Simulations of intense hard x-ray induced dynamics of matter

2.7.2018 – EUCALL Workshop "Theory and Simulations of Photon-Matter Interaction"

Zoltan Jurek, Sang-Kil Son, Beata Ziaja, Robin Santra

Theory Division

Center for Free-Electron Laser Science, DESY

Introduction: High intensity X-ray – matter interaction Challenges for modeling

Complex dynamics of matter induced by ultra-high-intensity X rays

- Microscopic description with the simulation tools XMDYN and XATOM
- X-ray induced cluster dynamics
- Chemical effects in clusters

lower intensity, but still multiple photon absorption

X-ray–matter interaction at high x-ray intensities

High x-ray intensity \rightarrow how high is it?

Ribic, Margaritondo, J. Phys. D 45 213001 (2012)

Pellegrini, Rev. Mod. Phys. 88 015006 (2016)

High x-ray intensity \rightarrow how high is it?

Probability of photoionization during a single pulse (disregarding all other processes)

 $1 / \sigma = F_{\text{saturation}} \leq F_{\text{applied}}$

probability ~ 1 – exp(– $\sigma N_{photon} / A_{focus}) = 1 - exp(- \sigma F)$

Cross section for Carbon at 1 keV: $\sigma_{Carbon} \sim 0.044 \text{ Mb} (= 4.4 \cdot 10^{-24} \text{ m}^2)$

	Synchrotron	XFEL
N _{photon} / pulse	106	1012
A _{focus}	1µm²	1µm²
T _{pulse}	~ 20 ps	~ 10 100 fs
probability	4.4 · 10 ⁻⁵	0.988
Signal vs. Fluence	linear	non-linear

 \rightarrow

High intensity

Fluence

High intensity x-ray induced dynamics: challenge for theory

> Various different electronic configurations may appear transiently

—————— 1s **K**

Multiphoton absorption after/during decay cascade

- \rightarrow More than 20 million multiple-hole configurations
- \rightarrow More than 2 billion x-ray-induced processes

Figures courtesy of S.-K. Son

SCIENCE

High intensity x-ray induced dynamics: challenge for theory

Various different electronic configurations may appear transiently In many atom systems: environmental effects

Non-equilibrium dynamics

Highly excited matter \rightarrow how to capture **theoretically**?

High intensity x-ray induced dynamics: challenge for theory

Various different electronic configurations may appear transiently In many atom systems: environmental effects

Non-equilibrium dynamics

- Our simulation tools:
 - For single atoms: **XATOM** (ab initio code)
 - For atomic clusters, many-atom systems: XMDYN

(Monte Carlo / Molecular Dynamics code)

XATOM

by

Sang-Kil Son, Jan-Malte Slowik, Koudai Toyota, Robin Santra (CFEL-DESY Theory Division)

XATOM: An integrated toolkit for x-ray and atomic physics

> Ab initio code based on the Hartree-Fock-Slater approach

Zoltan Jurek |Simulation of intense hard x-ray induced dynamics of matter | EUCALL Workshop at ELI-ALPS 2018 | Page 10

XMDYN

Zoltan Jurek |Simulation of intense hard x-ray induced dynamics of matter | EUCALL Workshop at ELI-ALPS 2018 | Page 11

Atomistic Particle Approach + Molecular Dynamics (MD)

Bound electrons \rightarrow Occupation numbers

Photoionization and inner shell relaxation: Monte Carlo Rates by XATOM package (Sang-Kil Son, Robin Santra)

> Real space dynamics of atoms/ions and free electrons:

classical MD \rightarrow force fields (e.g. Coulomb); Newton's equations

> Phenomena due to the molecular environment

- chemical bonds (force fields)
- secondary (collisional) ionization
- recombination

SCIENCE

- charge transfer between ionic sites

Atomistic Particle Approach + Molecular Dynamics (MD)

Bound electrons → Occupation numbers
 Photoionization and inner shell relaxation: Monte Carlo
 Rates by XATOM package (Sang-Kil Son, Robin Santra)

► Real space dynamics of atoms/ions and free electrons: classical MD → force fields (e.g. Coulomb); Newton's equations

Phenomena due to the molecular environment

- chemical bonds (force fields)
- secondary (collisional) ionization
- recombination

SCIENCE

- charge transfer between ionic sites

Atomistic Particle Approach + Molecular Dynamics (MD)

Bound electrons → Occupation numbers
 Photoionization and inner shell relaxation: Monte Carlo
 Rates by XATOM package (Sang-Kil Son, Robin Santra)

> Real space dynamics of atoms/ions and free electrons:

classical MD \rightarrow force fields (e.g. Coulomb); Newton's equations

Phenomena due to the molecular environment

- chemical bonds (force fields)
- secondary (collisional) ionization
- recombination
- charge transfer between ionic sites

Atomistic Particle Approach + Molecular Dynamics (MD)

Bound electrons → Occupation numbers
 Photoionization and inner shell relaxation: Monte Carlo
 Rates by XATOM package (Sang-Kil Son, Robin Santra)

