,—/--\

f‘- CRITICAL INFRASTRUCTURE PROTECTION

‘s) ClTI.\DEL USING ADAPTIVE MILS

@ www.citadel-project.org

Towards Adaptive MILS Systems:
Model-Based Design, Verification and
Run-Time Adaptation

Alessandro Cimatti*, Rance DelLongt, Ivan Stojic*
and Stefano Tonetta*

THE

X vl 1
¢ Oper
FONDAZIONE pGROUP

BRUNO KESSLER

MILS-Workshop 2018 Towards Adaptive MILS Systems 1

http://www.citadel-project.org/

Introduction

MILS-Workshop 2018 Towards Adaptive MILS Systems

MILS e

B MILS comprises: Application

components

¢ a philosophy of design
¢ a platform for deployment
¢ a set of tools for Separation kernel
e specification
e verification
e configuration
e assurance

Platform resources

B Overarching objective of MILS: the ability to
provide demonstrable assurance, necessitating

¢ design-time rigor
¢ analysability

MILS-Workshop 2018 Towards Adaptive MILS Systems

M I LS CITADEL

B Traditional MILS principles Application
] o components
¢ simplicity
¢ smallness
¢ isolation

Separation kernel

¢ static configuration

B However, some applications
¢ require high assurance

¢ entail requirements antithetical to some of the above
principles

Platform resources

B]n Distributed MILS Project (www.d-mils.org), isolated
and static MILS was extended to distributed systems of
multiple MILS nodes, while preserving deterministic

execution characteristics of MILS systems

MILS-Workshop 2018 Towards Adaptive MILS Systems

http://www.d-mils.org/

Formal methods in D-MILS

B In Distributed MILS, distributed applications with static
architectures are formally modeled in order to support system
analysis, (initial) configuration, and system certification

Operational Plane Certification
(application) Assurance Plane

A
I

]
— oY
\MOdGl) © \)ieg P 4
/—\ L, - AnaIYSiS
N— tools
Static
architecture
P \—-—/ S i
Foundational Plane - Dec,ﬁ.es

-
(platform) - Configuration Plane |4 = C) %

Properties

N~

represents 1

Engineer

MILS-Workshop 2018 Towards Adaptive MILS Systems

- 4?‘\‘

1}
Y
CH

CITADEL

Adaptive MILS

MILS-Workshop 2018 Towards Adaptive MILS Systems

CITADEL Project

B In CITADEL Project, distributed MILS is extended to
dynamically reconfigurable self-adaptive
systems, while
¢ preserving analysability
¢ providing demonstrably assurable adaptation

B Self-adaptation

¢ effective approach to deal with modern highly
complex and dynamic software systems

¢ major challenge: provide guarantees about the
properties of self-adaptive systems
e solution: use formal methods to
B design the system
B verify the system
B (assurably) safely adapt the system at run-time

MILS-Workshop 2018 Towards Adaptive MILS Systems

CITADEL Framework and Model o

B In CITADEL, applications with dynamic architectures are
formally modeled in order to additionally support dynamic
reconfiguration, self-adaptation, and run-time certification

(dynamic application) Assurance Plane

{4 A
l . |
N I

\ o

_Model “ weeS =V

Adaptation Plane :— — ——~L - - Analysis
~—

~ | Parametrized tools
l architecture
S — I

>

SPe..
-| | Reconfiguration SCifigg
transitions %

Operational Plane —| Monitoring Plane L > Certification
\

Foundational Plane

(dynamic platform) | | Configuration Plane & ~ -

—
\‘/

Properties Engineer

N— e
represents T

MILS-Workshop 2018 Towards Adaptive MILS Systems

CITADEL Framework and Model o

B Foundational Plane

¢ composition of MILS foundational
components based on a separation

B In CITADEL,
formally mod

reconfiguratio kernel
¢ provides access to the platform
Operational Plane
(dynamic application) resources
¢ represented in the Model:
/ e some aspects of the foundational
components

e constraints on application deployment
o monitored properties and alarms

N—
_ = ~|| Reconfiguration
Configuration Plane 4 transitions __J %

Foundational Plane

Specjﬁes
(dynamic platform) >

N —

—
_j

Properties Engineer

N— e
represents T

MILS-Workshop 2018 Towards Adaptive MILS Systems

CITADEL Framework and Model o

B In CITADEL, applications with dynamic architectures are
formally model

reconfiguratio

B Operational Plane

¢ contains components of the

Operational Plane 2. running application

(dynamic application) | | ¢ represented in the Model:
e current architectural configuration
e possible reconfigurations
e monitored properties and alarms
o desired safety and security

properties
F;undatzlonlaltf?lane B]] - - ReECOImmgurdauor LS
(dynamic platform) | |« Configuration Plane |4 transitions %
— T
N— —
Properties Engineer

