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Abstract—This paper presents a spectrum sharing technology
enabling interference-free operation of a surveillance radar and
communication transmissions over a common spectrum. A cognitive
radio (CRo) receiver senses the spectrum using very low sampling and
processing rates. The radar is also modeled as a cognitive system that
employs a Xampling-based receiver and transmits in several narrow
bands. Our main contribution is the alliance of two previous ideas, CRo
and cognitive radar (CRr), and their adaptation to solve the spectrum
sharing problem. Finally, we present a hardware realization of our
system and demonstrate the SPEctral Coexistence via Xampling (SpeCX)
technology through real-time experiments.

Keywords—spectrum sharing, cognitive radar, cognitive radio,
Xampling, SSPARC

I. Introduction

The unhindered operation of a radar sharing its spectrum with
communication (“comm”, hereafter) systems has captured a great
deal of attention within the operational radar community in recent
years [1]. The interest in such spectrum sharing radars is largely due
to electromagnetic spectrum being a scarce resource and almost all
services having a need for a greater access to the spectrum. With
the allocation of available spectrum to newer comm technologies,
the radio-frequency (RF) interference in radar bands is on the rise.
Spectrum sharing radars aim to use the information from coexisting
wireless and navigation services to manage this interference.

Recent research in spectrum sharing radars has focused on S
and C-bands, where the spectrum has seen increasing cohabitation
by Long Term-Evolution (LTE) cellular/wireless commercial comm
systems. However, spectral interference in some other radar bands
existed even before the advent of mobile comm technology (see e.g.
[1]). Many synergistic efforts by major agencies are underway for
efficient radio spectrum utilization. A significant recent development
is the announcement of the Shared Spectrum Access for Radar
and Comm (SSPARC) program [2] by the Defense Advanced
Research Projects Agency (DARPA). This program is focused on
S-band military radars and views spectrum sharing as a cooperative
arrangement where the radar and comm services actively exchange
information and do not ignore each other. It defines spectral
coexistence as equipping existing radar systems with spectrum sharing
capabilities and spectral co-design as developing new systems that
utilize opportunistic access to the spectrum [3].

A variety of system architectures have been proposed for spectrum
sharing radars. Most put emphasis on optimizing the performance of
either radar or comm while ignoring the performance of the other. The
radar-centric architectures usually assume fixed interference levels
from comm and design the system for high probability of detection.
Similarly, comm-centric systems attempt to improve performance
metrics like the error vector magnitude (EVM) and bit/symbol error
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rate (BER/SER) for interference from radar. With the introduction
of the SSPARC program, joint radar-comm performance is being
investigated [4]. Real-time exchange of information between radar
and comm hardware has not yet been integrated into most system
architectures. Our proposed method, described below, incorporates
handshaking of spectral information between the two systems.

In this work, we propose a waveform design and receiver
processing solution for spectral coexistence of radar-comm systems
based on the recently proposed Xampling (“compressed sampling”)
framework [5]. Xampling is a system architecture that samples and
processes analog inputs at rates far below Nyquist, whose underlying
structure can be modeled as a union of subspaces (UoS). The
Xampling framework performs two main functions: low rate analog
to digital conversion (ADC), in which the input is compressed in the
analog domain prior to sampling with commercial devices, and low
rate digital signal processing, in which the input subspace is detected
prior to digital processing. The resulting sparse recovery is performed
using compressed sensing (CS) [6] techniques adapted to the analog
setting. This concept has been applied to both comm [7] and radar
[8].

In our approach, the comm receiver consists of a cognitive radio
(CRo) that blind-senses the spectrum from sub-Nyquist samples and
provides the radar with spectral occupancy information. Equipped
with this spectral map as well as a known radar environment map
(REM) detailing typical interference with respect to frequency, the
radar transmitter chooses narrow frequency subbands that minimizes
interference for its transmission. The receiver samples and processes
only these subbands. This technology is adapted from the cognitive
radar (CRr) concept explained and practically demonstrated in [9].
By exploiting the sparsity of the target scene, this approach achieves
the same range resolution as a conventional wideband signal while
transmitting and processing only a few narrow spectral bands.
The combined CRo-CRr system results in spectral coexistence via
Xampling (SpeCX). This solution has several advantages. It optimizes
the radar’s performance without interfering with existing comm
transmissions. Unlike conventional spectrum sharing radar, the SpeCX
radar preserves range resolution despite using less bandwidth for
transmission. Both CRo and CRr receivers use very low sampling
rates. Finally, the received signal SNR of the radar is enhanced
via cognitive transmission since all the radar power is conccentrated
within the subbands that are processed at the receiver.

