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ABSTRACT

We consider the problem of hypothesis testing for detection of a sig-
nal in Gaussian noise. We assume that the vector of measurements
is unobserved, and that our observations consist of phaseless inner
products with a set of known measurement vectors. This is typical of
the phase retrieval problem, where the goal is to recover the vector
of measurements. We provide a simple estimator for the test statistic
that does not necessitate a phaseless recovery method to reconstruct
the measurements. Our analysis shows that for random measurement
vectors, we can reconstruct the test statistic for any signal from a
sufficient number of observations, quadratic in the signal length, us-
ing a simple least-squares approach. The primary advantage of this
method its simplicity and computational efficiency, which comes at
the expense of requiring many more measurements. We show that
for Fourier measurements vectors, our approach works only when
the signal is also a Fourier vector.

Index Terms— detection, phase retrieval, least-squares approx-
imation

1. INTRODUCTION

The problem of recovering a complex signal from phaseless mea-
surements is of significant interest in fields including crystallogra-
phy [1], optics [2], astronomy [3] and possible smart grid tasks [4]
and has received increased attention in recent years. Typical sce-
narios include recovering a signal from Fourier magnitude measure-
ments, or recovery from the absolute values of random i.i.d. linear
measurements [5]. A unique signal consistent with the measure-
ments does not always exist. In some situations, increasing the num-
ber of measurements (oversampling) will lead to the existence of a
unique solution, up to inherent ambiguities. Other methods exploit
sparsity of the unknown signal to facilitate recovery and reduce am-
biguities [6–8].

In this paper, we focus on estimating a positive functional of the
unknown signal, rather than the signal itself. Our motivation comes
from a situation where we would like to perform hypothesis testing,
which utilizes a functional of the unknown signal (a test statistic). A
straightforward approach is to apply a phaseless recovery method to
estimate the signal, and then use it to calculate the test statistic. In-
stead, we propose a simple method to estimate the test statistic using
Least Squares estimation, which has very low computational com-
plexity compared with typical phaseless recovery algorithms. We
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show that this method can be successfully used with N2 random
measurement vectors, (where N is the length of the unknown sig-
nal). This confirmed by numerical simulations of detector perfor-
mance, which show that the probability of detection at a given false
alarm rate improves with additional measurements. However, this
approach is not suitable for Fourier measurements, due to the struc-
ture of the DFT basis vectors. Specifically, the test statistic can be
successfully recovered only if the hypothesis signal (known up to a
constant) has the same structure as the measurement vectors. In this
case, 2N − 1 observations are sufficient for perfect recovery.

We mention here a partial list of existing methods for phase-
less signal recovery. Early methods for phase retrieval featured non-
convex projections [9,10] and often included assumptions on the sig-
nal such as knowledge of the bandwidth or support. More recently,
we mention methods on semidefinite programming using convex re-
laxations [11–13]. For sparse signals, there are phaseless recov-
ery algorithms based on convex relaxations [6] as well as nonlin-
ear formulations [7]. Other methods are based on Wirtinger Flow
descent [14, 15], alternating minimization [16] and generalized ap-
proximate message passing (GAMP) [17]. A method with low com-
plexity which requires a quadratic number of measurements was de-
scribed in [18], though a specific structure is assumed for the mea-
surement vectors. Theoretical results on the existence of a unique
solution include [19, 20] for Gaussian measurements, [21, 22] for
Fourier measurements and [23] for the sparse signals. For a recent
survey of the phase retrieval problem, see [5].

The outline of remainder of the paper is as follows. In Section
2 we outline the detection problem and present our detector using
our proposed least-squares approximation. In Section 3 a theoreti-
cal analysis of the proposed approximation is presented for the case
of random measurement vectors and for the case of Fourier mea-
surement vectors. In Section 4 we display simulation results which
complement our analysis for the case of random measurements. We
then conclude the paper.