N— e
represents I

MILS-Workshop 2018 Towards Adaptive MILS Systems

CITADEL Framework and Model o

B In CITADEL, applications with dynamic architectures are
formally modelled in order to additionally support dynamic
reconfiguration, self-adaptation, and run-time certification

Operational Plane ——| Monitoring Plane Certification
(dynamic application) g Assurance Plane
\ —

I
® Monitoring Plane

¢ contains monitors and sensors which
monitor components in the OP and
resources in the FP
Foundational Plane

(dynamic platform) | |« ® g€nerates alarms when it detects faulty or
suspicious behaviour

¢ uses data from the Model:
o monitored properties and alarms

MILS-Workshop 2018 Towards Adaptive MILS Systems

CITADEL Framework and Model o

® In CITADEL, ®m Adaptation Plane
formal_ly MOC ¢ performs reasoning about adaptive C
reconfiguratif reconfigurations of the OP and the FP
_ ¢ uses the Model to analyze the current
visdkoniiinid | oy configuration and to search for the
next configuration
| = 1
\CModeID _Suseﬁbrv
Adaptation Plane — — ’\, - Analysis
Parametrized tools
l \architecture)
—
Foundational Plane - R\econfiguraﬁ spec,-f/.es
(dynamic platform) | |« Configuration Plane |4 ~ | transitions _J
— - %
Properties Engineer

N— e
represents T

MILS-Workshop 2018 Towards Adaptive MILS Systems

CITADEL Framework and Model o

B In CITADEL’ appllc tinnc with Avinamirc architactiirac ara
formally modelled i ® Configuration Plane

reconfiguration, sel 4 i njements the initial OP/FP
configuration

i ¢ implements the adaptive OP/FP
reconfiguration, reconfiguring
also the monitors

Ad ¢ takes in input a Model of the
next configuration

Operational Plane
(dynamic application)

* 7 o ~— —
: L — - - Pece:
{ﬁfﬁfnif'cogﬂtgfﬁs < . . — = ~|| Reconfiguration SCifigg
Configuration Plane transitions J %
— B
N— —
Properties Engineer

N— e
represents T

MILS-Workshop 2018

Towards Adaptive MILS Systems

CITADEL Framework and Model o

] In CITADEL, appllcatlons with dynamic architectures are

' ‘'ditionally support dynamic
[Certlflcat|on Assurance Plane y supp Y
and run-time certification
¢ verifies that the model, in the
current and next configurations,
s ~F: - A\ Certification
satisfies the system properties . Assurance Plane
¢ constructs and maintains:] v\
e system assurance case AN :
» database of supporting evidence ¥ Model S\)Sec&“jv
¢ uses data from the Model: — — | - Analysis
e current/next configurations pl | FElEmeilse tools
] \archltecture)
m properti
e system properties — — .
; _ — ~|| Reconfiguration Cifieg
(dynamic platform) | |« Configuration Plane |4 __ transitions _J
~ N %
N— —
Properties Engineer

N— e
represents T

MILS-Workshop 2018 Towards Adaptive MILS Systems

CITADEL

Adaptive MILS
Model-Based Design

MILS-Workshop 2018 Towards Adaptive MILS Systems

Architecture Analysis & Design Language (AADL) cmaoe

B Architecture description language
B Standardized by SAE International

B A hierarchical architecture can be modeled
compositionally by specifying:
¢ component types (interfaces)
e event ports
e data ports (of some datatype)
¢ component implementations
e subcomponents
e connections of ports of subcomponents
e can be empty (leaf components)

MILS-Workshop 2018 Towards Adaptive MILS Systems

Component types in AADL

J Component

Component — subject databaseServer type name
category ’ features
- input: in event data port sqlRequest.Data; -
// output: out event data port sglResponse.Data; -~
ﬁ heartbeat: out event port; }:’Oft type
Port name end databaseServer;

subject implementation databaseServer.impl
-- This implementation is empty.
end databaseServer.impl;

subject databaseServer

input heartbeat

output

MILS-Workshop 2018 Towards Adaptive MILS Systems

Component implementations in AADL cniben

@

system sys
-- This type is empty.
end sys;

/ifff,iiﬁff,,,,,,,,,,\ name

Component
implementation

system implementation sys.impl —
subcomponents

Subcomponent L
name

~ server: subject applicationServer.impl;
database: subject databaseServer.impl;

connections

- port server.db_output -> database.input;

Port ~ port database.output -> server.db_input;

connection port client.output -> server.input;

port server.output -> client.input;

end sys.impl;

system implementation sys.impl

|
~_ client: subject client.impl; - Subcomponent
} iImplementation

4)
client server database
output input db_output input heartbeat
input output db_input output
\ J