> Real space dynamics of atoms/ions and free electrons:

classical MD \rightarrow force fields (e.g. Coulomb); Newton's equations

Phenomena due to the molecular environment

- chemical bonds (force fields)
- secondary (collisional) ionization
- recombination

SCIENCE

- charge transfer between ionic sites

Atomistic Particle Approach + Molecular Dynamics (MD)

Bound electrons → Occupation numbers
 Photoionization and inner shell relaxation: Monte Carlo
 Rates by XATOM package (Sang-Kil Son, Robin Santra)

> Real space dynamics of atoms/ions and free electrons:

classical MD \rightarrow force fields (e.g. Coulomb); Newton's equations

- Phenomena due to the molecular environment
 - chemical bonds (force fields)
 - secondary (collisional) ionization
 - recombination
 - charge transfer between ionic sites

Atomistic Particle Approach + Molecular Dynamics (MD)

Bound electrons → Occupation numbers
Photoionization and inner shell relaxation: Monte Carlo
Rates by XATOM package (Sang-Kil Son, Robin Santra)

> Real space dynamics of atoms/ions and free electrons:

classical MD \rightarrow force fields (e.g. Coulomb); Newton's equations

- Phenomena due to the molecular environment
 - chemical bonds (force fields)
 - secondary (collisional) ionization
 - recombination

SCIENCE

- charge transfer between ionic sites

Atomistic Particle Approach + Molecular Dynamics (MD)

Gas phase C₆₀ molecules at high x-ray intensity

Nora Berrah (WMU) et al.

C₆₀ molecules irradiated at LCLS

> The Goal:

to learn about the XFEL-induced dynamics of a highly ionized complex system via **spectroscopy**

C₆₀ @ LCLS – The Project & Collaboration

Experiment: Nora Berrah

B. F. Murphy, T. Osipov, L. Fang, M. Mucke, J.H.D. Eland, V. Zhaunerchyk, R. Feifel, L. Avaldi, P. Bolognesi, C. Bostedt, J. D. Bozek, J. Grilj, M. Guehr, L. J. Frasinski, J. Glownia, D. T. Ha, K. Hoffmann, E. Kukk, B. K. McFarland, C. Miron, E. Sistrunk, R. J. Squibb, K. Ueda

> Theory: CFEL-DESY Theory Division Z. Jurek, S.-K. Son, R. Santra

SCIENCE

lon data measured

C₆₀ @ LCLS – The Project & Collaboration

> Experiment: Nora Berrah

B. F. Murphy, T. Osipov, L. Fang, M. Mucke, J.H.D. Eland,
V. Zhaunerchyk, R. Feifel, L. Avaldi, P. Bolognesi, C. Bostedt,
J. D. Bozek, J. Grilj, M. Guehr, L. J. Frasinski, J. Glownia, D. T. Ha,
K. Hoffmann, E. Kukk, B. K. McFarland, C. Miron, E. Sistrunk,
R. J. Squibb, K. Ueda

> Theory: CFEL-DESY Theory Division Z. Jurek, S.-K. Son, R. Santra

> Explosion in the focus

C⁰⁺
 C¹⁺
 C²⁺
 C³⁺
 C⁴⁺
 C⁵⁺
 C⁶⁺
 e⁻

Pulse parameters:

T = 30fs, $\hbar \omega$ = 485eV , ϵ = 0.345mJ, focus = (1.4µm)² double Gaussian beam profile

> Explosion in the focus

-20.0fs

> Explosion in the focus

-20.0fs

> Explosion in the focus

> Explosion in the focus

0.0fs

> Explosion in the focus

C₆₀ @ LCLS – The Observables. Experiment vs. Theory

> Atomic ions

Theory: No parameter fitting!

B. Murphy *et al.*, Nat. Commun. **5** 4281 (2014)
N. Berrah *et al.*, Faraday Discuss. **171** 471 (2014)

C₆₀ @ LCLS – The Observables. Experiment vs. Theory

Rare gas atomic clusters at high x-ray intensity

Rare gas clusters @ SACLA – The Experiment

Kiyoshi Ueda (Tohoku Univ.) et al.
 Ar, Xe clusters irradiated at SACLA

> The Goal:

to learn about the properties of nanoplasma formed due to XFEL irradiation via **spectroscopy**

Rare gas clusters @ SACLA – The Collaboration

> Experiment: Kiyoshi Ueda

- T. Tachibana, H. Fukuzawa, K. Motomura, K. Nagaya,
- S. Wada, P. Johnsson, M. Siano, S. Mondal, Y. Ito, M. Kimura, T. Sakai,
- K. Matsunami, H. Hayashita, J. Kajikawa, X.-J. Liu, E. Robert, C. Miron,
- R. Feifel, J. P. Marangos, K. Tono,
- Y. Inubushi, M. Yabashi, M. Yao