2. PHASELESS DETECTOR

2.1. Model

Consider an unknown vector x ∈ CN . We are given a set of M
squared magnitude observations b1, . . . , bM where

bi = |〈ai,x〉|2 (1)

with respect to a given set of complex measurement vectors a1, . . . ,aM .
Given a complex vector s ∈ CN , our goal is to approximate a test
statistic objective

h(x) = |〈s,x〉|2 . (2)



Our motivation comes from a scenario of deciding between a
pair of hypotheses H0, H1 given a vector x ∈ CN :

H1 : x = As+w

H0 : x = w

where s ∈ CN is a deterministic known vector, w ∼ CN (0, σ2IN
)

where σ2 is the noise variance and A ∈ R is an unknown determin-
istic scalar. We assume our observations are b1, . . . , bM as defined
in (1) for an associated set of measurement vectors a1, . . . ,aM .
A standard approach is to perform a generalized likelihood ratio
test (GLRT), which requires the computation of the joint density of
b1, . . . , bM . A closed-form solution is intractable in general due to
the statistical dependence between the observations. An exception to
this is when a1, . . . ,aM are an orthogonal set, in which case we can
write the joint density of the observations as a product of chi-squared
densities (this limits us to N observations).

We focus on the general case and consider a generalized likeli-
hood ratio test (GLRT) with respect to the observation x to decide
between H0 and H1:

h(x) = |〈s,x〉|2
H1

≷
H0

η (3)

for a threshold η > 0. We refer to (3) as the squared correlator

detector. Our proposal is to replace h(x) in (3) by an estimate, ĥ(x),
from the measurements.

2.2. Least-Squares Approximation

Denote

SM � span
R

{
a1a

H
1 , . . . ,aMaH

M

}
=

{
M∑
i=1

βiaia
H
i : βi ∈ R

}
.

(4)
We write the objective as h(x) = xHssHx and define an approxi-

mate test statistic ĥ(x) � xHSx where S ∈ SM . We would like to
choose S which minimizes the absolute distance from the true test
statistic

∣∣∣h(x)− ĥ(x)
∣∣∣ =

∣∣∣xH
(
ssH − S

)
x
∣∣∣ . (5)

Since x is unknown, direct minimization of (5) is not possible.
Instead, we minimize a surrogate term. From the Cauchy-Schwarz
inequality

∣∣∣xH
(
ssH − S

)
x
∣∣∣ ≤

∥∥∥ssH − S
∥∥∥
F
‖x‖22 . (6)

Therefore choose S to minimize the right hand side of (6), i.e.

Ŝ = arg min
S∈SM

∥∥∥ssH − S
∥∥∥
2

F
=

M∑
i=1

β̂iaia
H
i (7)

for appropriate coefficients β̂1, . . . , β̂M . The approximate test statis-
tic becomes

ĥ(x) = xH Ŝx = xH

(
M∑
i=1

β̂iaia
H
i

)
x (8)

=

M∑
i=1

β̂i

∣∣∣aH
i x
∣∣∣
2

=
M∑
i=1

β̂ibi.

Expanding the norm in (7) and some algebra gives the following
optimal coefficients:

β̂ =

(∣∣∣AHA
∣∣∣
2
)−1 ∣∣∣AHs

∣∣∣
2

, (9)

where β̂ =
[
β̂1 , . . . , β̂M

]T
and

A =
[
a1 , . . . , aM

]
. The matrix operator |·|2 indicates en-

trywise squared absolute value in this context. The derivation is
straightforward and is omitted due to space constraints.

The proposed least-squares approach is a fast way to approx-
imate the objective. Additionally, if the measurement vectors are

known ahead of time, the coefficients β̂1, . . . , β̂M may be computed

offline and ĥ(x) is calculated at a cost of M multiplications. We
will see that N2 random measurements will recover h(x) with prob-
ability one. This is in contrast to some methods such as PhaseLift,
which requireO(N) random measurements for accurate recovery of
x (as shown in [12,13]), albeit at a much higher computational cost.
Therefore, our method is appropriate when phaseless measurements
are cheap and plentiful and computational time is at a premium.

3. ANALYSIS

In this section, we analyze our approximation ĥ(x) for random mea-
surements and for Fourier measurements. The key attribute for the
viability of the method is the dimension of the span of outer products
of the measurement vectors. We see that for random measurements,
the dimension increases to the dimension of the entire ambient space.
However, the particular structure of Fourier vectors prevents the di-
mension from increasing beyond a trivial level.

3.1. Random Measurements

3.1.1. Rank Sufficiency

We consider the linear span of the rank-one Hermitian matrices
a1a

H
1 , . . . ,aMaH

M as a subspace of the linear space of Hermitian
matrices of size N × N . Note that the Hermitian matrices form a
vector space over the field of real numbers (but not over the complex
numbers) with dimension N2.

