X-ray Thomson Scattering in Non-Equilibrium

J. Vorberger

Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf e.V.

EUCALL Joint Foresight Topical Workshop on Theory and Simulation of Photon-Matter Interaction

2nd July 2018

Member of the Helmholtz Association

J. Vorberger | Institute of Radiation Physics | http://www.hzdr.de

Laser-matter interaction

J. Vorberger | Institute of Radiation Physics | http://www.hzdr.de

Ultrafast excitation and diagnostics

high-energy laser for compression or laser generated ions for heating XFEL pulses are ≤ 10 fs long & are able to probe on these time scales

Zastrau et al. PRL (2014), PRE (2014), R. Neutze

< • •

Member of the Helmholtz Association J. Vorbener I Institute of Radiation Physics | http://www.hzdr.de

Measuring temperature relaxation in laser heated aluminium by electron scattering

L. Waldecker, R. Bertoni, R. Ernstorfer, J. Vorberger, PRX (2016)

Evolution of the structure of hydrogen under XFEL radiation

Femto-second lasers and XFELs allow to study initial electron relaxation and subsequent temperature & charge relaxation
 X-ray scattering theory (for diagnostics) needs to take into account non-equilibrium and correlations!

D.A. Chapman et al., PRL (2011), N. Medvedev et al., PRL (2011), R.R. Fäustlin et al., PRL (2010), Sperling et al. PRL (2015)

Goals & Overview

We want to detect and diagnose

- inhomogeneities
- anisotropies
- non-equilibrium distribution functions
- two-temperature systems
- excitation & relaxation phenomena

To do this, we need a theory for x-ray scattering (the electronic structure) including different species in non-equilibrium featuring correlations and quantum effects.

(e.e.) () 💷 🔺 🗆 🕨

Calculating the x-ray scattering signal in equilibrium

Chihara J Phys F (1987), Chihara J Phys Cond Matt (2000), Wünsch et al. EPL (2011)

scattered intensity ~
$$S_{ee}^{tot}(k,\omega) = \overline{Z}S_{ee}^{0}(k,\omega)$$

+ $\sum_{ab} \sqrt{x_a x_b} [f_a(k) + q_a(k)] [f_b(k) + q_b(k)] S_{ab}(k,\omega)$
+ $\sum_a Z_a^c x_a \int \tilde{S}_{ce}(k,\omega - \omega') S_s(k,\omega') d\omega'$
Cond. $S_{ea}(k,\omega) = [f_a(k) + q_a(k)] S_{aa}(k,\omega)$

$$D = [f_a(k) + q_a(k)]S_{aa}(k, \omega) + [f_b(k) + q_b(k)]S_{ab}(k, \omega)$$

Inhomogeneous systems – hydrogen

Thiele et al. PRE (2010), Chapman et al. PoP (2014)

Non-equilibrium distribution functions

tails of fast thermalized electrons, Auger electrons, laser accelerated electrons giving anisotropies...

there is no viable first principle quantum simulation to use for such situations.

Fäustlin et al. PRL (2011), Medvedev et al. PRL (2011), Sperling et al. PRL (2015)

4 D b

Non-equilibrium structure theory

$$S_{ee}(\mathbf{k},\omega;t) = \frac{i}{2\pi} L_{ee}^{>}(\mathbf{k},\omega;t) = \frac{1}{2\pi} \frac{1}{\Omega} \int_{-\infty}^{\infty} d\tau \langle \delta \rho(\mathbf{k},\tau,t) \delta \rho(\mathbf{k},0,t) \rangle e^{i\omega\tau}$$

This becomes $S_{ee}({\bf k},\omega)=1/\pi[1+n_B(\omega)]{\rm Im}L^R_{ee}({\bf k},\omega)$ in equilibrium

$$L_{ee}(t_1, t_2) = \prod_{ee}(t_1, t_2) + \sum_{cd} \int_{C} d\bar{t} \prod_{ec}(t_1, \bar{t}) V_{cd} L_{de}(\bar{t}, t_2)$$

real time Green's functions approach, local approximation, two-fluid picture

$$L_{ee}^{>}(\mathbf{k},\omega;t) = \frac{\mathcal{L}_{e}^{>}(\mathbf{k},\omega;t) + |\mathcal{L}_{e}^{R}(\mathbf{k},\omega;t)|^{2}V_{ei}^{2}(k)\mathcal{L}_{i}^{>}(\mathbf{k},\omega;t)}{|1 - V_{ie}(k)\mathcal{L}_{e}^{R}(\mathbf{k},\omega;t)V_{ei}(k)\mathcal{L}_{i}^{R}(\mathbf{k},\omega;t)|^{2}}$$

$$\mathcal{L}_{a}^{>}(\mathbf{k},\omega;t) = \frac{\prod_{a}^{>}(\mathbf{k},\omega;t)}{|1 - V_{aa}\prod_{a}^{R}(\mathbf{k},\omega;t)|^{2}}, \mathcal{L}_{a}^{R}(\mathbf{k},\omega;t) = \frac{\prod_{a}^{R}(\mathbf{k},\omega;t)}{1 - V_{aa}\prod_{a}^{R}(\mathbf{k},\omega;t)}$$

