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Abstract—We present a hardware prototype of the sub-Nyquist
multiple input multiple output radar (SUMMeR) system with capabilities
of cognitive transmission and Doppler processing. The prototype allows
both spatial and spectral compressive sampling. It realizes an X-band
MIMO radar receiver configured to have a maximum of 8 transmit and
10 receive antenna elements. The orthogonality of MIMO waveforms is
achieved via frequency division multiplexing. Targets range, azimuth and
Doppler are recovered using the Xampling framework. The thinned 4x5
random array configuration achieves the detection performance of its
filled array counterpart with samples obtained at 12.5% of Nyquist from
half the antennas.

Keywords—MIMO radar, sub-Nyquist, compressed sensing, collocated,
cognitive radar

I. Introduction

In recent years, multiple input multiple output (MIMO) radar has
become an active area of research [1]. A MIMO radar uses an array of
several transmit and receive antenna elements, with each transmitter
radiating a different, mutually orthogonal waveform. The waveform
orthogonality can be in time, frequency or code. Our system is based
on the collocated MIMO configuration [2], in which the elements
are close to each other so that the radar cross-section of a target
appears identical to all the elements. The MIMO receiver separates
and coherently processes the target echoes corresponding to each
transmitter. The angular resolution of a MIMO system using the
classic virtual ULA is the same as a phased array with equivalent
virtual aperture but many more antenna elements than MIMO.

Conventional MIMO radar’s spatial (angular) and range
resolutions are limited by the number of elements and the receiver
sampling rate, respectively. Several methods have been proposed to
address the problem of preserving the MIMO radar resolution when
either the number of antennas [3] or the number of received samples
[4, 5] is reduced. These systems exploit the fact that the target
scene is sparse, thereby allowing the use of compressed sensing (CS)
techniques [6, 7].

In [8], a sub-Nyquist collocated MIMO radar (SUMMeR)
was proposed to recover the target range, azimuth and Doppler
velocity by simultaneously thinning an antenna array and sampling
received signals at sub-Nyquist rates. The recovery algorithm uses
the Xampling framework where Fourier coefficients of the received
signal are acquired from their low-rate samples (or Xamples) [7,
9]. Application of Xampling in space and time enables sub-Nyquist
sampling without loss of any of the aforementioned radar resolutions.
In SUMMeR, the radar antenna elements are randomly placed within
the aperture, and signal orthogonality is achieved by frequency
division multiplexing (FDM). The FDM-based sub-Nyquist MIMO
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mitigates the range-azimuth coupling by randomizing the element
locations in the aperture.

Our very recent work [10] presents a hardware prototype of
the SUMMeR system and demonstrates its feasibility via real-time
experiments. This implementation follows the recommendations of
[11] for signal orthogonality, array structure and reconstruction
algorithms. There, only the targets’ azimuth and range are recovered,
from a single pulse per transmitter. The prototype can be configured
either as a filled or thinned array, thereby allowing comparison of
Nyquist and sub-Nyquist spatial sampling using the same hardware.

In this work, we extend the SUMMeR prototype to Doppler
processing and simultaneously recover all three parameters, range,
azimuth and Doppler, in real-time. Additionally, we use cognitive
transmission techniques [12], as in [10], wherein the transmit signal
is limited to those selected subbands that a sub-Nyquist receiver
samples and processes. In one of our previous works on single antenna
radar systems [13], the sub-Nyquist radar hardware pre-filters a few
randomly chosen, narrow subbands of the received signal spectrum
before sampling them using low-rate analog-to-digital converters
(ADCs). The transmit signal is, however, full-band even though only
a few subbands are sampled and processed by the receiver. Cognitive
transmission provides two advantages to SUMMeR hardware. First,
the spatial sub-Nyquist processing of large arrays can be easily
designed without replicating the pre-filtering operation for each
subband in the hardware. Second, since the total transmit power
remains the same, a cognitive signal has more in-band power resulting
in an increase in signal-to-noise ratio (SNR).