Proposition 1. With probability one,
dim span

{
a1a

H
1 , . . . ,aMaH

M

}
= min

{
M,N2

}
when the joint

probability distribution of a1, . . . ,aM has a continuous density.

Proposition 1 states that each additional measurement vector in-
creases the dimension of the subspace spanned by the outer products.
As a result, N2 measurement vectors span the entire space of N×N
complex matrices.

Proof. Assume that M = N2. Consider the matrix Y ∈ CN2×N2

:

Y (a1, . . . ,aN2) �
[
vec
(
a1a

H
1

)
, . . . , vec

(
aN2aH

N2

) ]
.

The determinant detY : R2N3 −→ C is a polynomial in the real and
imaginary parts of the elements of a1, . . . ,aN2 . Since a polynomial
is nonzero almost everywhere (with respect to the Lebesgue measure
on the domain), the set

A � {a1, . . . ,aN2 : detY (a1, . . . ,aN2) = 0} ⊆ R
2N3

has zero Lebesgue measure. As a result, P (a1, . . . ,aN2 ∈ A) = 0.
Since the determinant of Y is nonzero with probability one, the N2



outer products span the entire ambient dimension with probability
one. This implies that for M < N2, Y (a1, . . . ,aM ) is full rank
since, if we assume the converse, then we are in contradiction with
the result stated above.

It is evident Proposition 1 holds for any joint distribution of
a1, . . . ,aM which possesses a continuous density. Our proof is sim-
ilar to the one given in [24, Theorem 2.1]. Proposition 1 implies that
given N2 measurements, any Hermitian matrix can be expressed
as a linear combination of a1a

H
1 , . . . ,aNaH

N and the test statistic
will be fully recovered (with probability one). In comparison, if we
use a state-of-the-art phaseless recovery method to recover x and
then calculate the statistic, the number of noiseless measurements
required is much less. For example, PhaseLift requires O(N) mea-
surements [13] for recovery with high probability, but involves solv-
ing a semidefinite program of size N ×N . The Truncated Wirtinger
Flow method requiresO(N logN) measurements and yields a solu-
tion with ε relative accuracy in MN2 log 1/ε flops [15]. In contrast,
our proposed method requires O(M2N) flops for the least-squares
solution (which can be performed offline if the measurement vectors
are known ahead of time), and M multiplications plus summations
to calculate the statistic for each set of measurements.

3.2. Fourier Measurements

3.2.1. Toeplitz Approximation

In the case where the measurement vectors are rows of a Discrete
Fourier Transform (DFT) matrix (or a matrix representing an over-
sampled DFT), the collection of outer products will not approximate
a given Hermitian matrix in general. Assume that {ω1, . . . , ωM} ⊂
[0, 2π) form a distinct set. The measurement vectors have the form
(up to a normalization constant)

ai =
[
1, e−i2πωi , . . . , e−i2π(N−1)ωi

]T
, 1 ≤ i ≤M. (10)

Lemma 1. For M ≥ 2N − 1, the span of a1a
H
1 , . . . ,aMaH

M over
the field of reals is equal to
L =

{
S ∈ CN×N : S = SH andS is Toeplitz

}
.

Proof. Let a1, . . . ,aM represent an M -point uniform sampling
of the Discrete Time Fourier Transform (DTFT) spectrum, i.e.

[am]n = 1√
N
e−i2π

(m−1)(n−1)
M . It is evident that amaH

m has both

Hermitian and Toeplitz structure, both of which form linear spaces
over the field of reals. This shows the left inclusion. Arranging a
subset of N vectors of a1, . . . ,aN in a matrix, we have a Vander-
monde structure which can be seen to have a nonzero determinant.
As a result, every subset of N vectors is linearly independent. We
next use the following proposition:

Proposition 2. [24, Proposition 4.1] Suppose every subset of
a1, . . . ,aM containing no more than N vectors is linearly inde-
pendent, and that M ≤ 2N − 1. Then a1a

H
1 , . . . ,aMaH

M is
linearly independent with probability one.