MILS-Workshop 2018

Towards Adaptive MILS Systems

Modeling dynamic architectures? CITADEL

B For Adaptive MILS we want to model:
¢ dynamic sets of components
¢ dynamic connections
¢ additional data associated with components/connections

set of clients set of servers Servers can be
Clients can be l < added/ removed
added / removed 1 \/
(|
|
. database

— - i\\\::*\k\
Componentscanbe = Y \\\
| |

trusted / untrusted | - Ports can be
connected /
disconnected

MILS-Workshop 2018 Towards Adaptive MILS Systems

CITADEL Modeling Language

B Based on AADL/SLIM

¢ SLIM (System-Level Integrated Modeling
language) is an extension of AADL

e Nominal component behaviour (hybrid automata)
e Error behaviour (probabilistic)
B CITADEL Modeling Language features:
¢ Parametrized system architecture
¢ Architectural reconfigurations

¢ Component types and implementations
¢ Component behaviour

¢ Properties associated with model elements

MILS-Workshop 2018 Towards Adaptive MILS Systems

Modeling language and its semantics cmoe

Parametrized Architecture

ParArch

[P
Pc{P, P, P . . 2]
€l P, S%nstantlatlor\Y(P)
Archp, Archp, Archp, Archp,,
Archp, Archp, | | Archp,,

I. Finite set of

models II. Infinite set

of models

MILS-Workshop 2018 Towards Adaptive MILS Systems

Parametrized architecture ErADeL

system implementation sys.impl
parameters
C: set of index;
S: set of index;
trustedClients: set indexed by C of bool;
trustedServers: set indexed by S of bool;
connectedTo: set indexed by C of index;
assumptions
size(S) > 0;
subcomponents
database: subject databaseServer.impl;
clients: set indexed by C of subject client.impl;
servers: set indexed by S of subject applicationServer.impl;
connections
port database.output -> servers[s].db_input if trustedServers[s] for s in S;
port servers[s].db_output -> database.input if trustedServers[s] for s in S;
port servers[s].output -> clients[c].input if s = connectedTo[c] forsin S, cin C;
port clients[c].output -> servers[s].input if s = connectedTo[c] forsin S, cin C;
end sys.impl;

MILS-Workshop 2018 Towards Adaptive MILS Systems

Parametrized architecture ErADeL

system implementation sys.impl
parameters
C: set of index;
S: set of index;
trustedClients: set indexed by C of bool;
trustedServers: set indexed by S of bool;
connectedTo: set indexed by C of mdex
assumptions T~
size(S) > 0;
subcomponents — “
database: subject database¢ ® Parameters can be of
clients: set indexed by Col ¢ simple types: index, bool, int, real,
servers: set indexed by S ¢ enum(id;, ..., id,)
connections _
port database.output -> sen ¢ set types: set of <simple_type>
port servers[s].db_output -> ¢ indexed set type: set indexed by
port servers[s].output -> clie <index set> of <simple_type, set_type>
port cIients[c].output -> Servers[sJ.niput i > — LUIIIELEU TU[L] TUI S 11 D, L Il .,
end sys.impl;

MILS-Workshop 2018 Towards Adaptive MILS Systems

Parametrized architecture ErADeL

system implementation sys.impl
parameters
C: set of index; -
S: set of index;
trustedClients: set indexed by C of bool;
trustedServers: set indexed by S of bool;
connectedTo: set indexed by C of mdex
assumptions
size(S) > 0;
subcomponents — ‘
database: subject database¢ ® Parameters can be of
clients: set indexed by Col ¢ simple types: index, bool, int, real,
servers: set indexed by S ¢ enum(id;, ..., id,)
connections _
port database.output -> sen ¢ set types: set of <simple_type>
port servers[s].db_output -> ¢ indexed set type: set indexed by
port servers[s].output -> clie <index set> of <simple_type, set_type>
port clients[c].output -> servers[S].INput IT S = conNnectealojcjTors s, ciny;
end sys.impl;

\ Value of C is a set {c4, C5, ..., C,}

1

MILS-Workshop 2018 Towards Adaptive MILS Systems

Parametrized architecture ErADeL

system implementation sys.impl
parameters
C: set of index; -
S: set of index;
trustedClients: set indexed by C of bool; -
trustedServers: set indexed by S of bool;
connectedTo: set indexed by C of mdex
assumptions
size(S) > 0;
subcomponents — ‘
database: subject database¢ ® Parameters can be of
clients: set indexed by Col ¢ simple types: index, bool, int, real,
servers: set indexed by S ¢ enum(id;, ..., id,)
connections _
port database.output -> sen ¢ set types: set of <simple_type>
port servers[s].db_output -> ¢ indexed set type: set indexed by
port servers[s].output -> clie <index set> of <simple_type, set_type>
port clients[c].output -> servers[S].INput IT S = conNnectealojcjTors s, ciny;
end sys.impl;