SCIENCE

> Theory: CFEL-DESY Theory Division Z. Jurek, S.-K. Son, B. Ziaja, R. Santra

T. Tachibana, Sci. Rep. 5 10977 (2015)

Rare gas clusters @ SACLA – The Collaboration

> Experiment: Kiyoshi Ueda

- T. Tachibana, H. Fukuzawa, K. Motomura, K. Nagaya,
- S. Wada, P. Johnsson, M. Siano, S. Mondal, Y. Ito, M. Kimura, T. Sakai,
- K. Matsunami, H. Hayashita, J. Kajikawa, X.-J. Liu, E. Robert, C. Miron,
- R. Feifel, J. P. Marangos, K. Tono,
- Y. Inubushi, M. Yabashi, M. Yao

SCIENCE

Theory: CFEL-DESY Theory Division Z. Jurek, S.-K. Son, B. Ziaja, R. Santra

High Intensity:
Fluence ~ 0.16 × (1 /
$$\sigma^{Ar}_{ph.ion.}$$
)

T. Tachibana, Sci. Rep. 5 10977 (2015)

Application 2: Clusters @ SACLA

> Theoretical and experimental electron kinetic energy spectra,

Xe₁₀₀, Xe₃₀₀

SCIENCE

Application 2: Clusters @ SACLA

> Theoretical and experimental electron kinetic energy spectra,

Xe₁₀₀, Xe₃₀₀

Rare gas cluster dynamics at moderate x-ray intensities: Chemical effects

Rare gas clusters @ SACLA – The Experiment

Kiyoshi Ueda (Tohoku Univ.) et al.

Ar₁₀₀₀ clusters irradiated at SACLA

The Goal: to learn about the fragmentation dynamics due to multiple ionization via spectroscopy

> Experiment: Kiyoshi Ueda

Y. Kumagai, W. Xu, H. Fukuzawa, K. Motomura, D. lablonskyi,

K. Nagaya, S.-i. Wada, S. Mondal, T. Tachibana, Y. Ito, T. Sakai,

K. Matsunami, T. Nishiyama, T. Umemoto, C. Nicolas, C. Miron,

T. Togashi, K. Ogawa, S. Owada, K. Tono, M. Yabashi

Theory: CFEL-DESY Theory Division Z. Jurek, S.-K. Son, B. Ziaja, R. Santra

Y. Kumagai et al, submitted

> Experiment: Kiyoshi Ueda

- Y. Kumagai, W. Xu, H. Fukuzawa, K. Motomura, D. lablonskyi,
- K. Nagaya, S.-i. Wada, S. Mondal, T. Tachibana, Y. Ito, T. Sakai,
- K. Matsunami, T. Nishiyama, T. Umemoto, C. Nicolas, C. Miron,
- T. Togashi, K. Ogawa, S. Owada, K. Tono, M. Yabashi

> Theory: CFEL-DESY Theory Division Z. Jurek, S.-K. Son, B. Ziaja, R. Santra

Moderate Intensity:
Fluence ~ 0.01 × (1 /
$$\sigma^{Ar}_{ph.ion.}$$
)

Y. Kumagai et al, submitted

Ar clusters at moderate x-ray intensity

> Moderate x-ray intensity \rightarrow low photoionization density

 \rightarrow low level of excitation, significant role of chemical effects

> Ar₁₀₀₀ clusters: - at synchrotron (→ single photoionization event) H. Murakami *et al*, J.Chem.Phys **126** 054306 (2007)

- at moderate XFEL intensities

Chemistry or singly charged Ar clusters

van-der-Waals interaction

> Chemical bond formation

- between an ionized and neutral Ar sites (classical force fields)

- \rightarrow strong dimer between Ar¹⁺ and one neutral Ar neighbor
- \rightarrow weak interaction between Ar¹⁺ and other neutral atoms
- bond switching at potential curve crossings
 - \rightarrow dimer formation and disappearance during the dynamics

> charge transfer between sites: > over-the-barrier approach > valence orbitals involved Y. Kumagai et al, submitted

Ar clusters at moderate x-ray intensity

Moderate x-ray intensity
 → low photoionization density
 → low level of excitation, significant role of chemical effects

> Ar₁₀₀₀ clusters fragment yield: **Experiment vs. Theory**

SCIENCE

Y. Kumagai et al, PRL 120 223201 (2018)

Zoltan Jurek |Simulation of intense hard x-ray induced dynamics of matter | EUCALL Workshop at ELI-ALPS 2018 | Page 45

Kinetic energy spectra of oligomers

SCIENCE

Kinetic energy spectrum of electrons

SCIENCE

No chemical effect

van der Waals + dimer formation

SCIENCE

van de Waals added

van der Waals + dimer + charge transfer

Summary

Molecular Dynamics based modeling framework XMDYN, XATOM

Heavy atoms

- > Clusters, molecules at high x-ray intensity
 - strongly bound fullerens
 - rare gas cluster and chemical effects
- > Perspectives for Simulations
 - Bulk system (extreme states of matter, nanocrystallography)
 - Complex simulation framework (S2E, SIMEX)

