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Abstract—We present the design and hardware implementation of
a radar prototype that demonstrates the principle of a sub-Nyquist
collocated multiple-input multiple-output (MIMO) radar. The setup
allows sampling in both spatial and spectral domains at rates much lower
than dictated by the Nyquist sampling theorem. Our prototype realizes
an X-band MIMO radar that can be configured to have a maximum of
8 transmit and 10 receive antenna elements. We use frequency division
multiplexing (FDM) to achieve the orthogonality of MIMO waveforms
and apply the Xampling framework for signal recovery. The prototype
also implements a cognitive transmission scheme where each transmit
waveform is restricted to those pre-determined subbands of the full signal
bandwidth that the receiver samples and processes. Real-time experiments
show reasonable recovery performance while operating as a 4×5 thinned
random array wherein the combined spatial and spectral sampling factor
reduction is 87.5% of that of a filled 8 × 10 array.

Keywords—MIMO radar, sub-Nyquist, compressed sensing, collocated,
cognitive radar

I. Introduction

Multiple input multiple output (MIMO) radar is a novel radar
paradigm [1] that uses an array of several transmit and receive antenna
elements, with each transmitter radiating a different waveform. In a
collocated MIMO radar [2], the antenna elements are placed close to
each other so that the radar cross-section of a target appears identical
to all the elements. The waveform diversity in a collocated MIMO
is based on the mutual orthogonality - usually in time, frequency
or code - of different transmitted signals. The receiver separates
and coherently processes the target echoes corresponding to each
transmitter. The angular resolution of MIMO is same as a virtual
phased array with the same antenna aperture but many more antenna
elements than MIMO.

While a radar achieves high angular resolution by using a
large virtual aperture, its range-time resolution can be improved
by transmitting signals with large bandwidth. In other words, the
conventional processing resolution is limited by the number of
elements and the receiver sampling rate. Several methods have been
proposed to address the problem of preserving the MIMO radar
resolution when either the number of antennas [3] or the number
of received samples [4–6] is reduced. Most exploit the fact that the
target scene is sparse facilitating the use of compressed sensing (CS)
methods [7, 8].

Recently, [9] proposed a sub-Nyquist collocated MIMO radar
(sub-Nyquist MIMO hereafter) that can recover the target range and
azimuth by simultaneously thinning an antenna array and sampling
received signals at sub-Nyquist rates. The recovery algorithm uses
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the Xampling framework where Fourier coefficients of the received
signal are acquired from their low-rate samples (or Xamples) [8, p.
387-388] [10]. Application of Xampling in space and time enables
sub-Nyquist sampling without loss of any of the aforementioned radar
resolutions. The Xamples are expressed as a matrix of unknown target
parameters and the reconstruction algorithm is derived by extending
the orthogonal matching pursuit (OMP) [8] to simultaneously solve
a system of CS matrix equations. In sub-Nyquist MIMO, the radar
antenna elements are randomly placed within the aperture (see [11]
for introduction and [3] for recent updates on random arrays), and
signal orthogonality is achieved by frequency division multiplexing
(FDM). In a conventional MIMO radar, the use of non-overlapping
FDM waveforms results in a strong range-azimuth coupling [12–14]
in the receiver processing, and therefore, it is common to use
orthogonal code signals (i.e. code division multiplexing or CDM).
The coupling due to FDM can be reduced by randomizing the carrier
frequencies across transmitters [13]. The FDM-based sub-Nyquist
MIMO mitigates the range-azimuth coupling by randomizing the
element locations in the aperture.

In this work, we present the first hardware prototype of a
sub-Nyquist MIMO that can demonstrate reduction in both spatial and
spectral sampling using real-time analog signals. This implementation
follows the recommendations of [9] for signal orthogonality, array
structure and reconstruction algorithms. The prototype can be
configured either as a filled or thinned array, thereby allowing
comparison of Nyquist and sub-Nyquist spatial sampling using the
same hardware. Our previous work in [15] presented the hardware
realization of spectral sub-Nyquist sampling in radar. In [15], a few
randomly chosen, narrow subbands of the received signal spectrum
are pre-filtered before being sampled by low-rate analog-to-digital
converters (ADCs). Since this implementation uses a bandpass filter
and an ADC for each subband, a similar implementation of spectral
sub-Nyquist sampling in each channel of a MIMO receiver would
require enormous hardware resources. To circumvent such a simplistic
and excessively large design, we instead transmit only in those
subbands that are sampled by the receiver. This eliminates all
pre-filtering band-pass stages and each receiver channel requires only
one low-rate ADC to sample all subbands.

