
QP versus NP

Frank Vega

Joysonic, Belgrade, Serbia
vega.frank@gmail.com

Abstract. Given an instance of exclusive-or 2-satisfiability and a pos-
itive integer K, the problem maximum exclusive-or 2-satisfiability con-
sists in deciding whether this Boolean formula has a truth assignment
with at leat K satisfiable clauses. We prove that maximum exclusive-
or 2-satisfiability is in QP. Moreover, we demonstrate this problem is
NP-complete. In this way, we show QP contains NP.

Keywords: Complexity Classes · Completeness · Logarithmic Space ·
Nondeterministic · exclusive-or 2-satisfiability.

1 Introduction

The P versus NP problem is a major unsolved problem in computer science
[4]. This is considered by many to be the most important open problem in the
field [4]. It is one of the seven Millennium Prize Problems selected by the Clay
Mathematics Institute to carry a US$1,000,000 prize for the first correct solution
[4]. It was essentially mentioned in 1955 from a letter written by John Nash to
the United States National Security Agency [1]. However, the precise statement
of the P = NP problem was introduced in 1971 by Stephen Cook in a seminal
paper [4].

In 1936, Turing developed his theoretical computational model [14]. The
deterministic and nondeterministic Turing machines have become in two of the
most important definitions related to this theoretical model for computation [14].
A deterministic Turing machine has only one next action for each step defined
in its program or transition function [14]. A nondeterministic Turing machine
could contain more than one action defined for each step of its program, where
this one is no longer a function, but a relation [14].

Another relevant advance in the last century has been the definition of a
complexity class. A language over an alphabet is any set of strings made up of
symbols from that alphabet [5]. A complexity class is a set of problems, which
are represented as a language, grouped by measures such as the running time,
memory, etc [5].

The set of languages decided by deterministic Turing machines within time
f is an important complexity class denoted TIME(f(n)) [12]. In addition, the
complexity class NTIME(f(n)) consists in those languages that can be decided
within time f by nondeterministic Turing machines [12]. The most important
complexity classes are P and NP . The class P is the union of all languages in

TIME(nk) for every possible positive fixed constant k [12]. At the same time,
NP consists in all languages in NTIME(nk) for every possible positive fixed
constant k [12]. Whether P = NP or not is still a controversial and unsolved
problem [1].

A Turing machine with input and output has a read-only input tape, a write-
only output tape, and a read/write work tape [14]. The work tape may contain
O(f(n)) symbols which means the Turing machine is computable within space f
[14]. In computational complexity theory, SPACE(f(n)) is the complexity class
containing those decision problems that can be decided within space f by a deter-
ministic Turing machine with input and output [12].NSPACE(f(n)) is the com-
plexity class containing the decision problems that can be decided within space
f by a nondeterministic Turing machine with input and output [12]. Another
major complexity classes are SPACE(log n) and NSPACE(log n). Whether
SPACE(log n) = NSPACE(log n) is another fundamental question that it is
as important as it is unresolved [12].

SAT is easier if the number of literals in a clause is limited to at most 2, in
which case the problem is called 2SAT . This problem can be solved in polynomial
time, and in fact is complete for the complexity class NSPACE(log n) [12]. If
additionally all OR operations in literals are changed to XOR operations, the
result is called exclusive-or 2-satisfiability, which is a problem complete for the
complexity class SPACE(log n) [2], [13]. The complexity class QP is equal to

TIME(2log
k n) for every possible positive fixed constant k. To attack the P

versus NP question the concept of NP-completeness has been very useful. If any
single NP–complete problem can be decided in a quasi-polynomial time, then
every NP problem has a quasi-polynomial time algorithm. We show a problem
that is in QP and NP–complete and thus, NP ⊆ QP .

2 Motivation

No polynomial time algorithm has yet been discovered for any NP–complete
problem [6]. The biggest open question in theoretical computer science concerns
the relationship between these classes: Is P equal to NP? In 2012, a poll of
151 researchers showed that 126 (83%) believed the answer to be no, 12 (9%)
believed the answer is yes, 5 (3%) believed the question may be independent
of the currently accepted axioms and therefore impossible to prove or disprove,
8 (5%) said either do not know or do not care or don’t want the answer to
be yes nor the problem to be resolved [8]. It is fully expected that P 6= NP
[12]. Indeed, if P = NP then there are stunning practical consequences [12].
Certainly, P versus NP is one of the greatest open problems in science and a
correct solution for this incognita will have a great impact not only for computer
science, but for many other fields as well [6].