In the next section, we formulate the spectrum sharing problem.
The blind spectrum sensing at the CRo comm receiver and target
detection performed by the CRr are discussed in Section III. The
SpeCX hardware prototype is presented in Section IV.

II. Problem Formulation

Suppose the set of all frequencies of the available common system
spectrum is given by F . The comm and radar systems occupy subsets
FC and FR of F , respectively. Our goal is to design the radar
waveform and its support FR, conditional on the fact that the comm
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occupies frequencies FC . We further assume that FC itself is unknown
to the comm receiver, which has to first detect these frequencies.
Once FC is identified, the comm receiver provides a spectral map
of occupied bands to the radar. Equipped with the detected spectral
map and known REM, the radar waveform generator then selects the
available bands with least interference for its transmission and notifies
the radar receiver of its selection. The radar conveys the frequencies
FR to the comm receiver as well, so that it may ignore the radar
bands while sensing the spectrum. Using our recovery methods, the
radar can achieve delay-Doppler recovery performance similar to that
of a radar transmitting over the entire band F despite using only a
fraction of this bandwidth.

A. Multiband Communication Signal

Let xC(t) be a real-valued continuous-time comm signal,
supported on F = [−1/2TNyq,+1/2TNyq] and composed of up to Nsig

transmit waveforms such that

xC(t) =

Nsig∑
i=1

si(t). (1)

Formally, the Fourier transform of xC(t), defined by

XC( f ) = lim
T→∞

1
√

T

∫ T/2

−T/2
x(t)e− j2π f tdt, (2)

is zero for every f < F . We denote by fNyq = 1/TNyq the Nyquist
rate of xC(t). The waveforms, respective carrier frequencies and
bandwidths are unknown. We only assume that the single-sided
bandwidth Bi

c for the ith transmission does not exceed an upper limit
B, namely Bi

c ≤ B for all 1 ≤ i ≤ Nsig. Such sparse wideband signals
belong to the so-called multiband signal model [7]. Let FC ⊂ F be
the unknown support of xC(t), where

FC = { f || f − fi| < Bi
c/2, for all 1 ≤ i ≤ Nsig}. (3)

The goal of the comm receiver is to retrieve FC , while sampling and
processing xC(t) at low rates to reduce system cost and resources.

B. Pulse Doppler Radar

A standard pulse Doppler radar transmits a pulse train

rTX (t) =

P−1∑
p=0

h(t − pτ), 0 ≤ t ≤ Pτ, (4)

consisting of P uniformly spaced known pulses h(t). The interpulse
transmit delay τ is the pulse repetition interval (PRI) (or “fast time”);
its reciprocal being the pulse repetition frequency (PRF). The entire
duration of P pulses in (4) is known as the coherent processing
interval (CPI) (or “slow time”).

Assume that the radar target scene consists of L non-fluctuating
point-targets, according to the Swerling-0 target model [10]. The
transmit signal is reflected back by the L targets and these echoes
are received by the radar. The radar processor aims at recovering the
following information about any of the L targets from the received
signal: range-time delay τl; Doppler frequency νl; and complex
reflectivity αl. The target locations are defined with respect to the
polar coordinate system of the radar and their range and Doppler
are assumed to lie in the unambiguous time-frequency region. The
received signal can then be written as

rRX (t) =

P−1∑
p=0

L−1∑
l=0

αlh(t − τl − pτ)e− jνl pτ, 0 ≤ t ≤ Pτ. (5)

It will be convenient to express rRX (t) as a sum of single frames

rRX (t) =

P−1∑
p=0

rp
RX

(t), (6)

where

rp
RX

(t) =

L−1∑
l=0

αlh(t − τl − pτ)e− jνl pτ, 0 ≤ t ≤ Pτ, (7)

is the return signal from the pth pulse. In a conventional pulse
Doppler radar, the pulse h(t) = hNyq(t) is a time-limited baseband
function whose Fourier transform is HNyq( f ) =

∫ ∞
−∞

hNyq(t)e− j2π f tdt. It
is assumed that most of the signal’s energy lies within the frequencies
±Bh/2, where Bh denotes the effective signal bandwidth. A classical
radar signal processor samples each incoming frame rp

RX
(t) at the

Nyquist rate Bh to yield the digitized samples rp
RX

[n], 0 ≤ n ≤ N − 1,
where N = τBh. The signal enhancement process employs a matched
filter for the sampled frames rp

RX
[n]. This is then followed by Doppler

processing where a P-point discrete Fourier transform (DFT) is
performed on slow time samples. By stacking all the N DFT vectors
together, a delay-Doppler map is obtained for the target scene. Finally,
the time delays τl and Doppler shifts νl of the targets are found on
this map using a constant false-alarm rate (CFAR) detector.