In the following section, we review the theory of SUMMeR
including the recovery algorithm for range, azimuth and Doppler. We
then describe the design of our prototype and its major features in
Section III, and present results obtained by the prototype in real-time
experiments.

II. Sub-Nyquist CollocatedMIMO Radar

With the exception of cognitive transmission, the array and signal
models of SUMMeR realized by our prototype closely follow that
detailed by [8] and are only summarized her.

A. MIMO Radar Model

Let the operating wavelength of the radar be λ and the total
number of transmit and receive elements be T and R respectively.
The classic approach to collocated MIMO adopts a virtual uniform
linear array (ULA) structure [14], where the receive antennas spaced
by λ

2 and transmit antennas spaced by R λ
2 form two ULAs (or vice

versa, see e.g. [15]). Here, the coherent processing of a total of TR
channels in the receiver creates a virtual equivalent of a phased array
with TR λ

2 -spaced receivers and normalized aperture Z = TR
2 .

Consider a collocated MIMO radar system that has M < T
transmit and Q < R receive antennas. The locations of these antennas
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are chosen uniformly at random within the aperture of the virtual
array mentioned above. The mth transmitting antenna sends P pulses
sm (t) given by

sm (t) =
P−1∑
p=0

hm (t − pτ)e j2π fc t, 0 ≤ t ≤ Pτ, (1)

where τ denotes the pulse repetition interval (PRI), Pτ is the
coherent processing interval (CPI), fc is the common carrier frequency
at the radio frequency (RF) stage, and {hm (t)}M−1

m=0 is a set of
narrowband, orthogonal FDM pulses each with the continuous-time
Fourier transform (CTFT)

Hm(ω) =

∞∫
−∞

hm(t)e− jωtdt. (2)

For simplicity, we assume that fcτ is an integer, so that the initial
phase for every pulse e− j2π fcτp is canceled in the modulation [16].
The pulse time support is denoted by Tp.

Consider a target scene with L non-fluctuating point targets
following the Swerling-0 model [17] whose locations are given by
their ranges Rl, Doppler velocity vl, and azimuth angles θl, 1 ≤ l ≤ L.
The pulses transmitted by the radar are reflected back by the targets
and collected at the receive antennas. When the received waveform is
downconverted from RF to baseband, we obtain the following signal
at the qth antenna,

xq (t) =

P−1∑
p=0

M−1∑
m=0

L∑
l=1

αlhm (t − pτ − τl) e j2πβmqϑl e j2π f D
l pτ, (3)

where αl denotes the complex-valued reflectivity of the lth target, c
is the speed of light, τl = 2Rl/c is the range-time delay the lth target,
f D
l =

2vl
c fc is the frequency in the Doppler spectrum, ϑl = sin θl is

the azimuth parameter, and βmq is governed by the array structure. It
will be convenient to express xq(t) as a sum of single frames

xq(t) =

P−1∑
p=0

xp
q (t), (4)

where

xp
q (t) =

M−1∑
m=0

L∑
l=1

αlh(t − τl − pτ)e j2πβmqϑl e j2π f D
l pτ. (5)

Our goal is to estimate the time delay τl, azimuth θl, and Doppler
shifts f D

l of each target from low rate samples of xq(t), for 0 ≤ q ≤
Q − 1, and a small number of M channels and Q antennas.

B. Xampling in Time and Space

The application of Xampling in both space and time enables
recovery of range, direction and velocity at sub-Nyquist rates.
The performance guarantees of this procedure are provided in [8].
The received signal xq(t) is separated into M channels, aligned
and normalized. The Fourier coefficients of the received signal
corresponding to the channel that processes the mth transmitter echo
at the qth receiver are given by

yp
m,q[k] =

L∑
l=1

αle j2πβmqϑl e− j 2π
τ kτl e− j2π fmτl e j2π f D

l pτ, (6)

where − N
2 ≤ k ≤ − N

2 − 1, fm is the (baseband) carrier frequency
of the mth transmitter and N is the number of Fourier coefficients
per channel. Xampling obtains a set κ of arbitrarily chosen Fourier
coefficients from low rate samples of the received channel signal such
that |κ| = K < N. More details can be found in [13].