Limiting the signal transmission to selective subbands allows
for more in-band power resulting in an increase in signal-to-noise
ratio (SNR). This approach has recently been proposed in the
context of sub-Nyquist cognitive radars [16]. Our prototype, therefore,
additionally demonstrates application of cognitive transmission in
sub-Nyquist MIMO radar. Additionally, a radar that transmits in
several disjoint narrow bands has advantages of disguising the
transmit frequencies as an effective electronic counter measure
(ECM), and also escape radio-frequency (RF) interference from other
licensed radiators in the vacant non-transmit subbands.

In the following section, we briefly review the signal and system
model of sub-Nyquist MIMO. We then describe the design philosophy
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of our prototype and its major sub-modules in Section III. Finally, we
present results obtained by the prototype in real-time experiments.

II. Sub-Nyquist CollocatedMIMO Radar

With the exception of cognitive transmission, the array and signal
models of sub-Nyquist MIMO realized by our prototype closely
follow that detailed by [9] and, hence, we only summarize them here.

A. MIMO Radar Model

Let the operating wavelength of the radar be λ and the total
number of transmit and receive elements be T and R respectively.
The classic approach to collocated MIMO adopts a virtual uniform
linear array (ULA) structure [17], where the receive antennas spaced
by λ

2 and transmit antennas spaced by R λ
2 form two ULAs (or vice

versa, see e.g. [18]). Here, the coherent processing of a total of TR
channels in the receiver creates a virtual equivalent of a phased array
with TR λ

2 -spaced receivers and normalized aperture Z = TR
2 .

Let us now consider a collocated MIMO radar system that has
M < T transmit and Q < R receive antennas. The locations of these
antennas are chosen uniformly at random within the aperture of the
virtual array mentioned above. The mth transmitting antenna sends a
unique pulse sm (t) given by

sm (t) = hm (t)e j2π fc t, 0 ≤ t ≤ τ, (1)

where τ denotes the pulse repetition interval (PRI), fc is the common
carrier frequency at the RF (radio-frequency) stage, and {hm (t)}M−1

m=0
is a set of narrowband, orthogonal FDM pulses each with the
continuous-time Fourier transform (CTFT)

Hm(ω) =

∞∫
−∞

hm(t)e− jωtdt. (2)

Suppose the target scene consists of L non-fluctuating point targets
(Swerling-0 model) [19] whose location is given by their range-time τl

and direction-of-arrival (DoA) θl, 1 ≤ l ≤ L. The pulses transmitted by
the radar are reflected back by the targets and collected at the receive
antennas. When the received waveform is downconverted from RF to
baseband, we obtain the following signal at the qth antenna,

xq (t) =

M−1∑
m=0

L∑
l=1

αlhm (t − τl) e j2πβmqθl , (3)

where αl denotes the complex-valued reflectivity of the lth target and
βmq is governed by the array structure. Our goal is to estimate the
range-time τl and azimuths θl of each target.

B. Sub-Nyquist Range-Azimuth Recovery

The application of Xampling in both space and time enables
recovery of range and direction at sub-Nyquist rates. The performance
guarantees of this procedure are provided in [9]. The received
signal xq(t) is separated into M channels, aligned and normalized.
The Fourier coefficients of the received signal corresponding to the
channel that processes the mth transmitter echo are given by

ym,q[k] =

L∑
l=1

αle j2πβmqθl e− j 2π
τ kτl e− j2π fmτl , (4)

where − N
2 ≤ k ≤ − N

2 − 1, fm is the (baseband) carrier frequency
of the mth transmitter and N is the number of Fourier coefficients

Fig. 1. A conventional radar with signal bandwidth Bh transmits in the band
Bh. A cognitive radar transmits only in subbands {Bi}

Nb
i=1, but with more

in-band power than the conventional radar.

per channel. Xampling obtains a set κ of arbitrarily chosen Fourier
coefficients from low rate samples of the received channel signal such
that |κ| = K < N.

Let us now consider the mth transmission. Suppose Y m is the
K × Q matrix with qth column given by ym,q[k], k ∈ κ. The matrix
Y m can be expressed as

Y m = AmX (Bm)T , (5)

where X is a sparse matrix in which the location and values of the
non-zero elements correspond to the locations and reflectivity of the
targets respectively. The matrices Am and Bm are known functions of
radar parameters (T , R, fm, κ, τ, and transmit bandwidth), and each of
their columns correspond to a range and an azimuth cell, respectively.
The sparse matrix X can be recovered from the set of equations (5)
for all 0 ≤ m ≤ M − 1, by solving the optimization problem

minimize
X

||X ||0

subject to Y m = AmX (Bm)T , 0 ≤ m ≤ M − 1. (6)

An approximate solution to this problem can be obtained through an
extension of the matrix OMP method [20]. We refer the reader to [9]
for full details of this recovery algorithm.