\ Value of C is a set {c4, C5, ..., C,}

1

Set of Boolean values
{trustedClients|c] : c in C}

MILS-Workshop 2018 Towards Adaptive MILS Systems

Parametrized architecture ErADeL

system implementation sys.impl
parameters
C: set of index; -
S: set of index;
trustedClients: set indexed by C of bool; -
trustedServers: set indexed by S of bool;
connectedTo: set indexed by C of mdex
assumptions
S|ze(S) > 0;
subﬂ nponents —
hacn: cukinct datahaset @ Parameters can be of

First-order logical formulasy Cof ¢ simple types: index, bool, int, real,
over parameters by Sc enum(id,, ..., id,)

connections _
port database.output -> sen ¢ set types: set of <simple_type>

port servers[s].db_output -> ¢ indexed set type: set indexed by

port servers[s].output -> clie <index set> of <simple_type, set_type>

port clients[c].output -> servers[S].INput IT S = conNnectealojcjTors s, ciny;
end sys.impl;

\ Value of C is a set {c4, C5, ..., C,}

1

Set of Boolean values
{trustedClients|c] : c in C}

MILS-Workshop 2018 Towards Adaptive MILS Systems

Parametrized architecture ErADeL

system implementation sys.impl
parameters
C: set of index;
S: set of index;
trustedClients: set indexed by C of bool;
trustedServers: set indexed by S of bool;
connectedTo: set indexed by C of index;

assumptions Indexed sets of
size(S) > 0; subcomponents

subcomponents
database: subject dat/baseServer impl;

clients: set indexed by C of subject client.impl;
servers: set indexed by S of subject applicationServer.impl;
connections
port database.output -> servers[s].db_input if trustedServers[s] for s in S;
port servers[s].db_output -> database.input if trustedServers[s] for s in S;
port servers[s].output -> clients[c].input if s = connectedTo[c] forsin S, cin C;
port clients[c].output -> servers[s].input if s = connectedTo[c] forsin S, cin C;
end sys.impl;

MILS-Workshop 2018 Towards Adaptive MILS Systems

Parametrized architecture ErADeL

system implementation sys.impl
parameters
C: set of index;
S: set of index;
trustedClients: set indexed by C of bool;
trustedServers: set indexed by S of bool;
connectedTo: set indexed by C of index;

assumptions Indexed sets of
size(S) > 0; subcomponents

Specification of

subcomponents
database: subject dat/baseServer impl; multiple connections
clients: set indexed by C of subject client.impl;
servers: set indexed by S of subject applicationServer.impl;
connections |
port database.output -> servers[s].db_input if trustedServers[s] for s in S;
port servers[s].db_output -> database.input if trustedServers[s] for s in S;
port servers[s].output -> clients[c].input if s = connectedTo[c] forsin S, cin C;
port clients[c].output -> servers[s].input if s = connectedTo[c] forsin S, cin C;
end sys.impl;

MILS-Workshop 2018 Towards Adaptive MILS Systems

Parametrized architecture ErADeL

system implementation sys.impl
parameters
C: set of index;
S: set of index;

o _ _ Connection guard (first-
trustedClients: set indexed by C of bool; order logical formula

trustedServers: set indexed by S of bool;
connectedTo: set indexed by C of index; | OVEr parameters)

aSSI_.ImFSt)Ion(S) Indexed sets of | j

size(S) > 0; \ e L.

subcomponents subcomponents / Specification of
database: subject dat/baseServer impl; multiple connections
clients: set indexed by C of subject client.impl; /
servers: set indexed by S of subject appllcatlonSer\ /r impl;

connections /

port database.output -> servers[s].db_input if trustedServers[s] for s in S;

port servers[s].db_output -> database.input if trustedServers[s] for s in S;

port servers[s].output -> clients[c].input if s = connectedTo[c] forsin S, cin C;

port clients[c].output -> servers[s].input if s = connectedTo[c] forsin S, cin C;
end sys.impl;

MILS-Workshop 2018 Towards Adaptive MILS Systems

Modeling language and its semantics om

Parametrized Architecture

ParArch, s

[P]

Parametrized Architecture +
Configuration Transition System

Define a configuration
transition system on P

Pe{P.p PS‘}/nstantiatior\y(ﬁ)

ATChpl ATChp2

Archp,

I. Finite set of
models

A?“chpi1

Arch P,

Archp,,

Archp,,

MILS-Workshop 2018

II. Infinite set
of models

7\ N\
ParArch[5 NP =P —
ParArch B P=pP, —
Y
Archp, |4 > Archp, ATChPil < ATChPQ
v / \ 4
Archp, Archp, [|Archp,