As in traditional MIMO, assume that the time delays, azimuths
and Doppler frequencies are aligned to a grid. In particular, τl = τ

T N sl,
ϑl = −1 + 2

TR rl and f D
l = − 1

2τ + 1
Pτul, where sl, rl and ul are integers

satisfying 0 ≤ sl ≤ T N − 1, 0 ≤ rl ≤ TR − 1 and 0 ≤ ul ≤ P − 1,
respectively. Let Zm be the KQ× P matrix with qth column given by
the vertical concatenation of yp

m,q[k], k ∈ κ, for 0 ≤ q ≤ Q− 1. We can
then write Zm as

Zm =
(
B̄m ⊗ Am

)
XDFH . (7)

Here, Am denotes the K × T N matrix whose (k, n)th element is
e− j 2π

T N κkne− j2π fm
Bh

n
T with κk the kth element in κ, Bm is the Q × TR

matrix with (q, p)th element e− j2πβmq(−1+ 2
TR p) and F denotes the P × P

Fourier matrix. The Kronecker product is denoted by ⊗ and (·)H is
the Hermitian operator. The matrix XD is a T 2NR × P sparse matrix
that contains the values αl at the L indices (rlT N + sl, ul).

Our goal is now to recover XD from the measurement matrices
Zm, 0 ≤ m ≤ M − 1. The time, spatial and frequency resolution
stipulated by XD are 1

T Bh
, 2

TR and 1
Pτ respectively. Theorem 1

presents necessary conditions on the minimal number of channels
MQ, samples per receiver MK and pulses per transmitter P for perfect
recovery of XD from (7) under the grid assumption. The proof can
be found in [8].

Theorem 1. The minimal number of channels required for perfect
recovery of XD with L targets in noiseless settings is MQ ≥ 2L with
a minimal number of MK ≥ 2L samples per receiver and P ≥ 2L
pulses per transmitter.

C. Range-Azimuth-Doppler Recovery

To jointly recover the range, azimuth and Doppler frequency of
the targets, we apply the concept of Doppler focusing from [9] to
our MIMO setting. Once the Fourier coefficients are acquired and
processed, we perform Doppler focusing for a specific frequency ν,
that is

Φν
m,q[k] =

P−1∑
p=0

yp
m,q[k]e− j2πνpτ (8)

=

L∑
l=1

αle j2πβmqϑl e− j 2π
τ (k+ fmτ)τl

P−1∑
p=0

e j2π( f D
l −ν)pτ,

for − N
2 ≤ k ≤ − N

2 − 1. Following [9], it holds that

P−1∑
p=0

e j2π( f D
l −ν)pτ �

{
P | f D

l − ν| <
1

2Pτ ,
0 otherwise. (9)

Then, for each focused frequency ν, (8) reduces to a 2-dimensional
problem. The system (7) can be solved using CS recovery techniques,
such as orthogonal matching pursuit (OMP), which is extended to
simultaneous 3-dimensional sparse recovery with Doppler focusing
[8].