C. Cognitive Transmission

Let Bh be the set of all frequencies in the transmit signal spectrum
of effective bandwidth Bh. In the cognitive radar transmission, the
spectrum H̃m(ω) of each of the transmitted waveforms h̃m(t) is limited
to a total of Nb non-overlapping frequency bands Bi, 1 ≤ i ≤ Nb

(Figure 1):

H̃m(ω) =


γ(ω)Hm(ω), ω ∈

Nb⋃
i=1

Bi ⊂ Bh

0, otherwise

(7)

where γ(ω) = Bh/|Bi| for ω ∈ Bi. The total transmit power Pt remains
the same such that the power relation between the conventional and
cognitive waveforms is

∫ Bh/2

−Bh/2
|Hm(ω)|2 dω =

Nb∑
i=1

∫
Bi

|H̃m(ω)|2 dω = Pt (8)

In a cognitive radar, the sub-Nyquist receiver obtains the set κ of the
Fourier coefficients only from the subbands Bi.
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TABLE I. Technical characteristics of the prototype
Parameters Mode 1 Mode 2 Mode 3 Mode 4

#Tx, #Rx 8,10 8,10 4,5 8,10
Element placement Uniform Random Random Random
Equivalent aperture 8x10 8x10 8x10 20x20
Angular resolution (sine of DoA) 0.025 0.025 0.025 0.005
Range resolution 1.25 m
Signal bandwidth per Tx 12 MHz (15 MHz including guard-bands)
Pulse width 4.2 µs
Carrier frequency 10 GHz
Unambiguous range 15 km
Unambiguous DoA 180◦ (from -90◦ to 90◦)

Fig. 2. Tx and Rx element locations for the hardware prototype modes over a
6 m antenna aperture. Mode 4’s virtual array equivalent is the 20 × 20 ULA.

III. Hardware Design

We consider the implementation of a MIMO radar architecture
that has a maximum of 8 transmit (Tx) and 10 receive (Rx)
antenna elements. As explained in subsequent sections, the spatial
and spectral sampling aspects of sub-Nyquist MIMO that we intend to
demonstrate manifest only in the receiver processing. Therefore, our
radar prototype does not physically radiate the transmit waveforms
from an antenna and receive data from actual targets in real-time.
Instead, multiple transmit waveforms are pre-computed externally at
baseband, their echoes from simulated targets are recorded and the
complex samples (in-phase I and quadrature-phase Q pairs) are stored
in an on-board memory of a custom-designed waveform generator
board. The prototype then processes these pre-recorded signals in
real-time. Similarly, we omit the implementation of the up-conversion
to RF carrier frequency in the transmitter and the corresponding
down-conversion in the receiver from this prototype. We would
assume that the physical array aperture and simulated target response
correspond to an X-band ( fc = 10 GHz) radar. The choice of radar
frequency band also affects the clutter response that we intend to
consider in a future extension of this prototype.

A. Design Philosophy

A conventional 8x10 MIMO radar receiver would require
simultaneous hardware processing of 80 (or 160 I/Q) data streams.
Since a separate sub-Nyquist receiver for each of these 80 channels is
expensive, we implement the eight channel analog processing chain
for only one receive antenna element and serialize the received signals
of all 10 elements through this chain. This approach allows the
prototype to implement a number of receivers greater than 10 as the
eight-channel hardware only limits the number of transmitters.

Given a particular receive element, we intend to extract Fourier
coefficient set κ for each of its transmit channels using low-rate ADCs.
It has been shown [7, pp. 210-268] that high recovery performance is
promised when these coefficients are drawn uniformly at random. An
ADC can not, however, individually acquire each of the randomly

chosen Fourier coefficients. Therefore, sub-Nyquist radar prototype
in [15] opted for sampling random disjoint subsets of κ, with each
subset containing consecutive Fourier coefficients. The prototype in
[15] used four random Fourier coefficient groups, pre-filtered the
baseband signal to corresponding four subbands (or Xampling slices),
and sampled each subband via separate low-rate ADC.