Assume that M ≥ 2N − 1. The span of a1a
H
1 , . . . ,aMaH

M

over the complex field has dimension 2N − 1 and is equal to
the set of Toeplitz matrices (which have 2N − 1 degrees of free-
dom). Therefore, the Hermitian Toeplitz matrices are a subset of
span

{
a1a

H
1 , . . . ,aMaH

M

}
, and are obtained only by all real coeffi-

cients. This shows the reverse inclusion.

As a result of Lemma 1, the detector performance will generally
not reach the squared correlator performance. This is because the
approximation error, which in general is nonzero, is not necessarily
orthogonal to the unobserved vector x, leading to an error in the
estimation of the test statistic.

3.2.2. Amplitude Spectrum

We observe that in the case of Fourier measurements, h(x) can be
recovered only when the signal s has the same structure as the mea-
surement vectors. Lemma 1 implies that a necessary and sufficient
condition for recovering h(x) is that ssH is Toeplitz. It is not hard
to show that this holds only when s, up to a normalization constant,
is of the form defined by Eq. (10).

As immediate result, we can derive a general property of the
Fourier amplitude spectrum of discrete signals, which agrees with a
result stated in [21]. The squared amplitude spectrum of a discrete
signal x, denoted as Ψx (ω), is defined as the pointwise squared

absolute value of the DTFT of x =
[
x[0] , . . . , x[N − 1]

]T
,

i.e.

Ψx (ω) =

∣∣∣∣∣
N−1∑
n=0

x[n]e−inω

∣∣∣∣∣
2

= h(x) (11)

where i denotes the complex unit, h(x) is defined in Eq. (2) for
some s of the form in Eq. (10) for some appropriate ω ∈ [0, 2π). In
general, 2N−1 observations samples define the amplitude spectrum
of x, as the following proposition shows.

Proposition 3. Given a discrete signal x ∈ CN and a fixed set of
angular frequencies Ω = {ω1, . . . , ωM} containing at least M ≥
2N−1 distinct values, the amplitude spectrum of x evaluated at any
ω′ ∈ [0, 2π) is given as

Ψx

(
ω′
)
=
∑

i:ωi∈Ω
βiΨx (ωi) (12)

for appropriate coefficients β1, . . . , βM . Similarly, given a 2-
dimensional discrete signal X ∈ CNa×Nb and two sets of angular
frequencies Ωa,Ωb containing at least Ma ≥ 2Na − 1,Mb ≥
2Nb − 1 distinct values, respectively, the amplitude spectrum of X
evaluated at any (ω′a, ω

′
b) is given as

ΨX

(
ω′a, ω

′
b

)
=

∑
i:ωi∈Ωa

∑
j:ωj∈Ωb

βiγjΨX (ωi, ωj) (13)

for appropriate coefficients β1, . . . , βMa , γ1, . . . , γMb .

Proposition 3 implies that the amplitude spectrum of a discrete
signal is completely defined by its samples, where the number of
samples in each dimension is at least double the dimension minus
one. This is known to be the case for any number of dimensions [21].

Proof. We begin with the one-dimensional case. Choose some ω′ ∈
[0 2π). Define

ai =
[
1, e−i2πωi , . . . , e−i2π(N−1)ωi

]T
, i = 0, . . . ,M (14)

a′ =
[
1, e−i2πω′ , . . . , e−i2π(N−1)ω′

]T
. (15)

It holds that

Ψx (ωi) =xHaia
H
i x, 0 ≤ i ≤M. (16)

Ψx

(
ω′
)
=xHa′a′Hx. (17)



Clearly aia
H
i have Hermitian and Toeplitz structure for 0 ≤ i ≤

M . Lemma 1 implies that a′a′H ∈ span
(
a1a

H
1 , . . . ,aMaH

M

)
so we can write a′a′H =

∑M
i:ωi∈Ω βiaia

H
i for some coefficients

β1, . . . , βM . Substituting this expression into Eq. (17) and applying
Eq. (16) gives Eq. (12).

For the two dimensional case, note that we can write

ΨX

(
ω′a, ω

′
b

)
=
∣∣∣aH

i Xaj

∣∣∣
2

= Tr
(
aia

H
i Xaja

H
j XH

)
(18)

where ω′a ∈ Ωa, ω
′
b ∈ Ωb and, with a slight abuse of notation,

ai,aj are defined according to Eq. (14) using angular frequency
paramters ωi, ωj , respectively. Here Tr (·) denotes the trace oper-
ator. The remainder of the proof proceeds in identical fashion as
the one-dimensional case, yielding Eq. (13) after substituting two
expressions

∑M
i:ωi∈Ωa

βiaia
H
i ,
∑M

j:ωj∈Ωb
γjaja

H
j .

