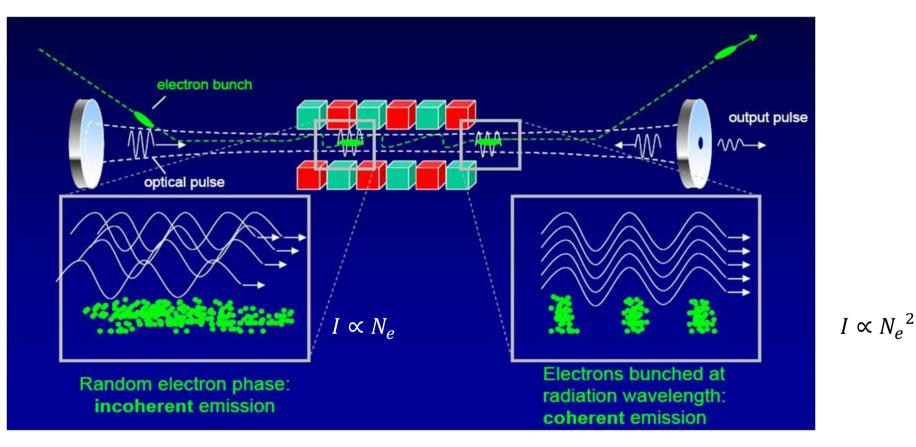
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654220

- ~ps pulses
- IR, UV 200 keV
- Incoherent radiation
- High stability, reliable



Synchrotron facilities – DLSR upgrades

- Shorter pulses
- Lower emittance
- 100x higher brilliance
- Coherent fraction increased to ~20%

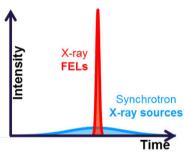


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654220

Free-electron laser radiation

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654220

European XFEL and DESY



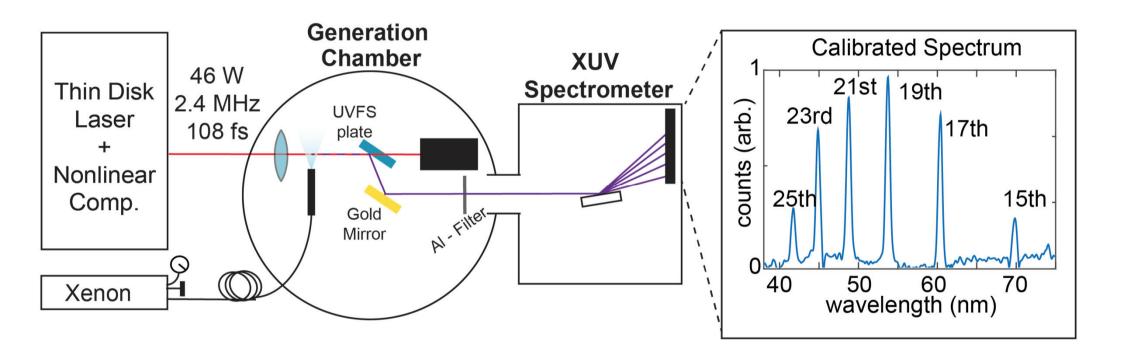
* * * * * * *

FEL vs SR

Parameter	Storage Rings	X-ray FEL				
Wavelength Range	2-3+ decades typically	1+ decades (multiple undulators)				
Peak Brightness (ph/s/mr²/mm²/0.1%BW)	10 ²² – 10 ²⁴	10 ³¹ – 10 ³³ (10 ⁹ times higher than SR)				
Average Brightness (ph/s/mr²/mm²/0.1%BW)	10 ¹⁹ - 10 ²¹	10 ²⁰ - 10 ²²	8			
Minimum Pulse Width (fs)	~10,000	~5				
Coherence	Limited transverse spatial coherence	Transverse spatial coherence, limited temporal coherence without seeding				
Stapility Position Time	<.01% (with ~0.1% energy spread) < 0.1 σ (~10 μ m H, ~0.3 μ m V) < 0.1 σ (~1 ps, ~0.2 ps low α)	0.01-0.03% wo / self seeding ~0.1 σ ~100 fs				
Number of Beamlines	Large (~30-60)	Limited (6 endstations per undulator)				