ITI. One model
with finitely many
reconfigurations

Towards Adaptive MILS Systems

o

\ r

IV. One model with
infinitely many
reconfigurations

30

Configuration transition system CITADEL

CTS sys_cts
architecture
a: sys.impl;
initial
forall(c in a.C, forall (s in a.5, (not a.trustedClients[c] and s = a.connectedTo[c])
implies (not a.trustedServers[s])));
transitions
make_server_untrusted[s]: step(next(a.trustedServers[s]) = false)
forsina.S;

add_trusted_server|[s]: step(next(a.S) = add(a.S, {s}) and
next(a.trustedServers[s]) = true)
for s notin a.S;

add_untrusted_client[c][s]: step(next(a.C) = add(a.C, {c}) and
next(a.connectedTo[c]) = s and
next(a.trustedClients[c]) = false)
when (not a.trustedServers[s])
forcnotina.C, sina.S;
end sys_cts;

MILS-Workshop 2018 Towards Adaptive MILS Systems

Configuration transition system CITADEL
Referenced parametrized
CTS sys_cts architecture, with a label
architecture
a: sys.impl; —
initial

forall(c in a.C, forall (s in a.5, (not a.trustedClients[c] and s = a.connectedTo[c])
implies (not a.trustedServers[s])));
transitions
make_server_untrusted[s]: step(next(a.trustedServers[s]) = false)
forsina.S;

add_trusted_server|[s]: step(next(a.S) = add(a.S, {s}) and
next(a.trustedServers[s]) = true)
for s notin a.S;

add_untrusted_client[c][s]: step(next(a.C) = add(a.C, {c}) and
next(a.connectedTo[c]) = s and
next(a.trustedClients[c]) = false)
when (not a.trustedServers[s])
forcnotina.C, sina.S;
end sys_cts;

MILS-Workshop 2018 Towards Adaptive MILS Systems

Configuration transition system CITADEL
Referenced parametrized : :
CTS sys_cts architecture, with a label First-order logical formula over
architecture — parameters, defining the set of
a: sys.impl; initial architectures
initial e

forall(c in a.C, forall (s in a.S5, (not a.trustedClients[c] and s = a.connectedTo[c])
implies (not a.trustedServers[s])));
transitions
make_server_untrusted[s]: step(next(a.trustedServers[s]) = false)
forsina.S;

add_trusted_server|[s]: step(next(a.S) = add(a.S, {s}) and
next(a.trustedServers[s]) = true)
for s notin a.S;

add_untrusted_client[c][s]: step(next(a.C) = add(a.C, {c}) and
next(a.connectedTo[c]) = s and
next(a.trustedClients[c]) = false)
when (not a.trustedServers[s])
forcnotina.C, sina.S;
end sys_cts;

MILS-Workshop 2018 Towards Adaptive MILS Systems

Configuration transition system CITADEL

CTS sys_cts
architecture
a: sys.impl;
initial
forall(c in a.C, forall (s in a.5, (not a.trustedClients[c] and s = a.connectedTo[c])
implies (not a.trustedServers[s])));
transitions
make_server_untrusted[s]: step(next(a.trustedServers[s]) = false)
e N forsina.sS;
Transition label
add_trusted_server|[s]: step(next(a.S) = add(a.S, {s}) and
next(a.trustedServers[s]) = true)
for s notin a.S;

add_untrusted_client[c][s]: step(next(a.C) = add(a.C, {c}) and
next(a.connectedTo[c]) = s and
next(a.trustedClients[c]) = false)
when (not a.trustedServers[s])
forcnotina.C, sina.S;
end sys_cts;

MILS-Workshop 2018 Towards Adaptive MILS Systems

Configuration transition system CITADEL

CTS sys_cts
architecture
a: sys.impl;
initial
forall(c in a.C, forall (s in a.5, (not a.trustedClients[c] and s = a.connectedTo[c])
implies (not a.trustedServers[s])));

transitions
make_server_untrusted[s]: step(next(a.trustedServers[s]) = false)
o - forsinas, Specification
TranS|t|on Iabel - of multiple
add_trusted_server|[s]: step(next(a.S) = add(a.S, {s}) and t .
ransitions
next(a.trustedServers[s]) = true)

for s notin a.S;

add_untrusted_client[c][s]: step(next(a.C) = add(a.C, {c}) and
next(a.connectedTo[c]) = s and
next(a.trustedClients[c]) = false)
when (not a.trustedServers[s])
forcnotina.C, sina.S;
end sys_cts;