Broad bandwidth is necessary to obtain high range resolution, but
such a spectral requirement is at odds with the coexisting comm. We,
therefore, propose an alternative efficient spectral utilization method
wherein the radar transmits several narrow frequency bands instead
of a full-band radar signal. In particular, we propose exploiting
only a fraction of the bandwidth Bh for both transmission and
reception of the radar signal, without degrading its range resolution.
In SpeCX, the radar transmits a pulse h(t) supported over Nb

disjoint frequency bands, with bandwidths {Bi
r}

Nb
i=1 centered around the

respective frequencies { f i
r }

Nb
i=1, such that

∑Nb
i=1 Bi

r < Bh. The number of
bands Nb is known to the receiver and does not change during the
operation of the radar. The location and extent of the bands Bi

r and
f i
r are determined by the radar transmitter through an optimization

procedure to identify the least contaminated bands. The resulting radar
transmit signal can be written as

HR( f ) =

{
βiHNyq( f ), f ∈ F i

R, for 1 ≤ i ≤ Nb,

0, otherwise, (8)

where F i
R = [ f i

r − Bi
r/2, f i

r + Bi
r/2] is the set of frequencies in the ith

band. The parameters βi > 1 are chosen such that the total transmit
power PT of the spectrum sharing radar waveforms remains the same
as that of the conventional radar [11]. Denote by

FR =

Nb⋃
i=1

F i
R (9)

the radar bandwidth.

III. Comm Signal Recovery and Radar Target Detection

We now describe sampling and processing of both comm and
radar signals. The shared information between the comm and radar
components of SpeCX on the occupied comm support and selected
radar spectral bands ensures coexistence between both systems.

A. Cognitive Radio

The input signal at the comm receiver of the SpeCX system is
given by

x(t) = xC(t) + xR(t), (10)
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where xR(t) = rTX (t) + rRX (t) is the radar signal sensed by the comm
receiver, composed of the transmitted and received radar signals
defined in (4) and (5), respectively. Since the frequency support of
xC(t) is unknown, a classic processor would sample such a signal at its
Nyquist rate, which can be prohibitively high. In this work, we instead
use the modulated wideband converter (MWC) [7] - a sub-Nyquist
sampling technique that achieves the lower sampling rate bound for
perfect blind recovery of multiband signals, namely twice the Landau
rate, and is also practically feasible. The MWC is composed of M
parallel channels. In each channel, an analog mixing front-end, where
xC(t) is multiplied by a mixing function pi(t), aliases the spectrum,
such that each band appears in baseband. The mixing functions pi(t)
are periodic with period Tp such that fp = 1/Tp ≥ B and have thus
the following Fourier expansion:

pi(t) =

∞∑
l=−∞

cile
j 2π

Tp lt
. (11)

In each channel, the signal next goes through a lowpass filter (LPF)
with cut-off frequency fs/2 and is sampled at the rate fs ≥ fp,
resulting in the samples zi[n]. Define

N = 2
⌈

fNyq + fs

2 fp

⌉
, (12)

and Fs = [− fs/2, fs/2]. Following the calculations in [7], the relation
between the known discrete time Fourier transform (DTFT) of the
samples zi[n] and the unknown XC( f ) is given by

z( f ) = A(xC( f ) + xR( f )), f ∈ Fs, (13)

where z( f ) is a vector of length M with ith element zi( f ) = Zi(e j2π f Ts )
and the unknown vector xC( f ) is given by

xC i( f ) = XC( f + (i − dN/2e) fp), f ∈ Fs, (14)

for 1 ≤ i ≤ N. The vector xRi( f ) is defined similarly. The M × N
matrix A contains the known coefficients cil such that Ail = ci,−l = c∗il.