Algorithm 1 solves (7) using Doppler focusing. Note that step 1
can be performed using fast Fourier transform (FFT). In the algorithm
description, vec(Z) concatenates the columns of Zm, for 0 ≤ m ≤
M − 1, et(l) =

[
(e0

t (l))T · · · (eM−1
t (l))T

]T
where em

t (l) = vec((B̄m ⊗

Am)Λt(l,2)T N+Λt(l,1)

(
(F̄m)T

Λt(l,3)

)T
) with Λt(l, i) the (l, i)th element in the

index set Λt at the tth iteration, and Et = [et(1) . . . et(t)]. Once XD

is recovered, the delays, azimuths and Dopplers are estimated as

τ̂l =
τΛL(l, 1)

T N
, ϑ̂l = −1 +

2ΛL(l, 2)
TR

, hat f D
l = −

1
2τ

+
∆L(l, 3)

Pτ
. (10)

978-1-4673-8823-8/17/$31.00 ©2017 IEEE 1180



Since in real scenarios, targets delays, Dopplers and azimuths are not
necessarily aligned to a grid, a finer grid can be used around detection
points on the coarse grid to reduce quantization error. This technique,
we refer to as dynamic grid, simply adds a step after support detection
in each iteration (step 4 in Algorithm 1), that refines the grid around
the detected azimuth, range and Doppler frequency.

Algorithm 1 Simultaneous sparse 3D recovery based OMP with
focusing
Input: Observation matrices Zm, measurement matrices Am, Bm, for

all 0 ≤ m ≤ M − 1
Output: Index set Λ containing the locations of the non zero indices

of X, estimate for sparse matrix X̂
1: Perform Doppler focusing for 0 ≤ i ≤ K − 1 and 0 ≤ j ≤ Q − 1:

Φ
(m,ν)
i, j =

P−1∑
p=0

Zm
i+ jK,pe j2πνpτ.

2: Initialization: residual R(m,ν)
0 = Φ(m,ν), index set Λ0 = ∅, t = 1

3: Project residual onto measurement matrices for 0 ≤ p ≤ P − 1:

Ψν = AHRνB,

where A = [A0T A1T
· · · A(M−1)T

]T , B = [B0T B1T
· · · B(M−1)T

]T ,

and Rν = diag
(
[R(0,ν)

t−1 · · · R(M−1,ν)
t−1 ]

)
is block diagonal

4: Find the three indices λt = [λt(1) λt(2) λt(3)] such that

[λt(1) λt(2) λt(3)] = arg maxi, j,ν

∣∣∣Ψν
i, j

∣∣∣
5: Augment index set Λt = Λt

⋃
{λt}

6: Find the new signal estimate

α̂ = [α̂1 . . . α̂t]T = (ET
t Et)−1ET

t vec(Z)

7: Compute new residual

R(m,ν)
t = Zm −

t∑
l=1

αle
j2π

(
− 1

2 +
Λt (l,3)

P

)
pam

Λt(l,1)

(
b̄m

Λt(l,2)

)T

8: If t < L, increment t and return to step 2, otherwise stop
9: Estimated support set Λ̂ = ΛL

10: Estimated matrix X̂D: (ΛL(l, 2)T N + ΛL(l, 1),ΛL(l, 3))-th
component is given by α̂l while rest of the elements are zero

D. Cognitive Transmission

Let Bm be the set of all frequencies in the mth transmit
signal spectrum of effective bandwidth Bh. In the cognitive radar
transmission, the spectrum H̃m(ω) of each of the transmitted
waveforms h̃m(t) is limited to a total of Nb non-overlapping frequency
bands Bi, 1 ≤ i ≤ Nb:

H̃m(ω) =


γ(ω)Hm(ω), ω ∈

Nb⋃
i=1

Bi ⊂ Bh

0, otherwise

(11)

where γ(ω) = Bh/|Bi| for ω ∈ Bi. The total transmit power Pt remains
the same [18] such that the power relation between the conventional
and cognitive waveforms is

∫ Bh/2

−Bh/2
|Hm(ω)|2 dω =

Nb∑
i=1

∫
Bi

|H̃m(ω)|2 dω = Pt (12)

In a cognitive radar, the sub-Nyquist receiver obtains the set κ of the
Fourier coefficients only from the subbands Bi.