MILS-Workshop 2018 Towards Adaptive MILS Systems

Configuration transition system CITADEL

CTS sys__cts Formula specifying the transition
architecture :
a: sys.impl; step (functional dependency,
initial ' implicitly includes frame condition)

forall(c in a.C, forall (s in a.5, (not a.t /{ients[c] and s = a.connectedTo[c])
implies sa.trustedServers[s])));

transitions
make_server_untrusted[s]: step(next(a.trustedServers[s]) = false)
N forsinas, - gpecification
Transition label - of multiple
add_trusted_server[s]: step(next(a.S) = add(a.S, {s}) and ransitions

next(a.trustedServers[s]) = true)
for s notin a.S;

add_untrusted_client[c][s]: step(next(a.C) = add(a.C, {c}) and
next(a.connectedTo[c]) = s and
next(a.trustedClients[c]) = false)
when (not a.trustedServers[s])
forcnotina.C, sina.S;
end sys_cts;

MILS-Workshop 2018 Towards Adaptive MILS Systems

Configuration transition system CITADEL
T
CTS sys_cts . .
architecture Formula spemfylng the transition
a: sys.impl; step (functional dependency,
initial ' implicitly includes frame condition)
forall(c in a.C, forall (s in a.S, (not a.ti iients[c] and s = a.connectedTo[c])
implies?\w/a.trustedServers[s])));
transitions
make_server_untrusted[s]: step(next(a.trustedServers[s]) = false)
. S forsinas;, — Specification
Transition label - of multiple
add_trusted_server|[s]: step(next(a.S) = add(a.S, {s}) and i

next(a.trustedServers[s]) = true)
for s notin a.S;

add_untrusted_client[c][s]: step(next(a.C) = add(a.C, {c}) and
| next(a.connectedTo[c]) = s and

First-order formu!a GEES —next(a.trustedClients[c]) = false)
parameters specifyingthe when (not a.trustedServers[s])
transition guard (component for c notin a.C, sin a.S;

states can be referenced)

Towards Adaptive MILS Systems

MILS-Workshop 2018

Adaptive MILS

Verification

MILS-Workshop 2018 Towards Adaptive MILS Systems

@B

Information flows in classic MILS e

B The classic MILS approach relies on strictly controlled

information flows in order to enable compositional
assurance of systems

Static MILS policy architecture
B The problem: Decide whether information can flow

from a source component to a destination component

B In classic MILS, the architecture is static and it is easy

to verify information flow properties, such as “there is
no information flow from A to D”

Operational Plane support

Adaptive MILS information flows e

B In adaptive MILS, verifying information flow is more
difficult, due to

¢ Dynamic connections
¢ Addition and removal of components

¢ Potentially infinite number of architectural
configurations (and unbounded number of variables)

N o= O T

Information can flow from A to D across
architectural reconfigurations

Operational Plane support

Information flow verification

B Approach
¢ Consider a fragment of the CITADEL modeling language
e No architecture hierarchy
e No component behaviour
e Some restrictions on formulas in PA and CTS
¢ Encode the model and the information flow property using the

theory of array, for model checker MCMT
(users.mat.unimi.it/users/ghilardi/mcmt/)

array C bool;
C)\(é) ‘@)\@é) array S bool;
O @ O]

array C token bool;
l AR l Encode array S token bool;
O@O ©§)\b initial ..
transitions ..
unsafe ..
Dynamic Dynamic architecture with Array-based
architecture information flow transition system

FBK Operational Plane support 41

http://users.mat.unimi.it/users/ghilardi/mcmt/

Verification results

B Results

¢ We were able to specify and automatically verify several non-
trivial examples of dynamic architectures

¢ The approach is feasible and promising

B Ongoing/Future work
¢ Target other model checkers

e CUBICLE (cubicle.lri.fr) Hierarchical
e nuxXmv (nuxmv.fbk.eu) T architecture
(connections

¢ Generate proof certificates
¢ Extend the approach

not shown)

e Hierarchical architectures ~~- Flatten

e Trusted (filtering) components ‘

e Component behaviour Lot

e Checking of general properties % architecture

¢ Evaluate on realistic problems

Operational Plane support

http://cubicle.lri.fr/
http://nuxmv.fbk.eu/

CITADEL

Adaptive MILS

Run-Time Adaptation

MILS-Workshop 2018 Towards Adaptive MILS Systems

e
. [)
fpns

2

Adaptation Plane in the CITADEL Framework cmaoe

B The Adaptation Plane receives alarms from the Monitoring
Plane, decides on the next architectural configuration,
synthesizes its model and sends it to the Configuration Plane.