Chapman et al. PRL (2011)), Vorberger & Chapman PRE (2018)

Dynamic local field corrections in non-equilibrium

Exact connection of density response and polarisation function

$$\mathcal{L}_{a}(t_{1},t_{2}) = \Pi_{a}(t_{1},t_{2}) + \int_{\mathcal{C}} d\bar{t} \ \Pi_{a}(t_{1},\bar{t}) V_{aa} \mathcal{L}_{a}(\bar{t},t_{2}) .$$

Ansatz = definition of non-equilibrium LFCs

$$\mathcal{L}_{a}(t_{1},t_{2}) = \mathcal{L}_{a}^{0}(t_{1},t_{2}) + \int_{\mathcal{C}} d\bar{t} d\bar{\bar{t}} \mathcal{L}_{a}^{0}(t_{1},\bar{t}) V_{aa}[1-G_{aa}(\bar{t},\bar{\bar{t}})] \mathcal{L}_{a}(\bar{\bar{t}},t_{2}) .$$

Two independent LFC quantities needed

$$G_{aa}^{R}(\mathbf{k},\omega;t) = \frac{1}{V_{aa}(k)} \left\{ \frac{1}{\Pi_{a}^{R}(\mathbf{k},\omega;t)} - \frac{1}{\mathcal{L}_{a}^{0R}(\mathbf{k},\omega;t)} \right\}$$

$$G_{aa}^{>}(\mathbf{k},\omega;t) = \frac{1}{V_{aa}(k)} \left\{ \frac{\mathcal{L}_{a}^{0>}(\mathbf{k},\omega;t)}{|\mathcal{L}_{a}^{0R}(\mathbf{k},\omega;t)|^{2}} - \frac{\Pi_{a}^{>}(\mathbf{k},\omega;t)}{|\Pi_{a}^{R}(\mathbf{k},\omega;t)|^{2}} \right\}$$

Chihara decomposition in non-equilibrium I

sketch of formulas after going from Keldysh contour to physical time axis

connection of electron-ion and ion-ion structure

$$L_{ei}^{R/A}(\mathbf{k},\omega;t) = \rho^{R/A}(\mathbf{k},\omega;t)L_{ii}^{R/A}(\mathbf{k},\omega;t)$$
$$S_{ei}(\mathbf{k},\omega;t) = \frac{i}{2\pi}\rho^{>}(\mathbf{k},\omega;t)L_{ii}^{A}(\mathbf{k},\omega;t) + \rho^{R}(\mathbf{k},\omega;t)S_{ii}(\mathbf{k},\omega;t)$$

Chihara decomposition

$$L_{ee}^{R/A}(\mathbf{k},\omega;t) = L_{ee}^{freeR/A}(\mathbf{k},\omega;t) + \rho^{R/A}(\mathbf{k},\omega;t)L_{ii}^{R/A}(\mathbf{k},\omega;t)\rho^{R/A}(\mathbf{k},\omega;t)$$

$$L_{ee}^{>} = L_{ee}^{free^{>}} + (L_{ei}^{A} + L_{ei}^{R})\rho^{>} + |\rho^{R}|^{2}L_{ii}^{>}$$

independent generalized screening clouds ρ^R and $\rho^>$ due to non-equilibrium conditions!

< • •

Chihara decomposition in non-equilibrium II $(\prod_{ei} = 0)$

$$S_{ee}(\mathbf{k},\omega;t) = S_{ee}^{free}(\mathbf{k},\omega;t) + \frac{1}{2\pi} \left[L_{ei}^{A}(\mathbf{k},\omega;t) + L_{ei}^{R}(\mathbf{k},\omega;t) \right] \rho^{>}(\mathbf{k},\omega;t) + |\rho^{R}(\mathbf{k},\omega;t)|^{2} S_{ii}(\mathbf{k},\omega;t)$$

total electron	free electron	non-Born-Oppenheimer part
structure	structure	
	corresping clour	n structure

$$\rho^{R/A}(\mathbf{k},\omega;t) = V_{ei}(k) \mathcal{L}_{e}^{R/A}(\mathbf{k},\omega;t) \quad \rho^{>}(\mathbf{k},\omega;t) = V_{ei}(k) \mathcal{L}_{e}^{>}(\mathbf{k},\omega;t)$$

$$L_{ee}^{free}(\mathbf{k},\omega;t) = \mathcal{L}_{e}^{>}(\mathbf{k},\omega;t) = \frac{\prod_{e}^{>}(\mathbf{k},\omega;t)}{|1 - V_{ee}(k)\prod_{e}^{R}(\mathbf{k},\omega;t)|^{2}}$$

A fully generalized version including all Π_{ei} terms is available!