4. SIMULATIONS

We demonstrate the performance of the least-squares approximation
for i.i.d. standard Gaussian measurement vectors a1, . . . ,aM . The
model parameters were chosen as N = 10, A = 2, σ2 = 1. The
signal vector s is defined in the individual subsections. The number
of observations M is a simulation variable.

4.1. Squared Approximation Error

We define the squared approximation error as

ê(M) �
∥∥∥ssH − Ŝ

∥∥∥
2

F
= min

S∈SM

∥∥∥ssH − S
∥∥∥
2

F
.

The empirical average squared approximation error, calculated by
averaging 10000 independent realizations of ê(M), is displayed in

Fig. 1. We chose s =
[
1 0 , . . . , 0

]T
. The results indicate

that the expected squared approximation error, defined as e(M) �
E [ê(M)], is dominated by 1− M

N2 (represented by the dashed line).
This implies that the approximation a rank-one Hermitian matrix by
outer products of Gaussian i.i.d. vectors is at least as good (actually
slightly better) as the approximation using Gaussian i.i.d. matrices,
in terms of the expected squared approximation error.

4.2. Detector Performance

The performance of the detector can be evaluated and compared us-
ing region of convergence (ROC) plots for different values of M .
Fig. 2 displays estimated ROC curves for the our detector, denoted as
”least-squares”, as well as for the squared correlator detector defined
in (3) (which uses the true value of x) and for a reference method.
Here we use a random signal s drawn from a standard complex nor-
mal distribution, normalized to have unit Euclidean norm (the result-
ing signal vector is held fixed for all subsequent simulation trials).
The reference method, denoted as ”PhaseLift”, is based on produc-
ing an estimate of x using the PhaseLift algorithm and plugging it
into (3). It is seen that the ROC curves for the Phaselift method in-
crease at a much faster rate than for our method (at the expense of
computation time). For both methods, for any given False Alarm
rate, the probability of detection increases with the number of mea-
surements. Fig. 2 also indicates that our detector attains the squared
correlator detector performance when the number of observations is
large enough (M = N2 = 100).
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Fig. 1: Empirical squared approximation error (N = 10). The
dashed line is the graph of 1− M

N2 while the line with the circular
markers represents the estimate of the squared approximation error.

Each point is averaged over 10000 realizations.
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Fig. 2: Comparison of ROC curves for different values of M for
our detector and for a reference method. Simulation parameters are
N = 10, A = 2, σ2 = 1. Simulations for our method are averaged
over 10000 independent trials. PhaseLift simulations are averaged

over 5000 independent trials.

5. CONCLUSION

We proposed a detector for the presence of a signal in noise given the
squared amplitudes of linear measurements of an unobserved acqui-
sition vector. For random measurements, the detector performance
increases, on average, with the number of observations and attains
the squared correlator performance when N2 observations are used,
where N is the signal length. In practice, sufficiently good detection
performance may be obtained for fewer observations. Finally, we
demonstrated that when using Fourier basis measurement vectors,
our detector attain the squared correlator performance only when the
signal vector has the same form as the measurement vectors.



6. REFERENCES

[1] R. P. Millane, “Phase retrieval in crystallography and optics,”
JOSA A, vol. 7, no. 3, pp. 394–411, 1990.

[2] A. Walther, “The question of phase retrieval in optics,” Journal
of Modern Optics, vol. 10, no. 1, pp. 41–49, 1963.

[3] C. Fienup and J. Dainty, “Phase retrieval and image reconstruc-
tion for astronomy,” Image Recovery: Theory and Application,
pp. 231–275, 1987.

[4] P. Yang, Z. Tan, A. Wiesel, and A. Nehora, “Power system
state estimation using PMUs with imperfect synchronization,”
Power Systems, IEEE Transactions on, vol. 28, no. 4, pp.
4162–4172, 2013.