(dynamic application) Assurance Plane

1 A
\ I
\\ l
_Model “ osel
Adaptation Plane :— — ——~L - - Analysis
~—

~ J| Parametrized tools
l architecture
S —— I

- | N
_ = =|| Reconfiguration Cifieg
Configuration Plane 4 transitions __J %

Operational Plane —| Monitoring Plane L > Certification
\

\)j v

Foundational Plane
(dynamic platform) ¢

N —

—
\‘/

Properties Engineer

N— e
represents T

MILS-Workshop 2018 Towards Adaptive MILS Systems

Adaptat|0n Plane CITADEL

B Purpose
¢ Listen to alarms from the Monitoring Plane
¢ Decide the next architectural configuration

¢ Communicate it to the Configuration Plane and to the Certification
Assurance Plane

B Alarms and architectural reconfigurations are specified by
the designer in the system model

B Next architectural reconfiguration is decided based on a
reconfiguration strategy
¢ Specified in the reconfiguration rule table
¢ Maps alarms to reconfiguration actions
¢ A reconfiguration action decides the next architectural configuration

B The Strategy is implemented by the Adaptation Engine

B The evaluation/reasoning is performed by the Evaluator
Module

Adaptation Plane

Adaptation Plane subcomponents crie

B Adaptation Engine
¢ Implements the reconfiguration strategy
¢ Based on the reconfiguration rule table

¢ Decides on adaptation actions, which may be

e specific reconfigurations (CTS transitions)
e reasoning-based adaptation

e reconfiguration obtained from an Operator
B Evaluator Module

¢ Checks and evaluates the adaptation actions generated
by the Adaptation Engine

e Performing the requested reconfiguration action may be
impossible in the current circumstances

¢ Computes the (instantiated) model of the next
configuration of the system

MILS-Workshop 2018

Towards Adaptive MILS Systems

il
fasy

%

Adaptation Plane subcomponents cmos

B [ocation of the Adaptation Engine and
the Evaluator Module in the system:

Adaptation Plane

: . Certification :
Operator 5 Adaptgtlon Evaluator : > Acsurance 5
< : Engine Module — pam : Plane :

Adaptation Plane

sam.
8 1Y

Nominal behaviour

B Monitoring Plane sends an alarm to the
Adaptation Engine

Adaptation Plane

: . Certification :
Operator 5 Adaptgtlon Evaluator : > Acsurance 5
< : Engine Module — pam : Plane :

Adaptation Plane

dars:
5

Nominal behaviour

B Adaptation Engine alerts the Operator, decides
on the reconfiguration action and requests its
evaluation from the Evaluator Module

Adaptation Plane

i oy 2 Fequest E | Certification :

0 - Adaptation Evaluator ; > .
perator < : : . . Assurance

. Engine Module -+ . Pl ;

2. alert ; R ane ...

Adaptation Plane

Nominal behaviour

<
B Evaluator Module computes the model of the next

architectural configuration and sends it to the
Adaptation Engine and the Certification Assurance

Plane

. Monitoring

______ Plane

1. alarm
. Adaptation Plane

i swwy 2 request 3i model ! Certification '
- Adaptation Evaluator : . :
Operator < : : . . Assurance
. Engine Module pum] PI ;
2. alert 3. model ; . ane .

: Configuration:

Plane

Adaptation Plane

dars:
5

Nominal behaviour

B Adaptation Engine sends the model of the
next architectural configuration to the
Configuration Plane

Adaptation Plane

i swwy 2 request 3; model : Certification '

0 : Adaptation SVENVE]do]g : > .
perator < : : . . Assurance

- Engine Module -+ . Pl ;

2. alert 3. model ; . ane .

4. model

Adaptation Plane

fan:

Nominal behaviour

B Configuration Plane reconfigures the
system and sends status “success” to the
Adaptation Engine

Adaptation Plane

i swwy 2 request 3; model : Certification '

0 - Adaptation Evaluator : > :
perator < : : . . Assurance :

- Engine Module -+ . Pl ;

2. alert 3. model ; . ane .

5. success 4. model

Adaptation Plane

dars:
5

Nominal behaviour

B Operator is notified of the successful
system reconfiguration

Adaptation Plane

i swwy 2- Frequest 3; model : Certification '

; Adaptation Evaluator : > :

Operator < : : . . Assurance
- Engine Module -+ . Pl ;

2. alert 3. model ; . ane .

Adaptation Plane

Reconfiguration rule table
Id Alarm pattern Action Priority Time limit

rl database failed ask 10 300

r2 - halt 11 -

r3 malicious_client(c) make_client_untrusted]c] 0 0

r4 - reason 1 15

S - ask 2 -

ré - halt 3 -

B Rules are triggered by matching the incoming alarm
with alarm patterns
¢ Alarm malicious_client(1) triggers rule r3, yielding action
make_client_untrusted[1]

B Rules without the alarm pattern are fallback rules for
the rule above

¢ Triggered on Evaluator Module evaluation failure

Adaptation Plane

Priority, time limit, reconfiguration e

<
B Priorities
¢ While a rule is being processed

e triggered rules of lower or equal priority are ignored
e triggered rules of higher priority (or actions requested by the

Operator actions) preempt the processing of the current rule
B Time limits

¢ Specify the maximum amount of time within which the
Evaluator Module must respond with a model or a failure