This project has received funding from the *European* Union's Horizon 2020 research and innovation programme under grant agreement No 654220

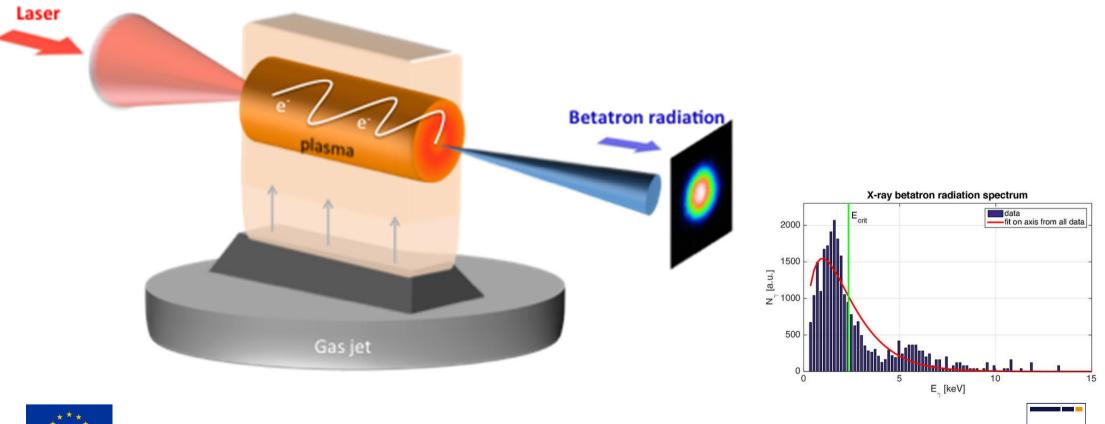
Graham Appleby, European XFEL, 02/07/2018 Theory and Simulation of Photon-Matter Interaction, ELI-ALPS


FELs around the world

• M. Altarelli, MPI

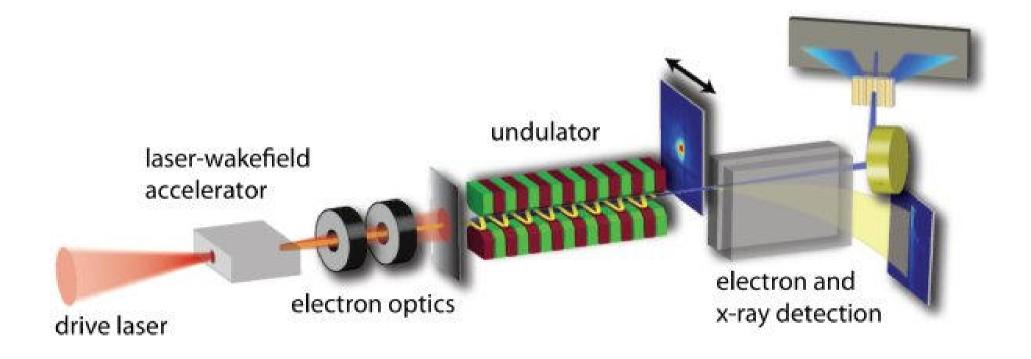
X-ray FEL's worldwide I							X-ray FEL's worldwide, II						mpsd
Facility	FLASH, GERMANY	LCLS I, US	SACLA, JP	FERMI, ITALY S	PAL-XFEL, KR	DCLS, DALIAN, China S	Facility	European XFEL	SWISS-FEL, CH	Shanghai FEL-TF, China	Shanghai FEL-UF, China	i LCLS II, US	Shanghai SCRF
Max. electron	1.25	14.3	8.5	1.5	10	0.3	La Nu			S	S		
energy (GeV)							Max. electron	17.5	5.8	0.8 GeV (1.6)	1.6	4 (=>8?)	8
Wavelength	3-55	0.1-4.4	0.06-0.3	4 - 100	0.06-10	50 - 150	energy (GeV)						
range (nm)				10 ¹³ - 10 ¹⁴	1011-1013	1.4 X 10 ¹⁴	Wavelength range (nm)	0.05-4.7	0.1 – 7	3 – 10 (2 – 40)	1.2 - 10	0.25 - 4.7	0.05 - 3.3
Photons/pulse	~ 3 X 10 ¹³	~ 10 ¹²	2 x 10 ¹¹	1019 - 10	10 10		Photons/pulse	~ 10 ¹²	~3.6 X 10 ¹⁰			2 1011 -	~ 1011 -
	A 14 4031	2 x 10 ³³	1 x 10 ³³	10 ³¹	1.3 x 10 ³³		Photons, pulse					2 1010	10 ¹²
Peak brilliance	1 X 10 ³¹		60	10 (50)	60	1 - 50	Peak brilliance	5 x 10 ³³	7 X 10 ³²				
Pulses/second	5000 - (8000)	120	00		ante	2016/2017	Pulses/second	27 000	100	10 - 50	10 - 50	10 ⁵ - 10 ⁶	10°
Date of first	2000	2009	2011	2011	2016	Lonoiter	Date of first beam	2017	2017/18	2017	2019	2021	2022/23
beam		1 San San San San					Date of me						