TABLE I. Technical characteristics of the prototype

Parameters Mode 1 Mode 2 Mode 3 Mode 4

#Tx, #Rx 8,10 8,10 4,5 8,10
Element placement Uniform Random Random Random
Equivalent aperture 8x10 8x10 8x10 20x20
Angular resolution (sine of DoA) 0.025 0.025 0.025 0.005
Range resolution 1.25 m
Signal bandwidth per Tx 12 MHz (15 MHz including guard-bands)
Pulse width 4.2 µs
Carrier frequency 10 GHz
Unambiguous range 15 km
Unambiguous DoA 180◦ (from -90◦ to 90◦)
PRI 100 µs
Pulses per CPI 10
Unambiguous Doppler from −75 m/s to 75 m/s

Fig. 1. Tx and Rx element locations for the hardware prototype modes over
a 6 m antenna aperture. Mode 4’s virtual array equivalent is the 20×20 ULA.

III. Hardware Prototype and Experiments

The cognitive SUMMeR prototype realizes a receiver with a
maximum of 8 transmit (Tx) and 10 receive (Rx) antenna elements.
The experimental process consists of the following steps. The
simulated radar scenario is stored in a custom-designed waveform
generator. The scenario includes modeling of pulse transmission,
accurate power loss due to wave propagation in a realistic medium,
and interaction of transmit signal with the target. A large variety
of scenarios, consisting of different target parameters, i.e. delays,
Doppler frequencies, and amplitudes, and array configurations, i.e.
number of transmitters and receivers and antenna locations, can be
examined using the prototype. The waveform generator board then
produces an analog signal corresponding to the synthesized radar
environment, which is amplified and routed to the MIMO radar
receiver board. The prototype then samples and processes the signal
in real-time. The physical array aperture and simulated target response
correspond to an X-band ( fc = 10 GHz) radar.

Our previous work [10] describes the design philosophy of the
prototype. Briefly, we use the same hardware for each receive element
and serially feed the signals of all 10 receivers to the same prototype.
Further, in order to avoid use of an overwhelmingly large number of
ADCs and bandpass filters for an 8 × 10 array, we adopt a cognitive
transmission wherein each transmit signal lies in Nb = 8 disjoint,
narrow slices. More importantly, for each channel, a single low-rate
ADC can subsample this narrow-band signal as long as the subbands
are coset bands so that they do not alias after sampling [19].

Table I lists details technical characteristics of the prototype can
be found in [10]. The system can be configured to operate in various
array configurations or modes. Mode 3 and 4 are sub-Nyquist MIMO
modes; the hardware switches off the inactive channels and does not
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Fig. 2. Sub-Nyquist MIMO prototype and user interface. The analog pre-processor (APP) module consists of two cards mounted on opposite sides of a common
chassis. The inset shows the simplified block diagram of the system. The subscript r represents received signal samples for rth receiver. Wherever applicable,
the second subscript corresponds to a particular transmitter. The square brackets (parentheses) are used for digital (analog) signals.

sample any data over the corresponding ADCs. Figure 2 shows the
sub-Nyquist MIMO prototype, user interface and radar display. The
inset graph depicts the signal flow through a simplified block diagram.

As shown in Figure 3a, the cognitive radar signal occupies only
certain subbands in a 15 MHz band. Here, the sliced transmit signal
has eight subbands each of width 375 kHz. with the frequency
range of 1.63-2, 2.16-2.53, 3.05-3.42, 3.88-4.25, 5.66-6.03, 6.51-6.88,
8.64-9.01 and 12.32-12.69 MHz before subsampling. The total signal
bandwidth is 0.375 × 8 = 3 MHz. This signal is subsampled at 7.5
MHz and the subbands locations were chosen so that there is no
aliasing between different subbands (Fig. 3b). A non-cognitive signal
would have occupied the entire 15 MHz spectrum requiring a Nyquist
sampling rate of 30 MHz. Therefore, the use of cognitive transmission
enables spectral sampling reduction by a factor of 4 (= 30 MHz/7.5
MHz) for each channel. Depending on whether the guard-bands of the
non-cognitive transmission are included in the computation or not, the
effective signal bandwidth is reduced by a factor of 5 (= 15 MHz/3
MHz) or 4 (= 12 MHz/3 MHz) respectively for each channel. Mode
3 has 50% spatial sampling reduction when compared with Mode 1
or 2.