If we use the same pre-filtering approach as in [15] for each
of the eight channels of our sub-Nyquist MIMO prototype, then
the hardware design would need a total of 4 × 8 = 32 bandpass
filters (BPFs) and ADCs excluding the analog filters to separate
transmit channels. We sidestep this requirement by adopting cognitive
transmission wherein the analog signal of each channel lives only in
certain pre-determined subbands and consequently, a BPF stage is
not required. More importantly, for each channel, a single low-rate
ADC can subsample this narrow-band signal as long as the subbands
are coset bands so that they don’t aliase after sampling [21]. This
implementation needs only eight low-rate ADCs, one per channel.
Another advantage of this approach is flexibility of the prototype in
selecting the Xampling slices. Unlike [15], the number and spectral
locations of slices are not permanently fixed, and they can be changed
(within the constraints of aliasing due to subsampling).

The prototype can be configured to operate in various array
configurations or modes. When operating at its maximum strength
of 8 Tx and 10 Rx elements, it can be programmed as either a
ULA (Mode 1) or a random array (Mode 2), each with the equivalent
aperture of an 8× 10 virtual array, i.e., 1.2 m. For the same aperture,
the system can be operated as a thinned 4 × 5 array (Mode 3). In
this configuration fewer receivers are serialized and the channels
corresponding to the removed transmit elements are not processed
by the digital receiver. Mode 3, hence, demonstrates the spatial
sub-Nyquist sampling. Finally, the prototype can also function as
a 8x10 thinned array (Mode 4) which can be viewed as a spatial
sub-Nyquist version of a 20x20 virtual array with aperture of 6 m.

Figure 2 shows exact details of element locations for all four
modes. Table I summarizes the technical parameters of the prototype
for all four array configurations. As mentioned before, this system
employs FDM-based signal orthogonality with each transmit signal
hm(t) chosen to be approximately flat in spectrum, over the extent
of 12 MHz (one-sided band). Each of the transmit waveforms is
separated from its nearest neighbor by a 3 MHz guard-band.

B. System Description

Figure 3 shows the sub-Nyquist MIMO prototype, user interface
and radar display. The inset graph depicts the signal flow through
a simplified block diagram. The user selects the prototype mode
from the control interface and passes the control triggers to the
transmit waveform generator card, where an FPGA device reads out
the pre-stored received waveform from an on-board memory. Two
separate digital-to-analog converters (DACs) - one each for I and Q
samples - convert the resulting signal to baseband analog domain. The
transmit waveform generator is off-the-shelf Xilinx VC707 evaluation
board that is custom fit with a 4DSP FMC204 16-bit DAC card. Each
of the I and Q analog signals are then passed on to their respective
analog pre-processor cards.

A custom-built analog pre-processor (APP) splits the 120 MHz
baseband analog signal from the waveform generator in 8 channels.
The 9 dB attenuation due to 8-channel splitter is compensated with
the use of 10 dB amplifier for each channel. The signal corresponding
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Fig. 3. Sub-Nyquist MIMO prototype and user interface. The analog pre-processor module consists of two APP cards mounted on opposite sides of a common
chassis. The inset shows the simplified block diagram of the system. The subscript r represents received signal samples for rth receiver. Wherever applicable,
the second subscript corresponds to a particular transmitter. The square brackets (parentheses) are used for digital (analog) signals.

(a) Before subsampling (b) After subsampling

Fig. 4. The normalized one-sided spectrum of one channel of a given receiver
(a) before and (b) after subsampling with a 7.5 MHz ADC. Each of the
subbands span 375 kHz and is marked with a numeric label. In a non-cognitive
processing, the signal occupies the entire 15 MHz spectrum before sampling.

to each transmitter is then filtered using BPFs with 12 MHz passband.
Only the first transmitter channel uses a low-pass filter as it is
difficult to practically realize a bandpass filter with a passband close
to zero. The first five channels use Chebyshev filter design and the
rest are elliptic filters, all with a passband ripple of 0.1 dB. Since
subsampling raises the out-of-band noise, all of these front-end filters
are designed to provide approximately 30 dB stopband attenuation.
The imbalance in gain and spectral distortion are corrected by placing
tunable equalizers at the end of APP chain. The channelized I/Q
analog signals are then digitized using low-rate 16-bit ADCs in a
digital receiver card. A digital receiver is realized using a single Xilinx
VC707 evaluation board with two eight-channel 4DSP FMC168
digitizer daughter cards, one each for I and Q signals. The digital
receiver output is transferred over LAN to a radar display. As
shown in Figure 4a, the cognitive radar signal occupies only certain
subbands in a 15 MHz band. Here, the sliced transmit signal has eight
subbands each of width 375 kHz with the frequency range of 1.63-2,
2.16-2.53, 3.05-3.42, 3.88-4.25, 5.66-6.03, 6.51-6.88, 8.64-9.01 and
12.32-12.69 MHz before subsampling. The resulting coherence [22]