Laser driven UV/x-ray sources: High Harmonic Generation


**** * * ***

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654220

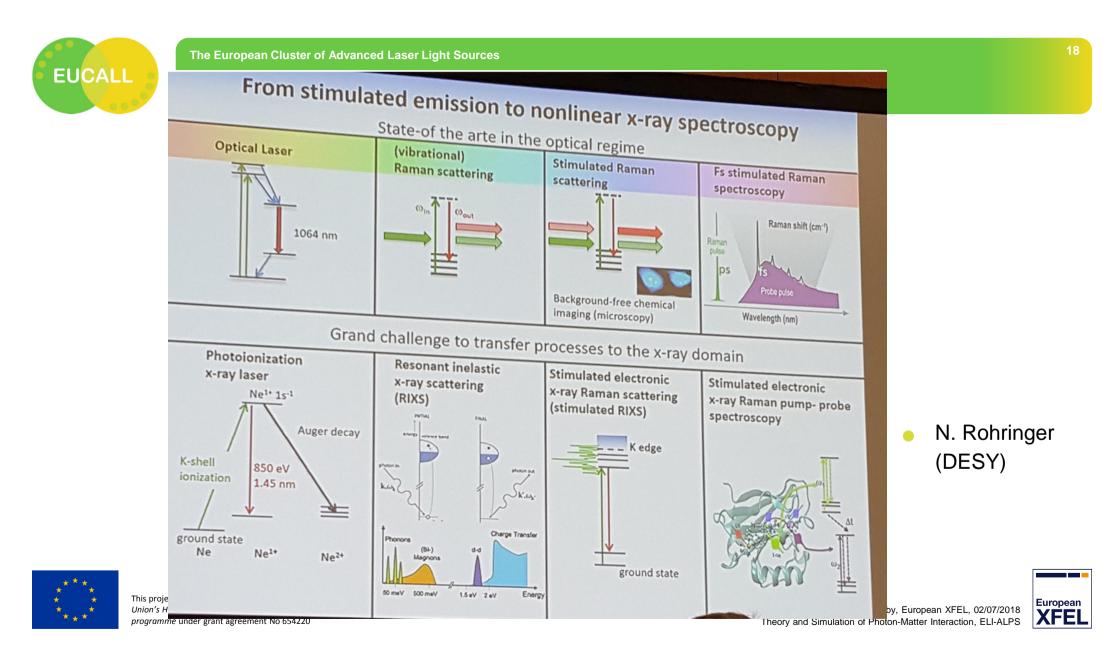
Laser driven UV/x-ray sources: Betatron source