Exchange and correlation in non-equilibrium

only pure species contributions for polarization function in first order

$$\Pi_{a}(\mathbf{k},\omega;t) = \Pi_{a}^{RPA}(\mathbf{k},\omega;t) + \Pi_{a}^{V}(\mathbf{k},\omega;t) + \Pi_{a}^{S_{1}}(\mathbf{k},\omega;t) + \Pi_{a}^{S_{2}}(\mathbf{k},\omega;t)$$

evaluate correlation functions П[≷] for Vertex & Self-energy term
 use Kramers-Kronig relation for retarded quantities

$$\Pi_{a}^{R}(p,\omega;t) = i \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} \frac{\Pi_{a}^{>}(p,\omega;t') - \Pi_{a}^{<}(p,\omega;t')}{\omega - \omega' + i\varepsilon}$$

Evaluation of the self-energy & vertex terms

static screening + application of Langreth-Wilkins rules gives

$$i\Pi_{a}^{V^{\gtrless}}(\mathbf{k},\omega;t) = 4\pi(i\hbar)^{2} \mathcal{P} \int \frac{d\mathbf{p}d\mathbf{q}}{(2\pi\hbar)^{6}} V_{aa}^{S}(\mathbf{p}-\mathbf{q}) \\ \times f_{a}^{\lessgtr}(\mathbf{p},t) f_{a}^{\gtrless}(\mathbf{p}+\mathbf{k},t) \Big[f_{a}(\mathbf{q},t) - f_{a}(\mathbf{q}+\mathbf{k},t) \Big] \\ \times \frac{\delta \big(\hbar\omega + E_{a}(\mathbf{p}) - E_{a}(\mathbf{p}+\mathbf{k})\big)}{\hbar\omega + E_{a}(\mathbf{q}) - E_{a}(\mathbf{q}+\mathbf{k})},$$

$$i\Pi_{a}^{S^{\gtrless}}(\mathbf{k},\omega;t) = 2\pi\hbar \int \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} \sum_{a}(p) f_{a}^{\gtrless}(\hbar\omega + E_{a}(\mathbf{p}-\mathbf{k}),t) f_{a}^{\lessgtr}(E_{a}(\mathbf{p}-\mathbf{k}),t)$$
$$\times \delta'(\hbar\omega + E_{a}(\mathbf{p}-\mathbf{k}) - E_{a}(p,t))$$
$$+ 2\pi\hbar \int \frac{d\mathbf{p}}{(2\pi\hbar)^{3}} \sum_{a}(p) f_{a}^{\gtrless}(E_{a}(\mathbf{p}+\mathbf{k}),t) f_{a}^{\lessgtr}(E_{a}(\mathbf{p}+\mathbf{k}) - \hbar\omega,t)$$
$$\times \delta'(\hbar\omega + E_{a}(p,t) - E_{a}(\mathbf{p}+\mathbf{k}))$$

$$E_{a}(p) = \hbar^{2}p^{2}/2m_{a}$$

$$F_{a}^{>} = f_{a} - 1$$

$$\Sigma_{a}(p, t) = -\hbar \int \frac{d\mathbf{q}}{(2\pi\hbar)^{3}} V_{aa}^{S}(\mathbf{p} + \mathbf{q}) f_{a}(\mathbf{q}, t)$$

$$f_{a}^{>} = f_{a} - 1$$

$$F_{a}^{<} = f_{a}$$

< • •

J. Vorberger | Institute of Radiation Physics | http://www.hzdr.de

Structure in a non-equilibrium electron gas

· - - · · · □ · • • •

Structure in laser pumped hydrogen

Structure in two-temperature hydrogen

Non-equilibrium & anisotropy in an electron gas

$$f(k_x, k_y, k_z) = \frac{1}{e^{(k_x^2 + k_y^2 + k_z^2 - \mu)/k_B/T} + 1} + Ae^{-B\left(\sqrt{(k_x/c_x)^2 + (k_y/c_y)^2 + (k_z/c_z)^2} - D\right)^2}$$

anisotropic features of the electron distribution should be very well visible in scattering spectrum

< • •

Summary & Outlook

- exact formalism to calculate structure in non-equilibrium on the basis of the Wigner distribution function
- definition of local field corrections in non-equilibrium
- account of exchange & correlation in non-equilibrium (in weak coupling approximation)
- decomposition of total electron structure factor similarly to equilibrium (Chihara)
- same formalism gives exact energy transfer rate in full non-equilibrium or two-temperature systems