Fig. 5. Plan Position Indicator (PPI) display of results for Mode 1 and
3. The origin is the location of the radar. The red dot indicates the north
direction relative to the radar. Positive (negative) distances along the horizontal
axis correspond to the east (west) of the radar. Similarly, positive (negative)
distances along the vertical axis correspond to the north (south) of the radar.
The estimated targets are plotted over the ground truth.

for this selection of Fourier coefficients is 0.42. The total signal
bandwidth is 0.375 × 8 = 3 MHz. This signal is subsampled at 7.5
MHz and, as shown in Figure 4b, there is no aliasing between different
subbands. A non-cognitive signal would have occupied entire 15 MHz
spectrum requiring a Nyquist sampling rate of 30 MHz. Therefore,
use of cognitive transmission enables spectral sampling reduction by
a factor of 4 (= 30 MHz/7.5 MHz) for each channel. Depending on
whether the guard-bands of non-cognitive transmission are included
in the computation or not, the effective signal bandwidth is reduced
by a factor of 5 (= 15 MHz/3 MHz) or 4 (= 12 MHz/3 MHz)
respectively for each channel. Mode 3 has 50% spatial sampling
reduction when compared with Mode 1 or 2. If we account for both
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Fig. 6. As in Fig. 5, but for a closely-spaced target scenario. The inset plots
show the selected region in each PPI display at a magnified scale.

spatial and spectral sampling reduction in Mode 3, then we use a
total one-eighth of the Nyquist sampling rate and one-tenth of the
Nyquist signal bandwidth (guard-bands included). The sampling rate
reduction is, therefore, seven-eighth or 87.5% in Mode 3. The receiver
processes 80 and 20 channels in 8x10 and 4x5 arrays, respectively.
So, the hardware resources are reduced by 75% in Mode 3.

C. Experimental Results

We evaluated the performance of all the modes through hardware
simulations. Only one pulse was transmitted in all experiments
and all modes were evaluated against the identical target scenarios.
We injected the received signal corresponding to the echoes from
10 targets, placed at arbitrary range and azimuths, in the transmit
waveform generator. In the first experiment, when the minimum
angular spacing (in terms of the sine of DoA) between any two targets
was approximately 0.025, the recovery performance of the thinned
4×5 array in Mode 3 was not worse than Modes 1 and 2 until the noise
was dramatically increased. Figure 5 shows the detection performance
of all the modes for this experiment when the signal SNR = −5
dB; the injected noise is complex white Gaussian. Here, a successful
detection (green circle) occurs when the estimated target is within
two range cells and one DoA bin of the ground truth (blue circle);
otherwise, the estimated target is labeled as a false alarm (magenta
circle). In case of high SNR or absence of noise, our criterion for
successful detection is sensu stricto, i.e. the estimated target must lie
at the exact location of the ground truth for a successful detection.

In the second experiment, the minimum angular spacing between
the two targets was reduced to 0.02, and the SNR of the injected
signal remained at −5 dB. Since the angular resolution of Mode 4
is better than the other three modes (see Table I), all the targets
are detected successfully in Mode 4. Mode 1 and 3 showed a false
alarm as seen in the inset plots of Figure 6. The Mode 2 also shows
successful recovery in the broad sense of our detection criterion. The
strict sense location error in Mode 2 is clearly larger than that in Mode
4. However, relatively better performance of Mode 2 over Modes 1
and 3 is not entirely fortuitous here. Figure 2 shows that both Tx and
Rx array elements in Mode 2 are distributed such that its virtual array
is wider than Modes 1 and 3. Thus, the effective angular resolution
for Mode 2 could be better than 1 and 3, but still worse than 4.

IV. Summary

We presented the first hardware prototype of sub-Nyquist
MIMO that demonstrates real-time operation of both spatial and
spectral reduction in sampling. The thinned 4x5 array achieves the
detection performance of its filled array counterparts even though
the combined reduction of spatial and spectral sampling is 87.5%.
While we did not analyze the performance for Doppler recovery and
clutter contamination, the prototype design does not restrict such
an evaluation. Future theoretical insights on the selection of best
subbands and improved recovery algorithms can further enhance the
performance.
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