3 Theory

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of
finite strings over Σ [3]. A Turing machine M has an associated input alphabet
Σ [3]. For each string w in Σ∗ there is a computation associated with M on
input w [3]. We say that M accepts w if this computation terminates in the
accepting state, that is M(w) = “yes” [3]. Note that M fails to accept w either
if this computation ends in the rejecting state, that is M(w) = “no”, or if the
computation fails to terminate [3].

The language accepted by a Turing machine M , denoted L(M), has an as-
sociated alphabet Σ and is defined by:

L(M) = {w ∈ Σ∗ : M(w) = “yes”}.

We denote by tM (w) the number of steps in the computation of M on input w
[3]. For n ∈ N we denote by TM (n) the worst case run time of M ; that is:

TM (n) = max{tM (w) : w ∈ Σn}

where Σn is the set of all strings over Σ of length n [3]. We say that M runs in
polynomial time if there is a constant k such that for all n, TM (n) ≤ nk + k [3].
In other words, this means the language L(M) can be accepted by the Turing
machine M in polynomial time. Therefore, P is the complexity class of languages
that can be accepted in polynomial time by deterministic Turing machines [5].
A verifier for a language L is a deterministic Turing machine M , where:

L = {w : M(w, c) = “yes” for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial
time verifier runs in polynomial time in the length of w [3]. A verifier uses
additional information, represented by the symbol c, to verify that a string w is
a member of L. This information is called certificate. NP is also the complexity
class of languages defined by polynomial time verifiers [12].

A function f : Σ∗ → Σ∗ is a polynomial time computable function if some
deterministic Turing machine M , on every input w, halts in polynomial time with
just f(w) on its tape [14]. Let {0, 1}∗ be the infinite set of binary strings, we say
that a language L1 ⊆ {0, 1}∗ is polynomial time reducible to a language L2 ⊆
{0, 1}∗, written L1 ≤p L2, if there is a polynomial time computable function
f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗:

x ∈ L1 if and only if f(x) ∈ L2.

An important complexity class is NP–complete [9]. A language L ⊆ {0, 1}∗ is
NP–complete if

– L ∈ NP , and
– L′ ≤p L for every L′ ∈ NP .

If L is a language such that L′ ≤p L for some L′ ∈ NP–complete, then L
is NP–hard [5]. Moreover, if L ∈ NP , then L ∈ NP–complete [5]. A principal
NP–complete problem is SAT [7]. An instance of SAT is a Boolean formula φ
which is composed of

– Boolean variables: x1, x2, . . . , xn;
– Boolean connectives: Any Boolean function with one or two inputs and one

output, such as ∧(AND), ∨(OR), ⇁(NOT), ⇒(implication), ⇔(if and only
if);

– and parentheses.

A truth assignment for a Boolean formula φ is a set of values for the variables
in φ. A satisfying truth assignment is a truth assignment that causes φ to be
evaluated as true. A formula with a satisfying truth assignment is a satisfiable
formula. The problem SAT asks whether a given Boolean formula is satisfiable
[7]. We define a CNF Boolean formula using the following terms. A literal in
a Boolean formula is an occurrence of a variable or its negation [5]. A Boolean
formula is in conjunctive normal form, or CNF , if it is expressed as an AND of
clauses, each of which is the OR of one or more literals [5]. A Boolean formula is
in 3-conjunctive normal form or 3CNF , if each clause has exactly three distinct
literals [5].

For example, the Boolean formula:

(x1∨⇁ x1∨⇁ x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (⇁ x1∨⇁ x3∨⇁ x4)

is in 3CNF . The first of its three clauses is (x1∨⇁ x1∨⇁ x2), which contains
the three literals x1, ⇁ x1, and ⇁ x2. Another relevant NP–complete language is
3CNF satisfiability, or 3SAT [5]. In 3SAT , it is asked whether a given Boolean
formula φ in 3CNF is satisfiable. Many problems have been proved that belong
to NP-complete by a polynomial time reduction from 3SAT [7]. For example, the
problem NOT–ALL–EQUAL 3SAT defined as follows: Given a Boolean formula
φ in 3CNF , is there a truth assignment such that each clause in φ has at least
one true literal and at least one false literal?