[5] Y. Shechtman, Y. Eldar, O. Cohen, H. Chapman, J. Miao, and
M. Segev, “Phase retrieval with application to optical imag-
ing: A contemporary overview,” Signal Processing Magazine,
IEEE, vol. 32, no. 3, pp. 87–109, May 2015.

[6] H. Ohlsson, A. Yang, R. Dong, and S. Sastry, “CPRL–an ex-
tension of compressive sensing to the phase retrieval problem,”
in Advances in Neural Information Processing Systems, 2012,
pp. 1367–1375.

[7] Y. Shechtman, A. Beck, and Y. Eldar, “GESPAR: Efficient
phase retrieval of sparse signals,” Signal Processing, IEEE
Transactions on, vol. 62, no. 4, pp. 928–938, Feb 2014.

[8] K. Jaganathan, S. Oymak, and B. Hassibi, “Sparse phase re-
trieval: Convex algorithms and limitations,” in Information
Theory Proceedings (ISIT), 2013 IEEE International Sympo-
sium on, July 2013, pp. 1022–1026.

[9] J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl.
Opt., vol. 21, no. 15, pp. 2758–2769, Aug 1982.

[10] R. W. Gerchberg and W. O. Saxton, “A practical algorithm for
the determination of phase from image and diffraction plane
pictures,” Optik, no. 35, pp. 237–246, 1972.

[11] I. Waldspurger, A. D’aspremont, and S. Mallat, “Phase recov-
ery, MaxCut and complex semidefinite programming,” Math.
Program., vol. 149, no. 1-2, pp. 47–81, Feb. 2015.

[12] E. J. Candes, Y. C. Eldar, T. Strohmer, and V. Voroninski,
“Phase retrieval via matrix completion,” SIAM Review, vol. 57,
no. 2, pp. 225–251, 2015.

[13] E. J. Candès and X. Li, “Solving quadratic equations via
phaseLift when there are about as many equations as un-
knowns,” CoRR, vol. abs/1208.6247.

[14] E. Candès, X. Li, and M. Soltanolkotabi, “Phase retrieval via
wirtinger flow: Theory and algorithms,” Information Theory,
IEEE Transactions on, vol. 61, no. 4, pp. 1985–2007, April
2015.

[15] Y. Chen and E. J. Candes, “Solving Random Quadratic Sys-
tems of Equations Is Nearly as Easy as Solving Linear Sys-
tems,” ArXiv e-prints, 2015.

[16] P. Netrapalli, P. J. 0002, and S. Sanghavi, “Phase retrieval using
alternating minimization.” CoRR, 2013.

[17] P. Schniter and S. Rangan, “Compressive phase retrieval via
generalized approximate message passing,” in Communica-
tion, Control, and Computing (Allerton), 2012 50th Annual
Allerton Conference on, Oct 2012, pp. 815–822.

[18] R. Balan, B. G. Bodmann, P. G. Casazza, and D. Edidin, “Pain-
less reconstruction from magnitudes of frame coefficients,”
Journal of Fourier Analysis and Applications, vol. 15, no. 4,
pp. 488–501, 2009.

[19] R. Balan, P. Casazza, and D. Edidin, “On signal reconstruction
without phase,” Applied and Computational Harmonic Analy-
sis, vol. 20, no. 3, pp. 345 – 356, 2006.

[20] A. S. Bandeira, J. Cahill, D. G. Mixon, and A. A. Nelson, “Sav-
ing phase: Injectivity and stability for phase retrieval,” Applied
and Computational Harmonic Analysis, vol. 37, no. 1, pp. 106–
125, 2014.

[21] M. Hayes, “The reconstruction of a multidimensional sequence
from the phase or magnitude of its fourier transform,” Acous-
tics, Speech and Signal Processing, IEEE Transactions on,
vol. 30, no. 2, pp. 140–154, Apr 1982.

[22] K. Jaganathan, Y. C. Eldar, and B. Hassibi, “STFT phase
retrieval: Uniqueness guarantees and recovery algorithms,”
arXiv preprint arXiv:1508.02820, 2015.

[23] H. Ohlsson and Y. C. Eldar, “On conditions for uniqueness in
sparse phase retrieval,” in Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2014 IEEE International Conference on.
IEEE, 2014, pp. 1841–1845.

[24] J. Cahill and X. Chen, “A note on scalable frames,” ArXiv e-
prints, 2013.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