We evaluated the performance of all the modes through hardware
simulations. In the experiment, P = 10 pulses were transmitted at a
uniform pulse repetition frequency (PRF) of 100µs and all modes
were evaluated against identical target scenarios. We injected the
received signal corresponding to the echoes from L = 10 targets,
placed at arbitrary range and azimuths and with arbitrary velocities,
in the transmit waveform generator. In the first experiment, when the
angular spacing (in terms of the sine of azimuth) between any two
targets was greater than 0.025 and the signal SNR = −8 dB, the
recovery performance of the thinned 4 × 5 array in Mode 3 was not
worse than Modes 1 and 2. For this experiment, Figs. 4 and 5 show the
plan position indicator (PPI) plot and range-azimuth-Doppler maps of
all the modes. Here, a successful detection (green circle) occurs when
the estimated target is within one range cell, one azimuth bin and one
Doppler bin of the ground truth (blue circle); otherwise, the estimated

(a) Before subsampling (b) After subsampling

Fig. 3. The normalized one-sided spectrum of one channel of a given
receiver (a) before and (b) after subsampling with a 7.5 MHz ADC. Each
of the subbands spans 375 kHz and is marked with a numeric label. In a
non-cognitive processing, the signal occupies the entire 15 MHz spectrum
before sampling.

target is labeled as a false alarm (magenta circle).

We next considered a sparse target scene with L = 10 targets
including two couples of targets with close azimuth dimension, with
angular spacing of 0.02. The SNR of the injected signal was −5 dB.
Since the angular resolution of Mode 4 is better than the other three
modes, all the targets are successfully detected in Mode 4. Mode
1 and 3 showed a false alarm as seen in the inset plots of Figs. 6
and 7. Mode 2 also shows successful recovery in the sense of our
detection criterion. However, relatively better performance of Mode
2 over Modes 1 and 3 is not entirely fortuitous here. Figure 1 shows
that both Tx and Rx array elements in Mode 2 are distributed such
that its virtual array is wider than Modes 1 and 3. Thus, the effective
angular resolution for Mode 2 could be better than 1 and 3, but still
worse than 4.
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Fig. 4. Plan Position Indicator (PPI) display of results for Mode 1 and
3. The origin is the location of the radar. The red dot indicates the north
direction relative to the radar. Positive (negative) distances along the horizontal
axis correspond to the east (west) of the radar. Similarly, positive (negative)
distances along the vertical axis correspond to the north (south) of the radar.
The estimated targets are plotted over the ground truth.

Fig. 5. Range-Azimuth-Doppler map for the target configurations shown
in Fig. 4. The lower axes represent the Cartesian coordinates of the polar
representation of the PPI plots from Fig. 4. The vertical axis represents the
Doppler spectrum.

IV. Summary

We presented the first hardware prototype of sub-Nyquist MIMO
that demonstrates real-time operation of spatial reduction in sampling,
cognitive transmission and delay-azimuth-Doppler recovery using
sub-Nyquist processing. The thinned 4x5 array has the same detection
performance as 8x10 filled array. The spatial and spectral reduction in
the thinned 4x5 array is 50% and 87.5%, respectively. The prototype
performance is robust with SNRs dropping to as low as −5 dB. While
we did not analyze the performance in the presence of clutter, the
prototype design does not restrict such an evaluation and we reserve
this implementation for future work.

Fig. 6. As in Fig. 5, but for a closely-spaced target scenario. The inset plots
show the selected region in each PPI display on a magnified scale.

Fig. 7. As in Fig. 6, but for a closely-spaced target scenario. The inset plots
show the selected region in each map on a magnified scale.
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