A Boolean formula is in 2-conjunctive normal form, or 2CNF , if it is in
CNF and each clause has exactly two distinct literals. There is a problem called
2SAT , where we asked whether a given Boolean formula φ in 2CNF is satisfiable.
2SAT is complete for NSPACE(log n) [12]. Another special case is the class of
problems where each clause contains XOR (i.e. exclusive or) rather than (plain)
OR operators. This is in P , since an XOR SAT formula can also be viewed as a
system of linear equations mod 2, and can be solved in cubic time by Gaussian
elimination [11]. We denote the XOR function as ⊕. The XOR 2SAT problem
will be equivalent to XOR SAT, but the clauses in the formula have exactly two
distinct literals. XOR 2SAT is complete for SPACE(log n) [2], [13].

4 Highlights

One of the most important known result on which is based this paper is if we have
a regular language, then it will be computable by a linear size NC1 circuit [10].

NC1 is the class of decision problems solvable by a uniform family of Boolean
circuits, with polynomial size, depth O(log n), and fan-in 2 [1]. If we say that a
Boolean circuit has a polynomial size p(n), then n is the number of input gates.
Consequently, a linear size circuit is bounded by O(n) where n is the number
of input gates. In this way, if we have a finite set of positive integers where
each one has at most dlogme bit-length, then the size of the circuit C which
computes this set could be bounded by O(logm) [10]. The reason is because a
finite set is a regular language [12]. Another argument on which is based our
result is that CIRCUIT VALUE can be solved in linear time [12]. In this way,
CIRCUIT VALUE can be solved in linear space.

5 Results

We can give a certificate-based definition for NSPACE(log2 n) [3]. A certificate-
based definition of NSPACE(log2 n) assumes that a deterministic Turing ma-
chine with input and output has another separated read-only tape [3]. On each
step of the machine the machine’s head on that tape can either stay in place or
move to the right [3]. In particular, it cannot reread any bit to the left of where
the head currently is [3]. For that reason this kind of special tape is called “read
once” [3].

Definition 1. A language L is in NSPACE(log2 n) if there exists a determin-
istic Turing machine with input, output and an additional special read-once input
tape polynomial p : N→ N such that for every x ∈ {0, 1}∗,

x ∈ L⇔ ∃u ∈ {0, 1}p(|x|) such that M accepts 〈x, u〉

where by M(x, u) we denote the computation of M where x is placed on its input
tape and u is placed on its special read-once tape, and M uses at most O(log2 |x|)
space on its read/write tape for every input x.

Definition 2. MAXIMUM EXCLUSIVE-OR 2-SATISFIABILITY
INSTANCE: A positive integer K and a formula φ that is an instance of

XOR 2SAT.
QUESTION: Is there a truth assignment in φ such that at least K clauses

are satisfiable?
We denote this problem as MAX ⊕ 2SAT .

Theorem 1. MAX ⊕ 2SAT ∈ NSPACE(log2 n).

Proof. Given a Boolean formula φ that is an instance of XOR 2SAT with n
variables and m clauses, we can enumerate from left to right the clauses in φ
such that the leftmost clause has the index 1 and the rightmost the number m.
Therefore, a combination of K clauses in φ corresponds to a subset of size K
from the set {1, 2, 3, . . . ,m− 1,m}. This subset of K numbers will be a regular
language, because it is finite [10]. Since it is a regular language, then it will be
computable by a linear size NC1 circuit [10]. This finite set contains positive

integers where each one has at most dlogme bit-length and thus, the size of the
circuit C which computes this set could be bounded by O(logm) [10]. Moreover,
we can always guarantee the existence of a circuit C which computes every finite
set of positive integers lesser than or equal to m where its size will be bounded
by O(log2m) for a specific fixed constant c. The reason is because the size of
C depends on a constant c′ < log t inside of O(log t) which can vary for every
possible finite set of positive integers when t is the maximum element of the set
[10].

There will be a deterministic Turing machine with input and output which
receives this circuit C in the special read-once input tape and in the input tape
the given Boolean formula φ that is an instance of XOR 2SAT. Next, we copy
the circuit C to the read/write work tape just reading each bit in the special
read-once input tape from left to right until we find the blank symbol. We can
copy it to the read/write work tape, because the size of C is O(log2m). Indeed,
we can count the size of C with a positive integer d which will have at most
c × dlog2me + 1 bit-length, such that when d > c × log2m, then we reject the
input and certificate where c is the already mentioned fixed constant. After that,
we evaluate in ascending order the numbers in the set {1, 2, 3, . . . ,m−1,m} just
to verify if there are at least K numbers which leads to an acceptance. This can
be done in time O(log2m), because CIRCUIT VALUE can be solved in linear
time [12]. Consequently, this can be solved in O(log2m) space on the read/write
work tape. Besides, we can count the number of different acceptances with a
positive integer d′ ≤ m that will have at most dlogme bit-length. In this way,
the process remains in O(log2m) space.