The CRo’s goal is now to recover the support of xC( f ) from the
low rate samples z( f ). The recovery of xC( f ) for each f independently
is inefficient and not robust to noise. Instead, the support recovery
paradigm from [7] exploits the fact that the bands occupy continuous
spectral intervals so that xC( f ) are jointly sparse for f ∈ Fp. The
continuous to finite (CTF) block [7] then produces a finite system
of equations, called multiple measurement vectors (MMV) from the
infinite number of linear systems (13).

From (13), we have

Q = ΦZΦH , (15)

where

Q =

∫
f∈Fp

z( f )zH( f )d f , Z =

∫
f∈Fp

x( f )xH( f )d f , (16)

are M×M and N×N matrices, respectively. Here, x( f ) = xC( f )+xR( f ).
The matrix Q is then decomposed to a frame V such that Q = VVH .
Clearly, there are many possible ways to select V. One possibility
is to construct it by performing an eigendecomposition of Q and
choosing V as the matrix of eigenvectors corresponding to the non
zero eigenvalues. The finite dimensional MMV system is given by

V = A(UC + UR). (17)

The support of the unique sparsest solution of (17) is the same as
the support of our original set of equations (13) [7]. Therefore, the
support of UC and UR are disjoint.

The frequency support FR of xR(t), given by (9), is known at the
comm receiver. From FR, we derive the support S R of the radar slices
xR( f ), which is identical to the support of UR, such that

S R =

{
n

∣∣∣∣∣∣
∣∣∣∣∣∣n − f i

R

fp
− dN/2e

∣∣∣∣∣∣ < fs + Bi
R

2 fp

}
, (18)

for 1 ≤ i ≤ Nb. Our goal can then be stated as recovering the
support of UC from V, given the known support S R of UR. This can
be formulated as a sparse recovery with partial support knowledge,
studied under the framework of modified CS [12]. The modified-CS
idea has been used to adapt CS recovery algorithms to exploit the
partial known support a priori information. In particular, greedy
algorithms, such as orthogonal matching pursuit (OMP), have been
modified to OMP with partial known support (OMP-PKS) [13].
Instead of starting with an initial empty support set, one starts with
S R as being the initial support set. In the first iteration, we compute
the estimate

ÛS R
1 = A†S R

V, Û1i = 0, ∀i < S R, (19)

and residual
V1 = V − AS R Û1. (20)

The remainder of the algorithm is then identical to OMP.

Once the overall support S C
⋃

S R is known,

x̂S C
⋃

S R [n] = A†S C
⋃

S R
z[n], (21)

x̂i[n] = 0, ∀i < S C

⋃
S R.

Here, xS C
⋃

S R ( f ) denotes the vector x( f ) reduced to its support,
AS C

⋃
S R is composed of the columns of A indexed by S C

⋃
S R and

† is the Moore-Penrose pseudo-inverse. The occupied comm support
is then

FC = { f || f − (i + dN/2e) fp| ≤
fp

2
, for all i ∈ S C}. (22)

B. Cognitive Radar

The objective of the radar is to identify an appropriate transmit
frequency set FR ⊂ F \ FC such that the radar’s probability of
detection Pd is maximized. For a fixed Pfa, the Pd increases with
higher signal to interference and noise ratio (SINR) [14]. Hence, the
frequency selection process can, alternatively, choose to maximize the
SINR or minimize the spectral power in the undesired parts of the
spectrum. The REM is assumed to be known to the radar transmitter in
the form of typical interfering energy levels with respect to frequency
bands, represented by a vector y ∈ Rq, where q is the number
of frequency bands with bandwidth by , |F |/q. In addition, the
information available from the CRo indicates that the radar waveform
must avoid all the frequencies in the set FC . The goal is now to select
subbands from the set F \ FC with minimal interference energy. We
thus seek a block-sparse frequency vector w ∈ Rp with unknown
block lengths, where p is the number of discretized frequencies, and
whose support provides frequency bands with low interference for the
radar transmission. Each entry of w represents a frequency subband
of bandwidth bw , |F |/p. To this end, we adopt the structured
sparsity framework from [15] and use the structured greedy algorithm,
structured OMP (StructOMP) [15].