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654220

Laser driven UV/x-ray sources: laser-wakefield + undulator

This project has received funding from the *European* Union's Horizon 2020 research and innovation programme under grant agreement No 654220


Suite of advanced experimental capabilities

- Femotsecond and sub-femtosecond pulses of UV, soft x-ray, (very) hard x-ray
- High intensity, narrow focus
- X-ray diffraction & scattering, absorption&emission spectroscopy, imaging …
- Optical lasers for pump-probe measurements (at ELI, jitter free)
 Variable time-delay [-47 50 ps with 1 fs steps at SACLA]
- High power optical lasers for dynamic compression
- High repetition rate FELs from 100s of Hz up to 4.5 MHz
 High power Optical lasers up to kHz

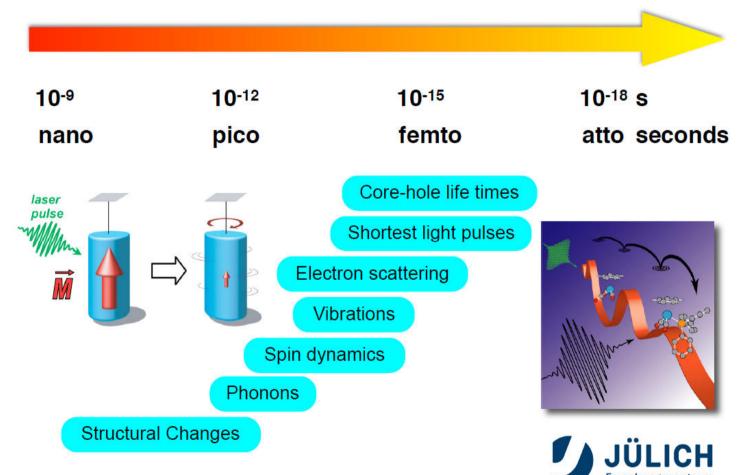
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654220

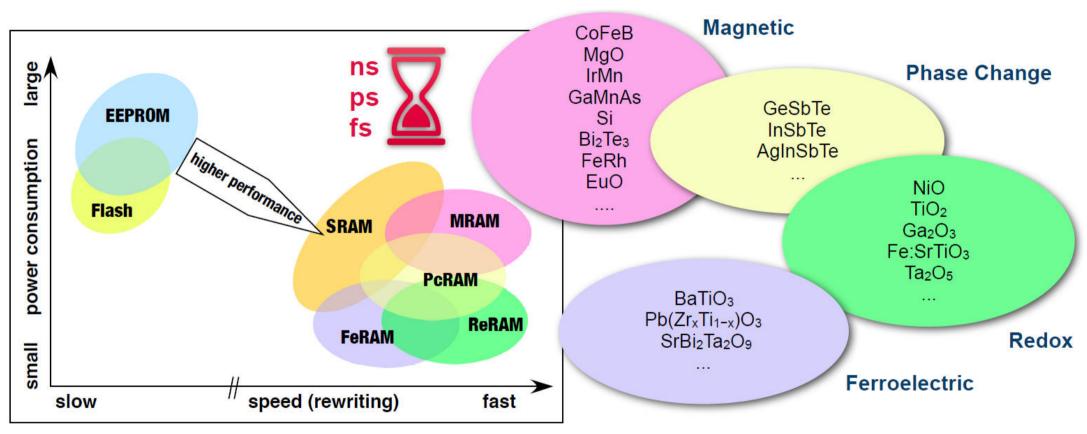
X-ray sources and non-linearity

- Synchrotron $10^5 \sim 1 \text{ keV photons} / 10^{-11} \text{ s on a } \mu\text{m}^2 \text{ spot}$
 - Synchrotron: $< E_{rms} > ~10^5$ V/cm
- XFEL 10¹³ ~1 keV photons/ 7 x 10⁻¹⁴ s on a µm² spot
 ▶ XFEL: < E_{rms} > ~10¹⁰ V/cm
- $< E_{at} > ~ 5 \times 10^9 \text{ V/cm}$