Finally, if there are at least K acceptances between the numbers 1 and m,
then we compute in the read/write work tape the Boolean formula ψ = ci1 ∧
ci2 . . . ∧ ciK . . . such that each number ij is accepted by C. Since XOR 2SAT is
complete for SPACE(log n), then we can decide ψ in a quadratic logarithmic
space on the read/write work tape. Notice that, we do not need to copy ψ to
the read/write work tape since the membership in ψ of any clause cij from the
input tape can be done in a quadratic logarithmic space by an evaluation in C
of ij . In this simulation, we finally accept in case of ψ is satisfiable otherwise we
reject the chosen input and certificate. All this process can be done in quadratic
deterministic logarithmic space just reading at once the additional special tape.
Moreover, the size of the certificate is polynomial due to the size and the depth
of C is poly-logarithmic. In conclusion, we show MAX ⊕ 2SAT complies with
the certificate-based definition of NSPACE(log2 n) and thus, MAX ⊕ 2SAT ∈
NSPACE(log2 n) [3].

Theorem 2. MAX ⊕ 2SAT ∈ NP–complete.

Proof. It is trivial that MAX ⊕ 2SAT ∈ NP [12]. Given a Boolean formula φ
in 3CNF with n variables and m clauses, we create the following formulas for
each clause ci = (x ∨ y ∨ z) in φ, where x, y and z are literals,

Pi = (x⊕ y) ∧ (y ⊕ z) ∧ (x⊕ z).

We can notice Pi has exactly two satisfiable clauses if and only if at least one
member of {x, y, z} is true and at least one member of {x, y, z} is false. Hence,
we can create the Boolean formula ψ as the conjunction of the Pi formulas for
every clause ci in φ, such that ψ = P1 ∧ . . . ∧ Pm. Finally, we obtain that

φ ∈ NOT–ALL–EQUAL 3SAT if and only if (ψ, 2×m) ∈MAX ⊕ 2SAT.

Consequently, we prove NOT–ALL–EQUAL 3SAT ≤p MAX ⊕ 2SAT where
NOT–ALL–EQUAL 3SAT ∈ NP–complete. To sum up, we showMAX⊕2SAT ∈
NP–hard and MAX ⊕ 2SAT ∈ NP and thus, MAX ⊕ 2SAT ∈ NP–complete.

Theorem 3. NP ⊆ QP .

Proof. If any single NP–complete problem can be decided in a quasi-polynomial
time, then every NP problem has a quasi-polynomial time algorithm [5]. Every
language in the class NSPACE(log2 n) is in QP , and therefore, MAX⊕2SAT ∈
QP [12]. Hence, as a consequence of Theorems 1 and 2, we obtain NP ⊆ QP .

References

1. Aaronson, S.: P
?
= NP. Electronic Colloquium on Computational Complexity, Re-

port No. 4 (2017)
2. Alvarez, C., Greenlaw, R.: A compendium of problems complete for symmetric

logarithmic space. Computational Complexity 9(2), 123–145 (2000)
3. Arora, S., Barak, B.: Computational complexity: a modern approach. Cambridge

University Press (2009)
4. Cook, S.A.: The P versus NP Problem (April 2000), available at http://www.

claymath.org/sites/default/files/pvsnp.pdf

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
The MIT Press, 3rd edn. (2009)

6. Fortnow, L.: The status of the P versus NP problem. Communications of the ACM
52(9), 78–86 (2009)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. San Francisco: W. H. Freeman and Company, 1 edn. (1979)

8. Gasarch, W.I.: Guest column: The second P
?
= NP poll. ACM SIGACT News

43(2), 53–77 (2012)
9. Goldreich, O.: P, NP, and NP-Completeness: The basics of computational com-

plexity. Cambridge University Press (2010)
10. Koucky, M.: Circuit complexity of regular languages (April 2012), available

at http://www.cse.iitm.ac.in/~jayalal/teaching/CS6840/2012/project/

Regular-Sunil-slides.pdf

11. Moore, C., Mertens, S.: The Nature of Computation. Oxford University Press
(2011)

12. Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)
13. Reingold, O.: Undirected connectivity in log-space. Journal of the ACM 55(4),

1–24 (2008)
14. Sipser, M.: Introduction to the Theory of Computation, vol. 2. Thomson Course

Technology Boston (2006)