At the receiver of this spectrum sharing radar, we employ the
sub-Nyquist approach described in [8], where the delay-Doppler map
is recovered from the subset of Fourier coefficients defined by FR.
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To this end, we use the structured sparsity framework from [15]
that extends standard sparsity regularization to structured sparsity.
We adopt the one-dimensional graph sparsity structure whose nodes
are the ordered entries of w, so that neighbor nodes are indexed
by adjacent frequency bands. The graph dimension is therefore the
frequency and its size is p. Block sparsity may be enforced by
allowing the graph to contain connected regions. In contrast to
traditional block sparsity approaches [30], this formulation does not
require a priori knowledge on the location of the non-zero blocks.
This is achieved by replacing the traditional sparse recovery `0

constraint by a more general term c(w), referred to as the coding
complexity, such that

c(w) = min{c(F)|supp(w) ⊂ F}, (23)

where F ⊂ {1, . . . , p} is a sparse subset of the index set of the
coefficients of w. In particular, for graph sparsity, the choice of c(F)
is simply

c(F) = g log p + |F|, (24)

where g is the number of connected regions, or blocks, of F. This
coding complexity favors blocks within the graph.

The resulting optimization problem for finding the block-sparse
frequency vector w can then be expressed as

min ||yinv − Dw||22 + λc(w), (25)

where λ is a regularization parameter and c(w) is defined in (23) with
c(F) in (24). Here, yinv contains element-wise reciprocals of y, namely
(yinv)i = 1/yi, so that small values in yinv induce corresponding zero
blocks in w, and D is a q×p matrix that maps each discrete frequency
in w to the corresponding band in yinv. That is, the (i, j)th entry of
D is equal to 1 if the jth frequency in w belongs to the ith band in
y; otherwise, it is equal to 0. If we choose p = q, then D = I is the
q × q identity matrix. Problem (25) can be solved using StructOMP
[15].

In the original StructOMP [15], the stopping criterion is based on
additional a priori information on the overall sparsity and number of
non-zero blocks. We adopt an alternative stopping criterion, based
only on the number of blocks, which is known to be equal to
Nb in our problem. This leads to Nb bands in FR as dictated
by the hardware constraints. In the above, additional requirements
of transmit power constraints, range sidelobe levels, and minimum
separation between the bands can also be imposed. Once the support
FR is identified, a suitable waveform code can be designed using
optimization procedures described by e.g. [16, 17].

We now turn to the radar receiver design and describe how a
delay-Doppler map can be recovered from only Nb transmitted narrow
bands. The radar receiver first filters the transmitted bands supported
on FR and computes the Fourier coefficients of the received signal.
Consider the Fourier series representation of the aligned frames rp

RX
(t+

pτ), with rp
RX

(t) defined in (7):

cp[k] =
1
τ

H[k]
L−1∑
l=0

αle− j2πkτl/τe− jνl pτ, k ∈ κ, (26)

whereκ =

{
k =

⌊
f

fNyq
N
⌋∣∣∣∣∣ f ∈ FR

}
. From (26), we see that the unknown

parameters {αl, τl, νl}
L−1
l=0 are embodied in the Fourier coefficients cp[k].

The goal is then to recover these parameters from cp[k], 0 ≤ p ≤ P−1.

We adopt the Doppler focusing approach from [8]. Consider the
DFT of the coefficients cp[k] in the slow time domain:

Ψ̃ν[k] =

P−1∑
p=0

cp[k]e jνpτ =
1
τ

H[k]
L−1∑
l=0

αle− j2πkτl/τ
P−1∑
p=0

e j(ν−νl)pτ. (27)

The key to Doppler focusing follows from the approximation:

g(ν|νl) =

P−1∑
p=0

e j(ν−νl)pτ ≈

{
P |ν − νl| < π/Pτ
0 |ν − νl| ≥ π/Pτ,

(28)

Denote the normalized focused measurements Ψν[k] so that

Ψν[k] =
τ

PH[k]
Ψ̃ν[k]. (29)

As in traditional pulse Doppler radar, suppose we limit ourselves
to the Nyquist grid so that τl/τ = rl/N, where rl is an integer satisfying
0 ≤ rl ≤ N − 1. Then, in vector form, (29) can be approximated as

Ψν = Fκxν, (30)

where Ψν = [Ψν[k0] . . .Ψν[kK−1]] , ki ∈ κ for 0 ≤ i ≤ K − 1, Fκ is
composed of the K rows of the N×N Fourier matrix indexed by κ and
xν is a L-sparse vector that contains the values αl at the indices rl for
the Doppler frequencies νl in the “focus zone”, that is |ν−νl| < π/Pτ. It
is convenient to write (30) in matrix form, by vertically concatenating
the vectors Ψν, for ν on the Nyquist grid, namely ν = − 1

2τ + 1
Pτ , into

the K × P matrix Ψ, as

Ψ = FκX. (31)

The P equations (30) can be solved simultaneously, where in each
iteration, the maximal projection of the observation vectors onto the
measurement matrix are retained [8]. The following theorem from [8]
derives a necessary condition on the minimal number of samples K
and pulses P for perfect recovery in a noiseless environment.