(E-field between nucleus and electrons in atom)

Experimentalists often attenuate the XFEL beam to avoid non-linear effects in experiments

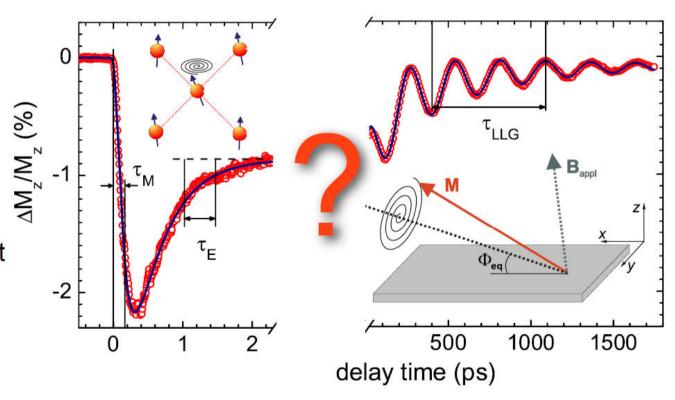

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654220


Timescales from nano - attoseconds

- electron dynamics and correlations
- energy transfer processes
- spin dynamics and relaxation
- electronic / structural phase transitions
- nonlinear / nonequilibrium phenomena
- C.-M. Schneider
 FZJülich

Challenges for non-volatile memory

challenge to in-depth characterization – static, dynamic, in-operando


C.-M. Schneider
 FZJülich

Linking time-scales in magnetism

- there is a whole world between "fast" and "ultrafast"
- linking mechanisms on different time scales
- crucial for understanding ultrafast "switching" and relaxation

Koopmans, B., Ruigrok, J. J. M., Longa, F. D.and De Jonge, W. J. M., Unifying Ultrafast Magnetization Dynamics, Phys. Rev. Lett. 95 (2005), 267207-267204.

C.-M. Schneider
 FZJülich

Summary

Next 10 years will see big steps forward in experimental capabilities

- synchrotrons and diffraction-limit upgrade (DLSR)
- FELs and upgrades
- optical laser radiation (ELI)

Experiments at modern laser light sources will require

- advances in theory and interpretation of results
- advanced simulations to accompany experiment results

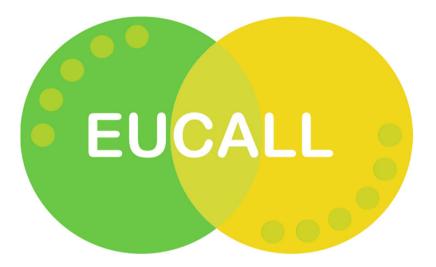
Possible collaborations would be a desired outcome of this meeting

- New collaborations between members of the meeting
- Proposals for funding between a group of instutites

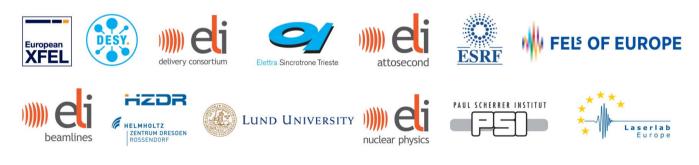
Possible steps

Possible collaborations would be a desired outcome of this meeting

- New collaborations between members of the meeting
- Proposals for funding between a group of instutites


- Collect all presentations and make available on workshop website
- Mailing list for all participants theory@eucall.eu

?


This project has received funding from the *European* Union's Horizon 2020 research and innovation programme under grant agreement No 654220

Thank you for your attention

www.eucall.eu / contact@eucall.eu

This project has received funding from the *European Union's Horizon 2020* research and innovation programme under grant agreement No 654220