Theorem 1. [8] The minimal number of samples required for perfect
recovery of {αl, τl, νl} with L targets in a noiseless environment is 4L2,
with K ≥ 2L and P ≥ 2L.

Theorem 1 translates into requirements on the total bandwidth of
the transmitted bands, such that

Btot = N
Nb∑
i=1

⌈
Bi

r

Bh

⌉
geq2L. (32)

The multiband design strategy, besides allowing a dynamic form of
the transmitted signal spectrum over only a small portion of the whole
bandwidth to enable spectrum sharing, has two additional advantages.
First, under the conditions of Theorem 1, the CS reconstruction
achieves the same resolution as traditional Nyquist processing over
a significantly smaller bandwidth. Second, since we only use narrow
bands to transmit, the whole power is concentrated in them. Therefore,
the SNR in the sampled bands is improved.

IV. SpeCX Prototype

The SpeCX prototype, shown in Fig. 1, is composed of a CRo
receiver and a CRr transceiver. At the heart of the CRo system lies
the proprietary MWC board [18] that implements the sub-Nyquist
analog front-end receiver. The card first splits the wideband signal
into M = 4 hardware channels, with an expansion factor of q = 5,
yielding Mq = 20 virtual channels after digital expansion (see [7]
for more details on the expansion). In each channel, the signal
is then mixed with a periodic sequence pi(t), chosen as truncated
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Fig. 1. (a) SpeCX prototype. The system consists of a signal generator, a CRo comm analog receiver including the MWC analog front-end board and the
FPGA mixing sequences generator, a comm digital receiver, a CRr analog and receiver. SpeCX comm system display showing (b) low rate samples acquired
from one MWC channel at rate 120 MHz, and (c) digital reconstruction of the entire spectrum from sub-Nyquist samples. SpeCX radar display showing (d)
coexisting comm and CRr, (e) CRr spectrum compared with the full-band radar, and (f) range-velocity display of detected and true locations of the targets.

versions of Gold Codes and generated on a dedicated FPGA, with
fp = 20 MHz. The sequences are chosen as truncated versions of Gold
Codes [19, 20], commonly used in telecommunication (CDMA) and
satellite navigation (GPS). These were heuristically found to give
good detection results in the MWC system [20], primarily due to
small bounded cross-correlations within a set. This is useful when
multiple devices are broadcasting in the same frequency range. Next,
the modulated signal passes through an analog anti-aliasing LPF.
Specifically, a Chebyshev LPF of 7th order with a cut-off frequency
(−3 dB) of 50 MHz was chosen for the implementation. Finally, the
low rate analog signal is sampled by a National Instruments© ADC
operating at fs = (q + 1) fp = 120 MHz (with intended oversampling),
leading to a total sampling rate of 480 MHz. The digital receiver is
implemented on a National Instruments© PXIe-1065 computer with
DC coupled ADC. Since the digital processing is performed at the
low rate 120 MHz, very low computational load is required in order
to achieve real time recovery. MATLAB®and LabVIEW® platforms
are used for the various digital recovery operations. The sampling
matrix A is computed only once off-line, using the calibration process
outlined in [21].

The prototype is fed with RF signals composed of up to Nsig = 5
real comm transmissions, namely K = 10 spectral bands with total
bandwidth occupancy of up to 200 MHz and varying support, with
Nyquist rate of 6 GHz. Specifically, to test the system’s support
recovery capabilities, an RF input is generated using vector signal
generators (VSG), each producing a modulated data channel with
individual bandwidth of up to 20 MHz, and carrier frequencies
ranging from 250 MHz up to 3.1 GHz. The input transmissions then
go through an RF combiner, resulting in a dynamic multiband
input signal, that enables fast carrier switching for each of the
bands. This input is specially designed to allow testing the system’s
ability to rapidly sense the input spectrum and adapt to changes,
as required by modern CRo and shared spectrum standards, e.g. in
SSPARC program. The system’s effective sampling rate, equal to
480 MHz, is only 8% of the Nyquist rate. Support recovery is digitally
performed on the low rate samples. The prototype successfully
recovers the support of the comm transmitted bands, as demonstrated
in Fig. 1(b)-(c). Once the support is recovered, the signal itself can be

reconstructed from the sub-Nyquist samples. This step is performed
in real-time, reconstructing the signal bands z[n] one sample at a
time. We note that the reconstruction does not require interpolation
to the Nyquist rate and the active transmissions are recovered at the
low rate of 20 MHz, corresponding to the bandwidth of the slices
z( f ). The prototype’s digital recovery stage is further expanded to
support decoding of common comm modulations, including BPSK,
QPSK, QAM and OFDM. An example for the decoding of three
QPSK modulated bands is shown in Fig. 2. There are no restrictions
regarding the modulation type, bandwidth or other signal parameters,
since the baseband information is exactly reconstructed regardless of
its respective content. By combining both spectrum sensing and signal
reconstruction, the MWC prototype serves as two separate comm
devices. The first is a state-of-the-art CRo that performs real time
spectrum sensing at sub-Nyquist rates, and the second is a unique
receiver able to decode multiple data transmissions simultaneously,
regardless of their carrier frequencies, while adapting to spectral
changes in real time.

The CRr system [8, 9, 22] includes a custom made sub-Nyquist
radar receiver board composed of Nb = 4 parallel channels which
sample distinct Nb = 4 bands of the radar signal spectral content.
In the ith channel, the transmitted band with center frequency f i

r
and bandwidth Bi

r = 80 KHz is filtered, demodulated to baseband
and sampled at 250 KHz (with intentional oversampling). This way,
four sets of consecutive Fourier coefficients are acquired. More
details on the hardware design can be found in [22]. After sampling,
the spectrum of each channel output is computed via fast Fourier
transform (FFT) and the 320 Fourier coefficients are used for digital
recovery of the delay-Doppler map [8]. The prototype simulates
transmission of P = 50 pulses towards L = 10 targets. The CRr
transmits over Nb = 4 bands, 3.2% of the wideband, after the
spectrum sensing process has been completed by the comm receiver.
We compare the target detection performance of our CRr with a
traditional wideband radar with bandwidth Bh = 20 MHz. The CRr
transmitted bandwidth is thus equal to 3.2% of the wideband. As
shown in Fig. 1(f), the recovery accuracy of

Figure 1 shows windows from the GUI of our CRr system.
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Fig. 2. Demodulation, reconstruction and detection of Nsig = 3 separate inputs
from sub-Nyquist samples using the MWC CR prototype. At the bottom, the
input signal is sampled by an external spectrum analyzer showing the entire
bandwidth of 3GHz. The sub-Nyquist samples from a MWC channel zi[n]
in the Fourier domain are displayed in the middle. The I/Q phase diagrams,
showing the modulation pattern of the transmitted bands after reconstruction
from the low rate samples, are presented at the top left. In the upper right
corner, we can see the actual information that was sent on each carrier, proving
that the reconstruction is indeed successful.

Figure 1(d) illustrates the coexistence between the radar transmitted
bands in red and the existing comm bands in white. The gain in power
is demonstrated in Fig. 1(e); the wideband radar spectrum is shown
in blue, our CRr in red and the noise in yellow in a logarithmic scale.
The true and recovered range-velocity maps are shown in Fig. 1(f).
All 10 targets are perfectly recovered and clutter, shown in blue,
is discarded. Below the map, the range recovery accuracy is shown
for 3 scenarios: from left to right, CRr in blue (2.5m), 4 adjacent
bands with same bandwidth (12.5m) and wideband (4m). The poor
resolution of the 4 adjacent bands scenario is due to its small aperture.
Our CRr system with non-adjacent bands yields better resolution than
the traditional wideband scenario.

V. Summary

Our SpeCX model proposes a comm and radar spectral
coexistence approach through the well-established theory of
Xampling. We presented a complete solution that shows recovery
of signal in both systems with the minimum of known information
about the spectrum. We showed that the SpeCX is practically feasible
through the development and real-time testing of our hardware
prototype. Some of the other elements of signal model that were not
considered in this work include performance of the comm receiver
when the radar signal is also contaminated with clutter and hostile
jamming.
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