B Reconfiguration by the Configuration Plane

¢ During reconfiguration, alarms are ignored

e In this phase, the actual architecture is “outside the model”
and the alarms cannot be interpreted

¢ Reconfiguration failure is considered fatal; Adaptation
Engine halts and dumps its state

MILS-Workshop 2018 Towards Adaptive MILS Systems

Evaluator Module

B EM synthesizes the next architectural configuration so
that it satisfies all assumptions on the parameters, and
all safety and security properties specified in the model

B Synthesis modes:

¢ Simple evaluation (automatic)
e For a deterministic transition (e.g. make_client_untrusted[1])
e EM checks the transition guard and computes the next values
of parameters by evaluating the transition step expression
¢ Parameter synthesis (automatic)

e For a non-deterministic transition (e.qg.
add_untrusted_client[1][*], specifying addition of client 1
and its connection to any untrusted server)

e EM utilises SMT-based techniques to synthesize the values of
the unspecified indexes, and then performs the simple
evaluation of the resulting deterministic transition

MILS-Workshop 2018 Towards Adaptive MILS Systems

Evaluator Module

B Synthesis modes (cont.):

¢ Reasoning (automatic)
e For action “reason”

e EM automatically selects a reconfiguration
transition and synthesizes its indexes

e EM attempts to minimize the difference between
the current and next architectural configurations

¢ Querying an engineer
e For action “ask”

e EM interactively queries an engineer who provides
the next architectural configuration (i.e. the next
values of parameters)

MILS-Workshop 2018 Towards Adaptive MILS Systems

,—/--\

@8 CRITICAL INFRASTRUCTURE PROTECTION
: .
03..' (:l |ADE| USING ADAPTIVE MILS

o www.cCitadel-project.org

Thank you!

MILS-Workshop 2018 Towards Adaptive MILS Systems

http://www.citadel-project.org/

2N

VN

. .:;

References

B Architecture Analysis & Design Language (AADL) (rev. B). SAE Standard AS5506B,
International Society of Automotive Engineers, Sept. 2012.

B P. H. Feiler and D. P. Gluch. Model-Based Engineering with AADL - An Introduction to the
SAE Architecture Analysis and Design Language. SEI series in software engineering.
Addison-Wesley, 2012.

B S[IM 3.0 - Syntax and Semantics. Technical Note D1-2, Issue 4.7, COMPASS Project, June
2016.

B CITADEL Modeling and Specification Languages. Technical Report D3.1, Version 2.2,
CITADEL Project, Apr. 2018.

B A. Cimatti, I. Stojic, and S. Tonetta. Formal Specification and Verification of Dynamic
Parametrized Architectures. In FM 2018. Springer International Publishing, 2018,
forthcoming.

B S, Ghilardi and S. Ranise. MCMT: A Model Checker Modulo Theories. In Automated
Reasoning, 5th International Joint Conference, IJCAR 2010, Edinburgh, UK, July 16-19,
2010. Proceedings, pages 22-29, 2010.

B S, Conchon, A. Goel, S. Krstic, A. Mebsout, and F. Zaidi. Cubicle: A Parallel SMT-Based
Model Checker for Parameterized Systems - Tool Paper. In Computer Aided Verification -
24th International Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings,
pages 718-724, 2012.

B R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S. Mover, M. Roveri,
and S. Tonetta. The nuXmv Symbolic Model Checker. In CAV 2014. Springer International
Publishing, 2014.

MILS-Workshop 2018 Towards Adaptive MILS Systems

Example Model eriDe:

B The system represents a network of computers, in
which

¢ there is a database that contains sensitive data,
¢ there are servers which can connect to the database,
¢ there are clients which connect to servers.

B The numbers of servers and clients are arbitrary,
and more clients and servers can be added.

B Servers and clients are either trusted or untrusted

to access the sensitive data which is stored in the
database.

¢ Trusted servers and clients can be compromised,
becoming untrusted.

MILS-Workshop 2018 Towards Adaptive MILS Systems

f@e
b ‘;
B

Example Model Parametrized Architecture cmoe

B Diagram of the Example Model parametrized architecture
¢ monitors are not shown

if s; = connectedTol[c;]

if protected and

? trustedS?rvers [s5]

?

2
2}

clients servers

MILS-Workshop 2018 Towards Adaptive MILS Systems

Example Model instance

B Diagram of an instance of the Example Model,
instantiated from the shown assignment to parameters

¢ monitors are not shown

clients ®
Servers

c ={1, 2}

s = {1, 2, 3}
1:true, 2:false}

trustedClients = {
trustedServers = {1l:true, 2:true, 3:false}
connectedTo = {1:1, 2:3}

protected = true

MILS-Workshop 2018 Towards Adaptive MILS Systems

Example MOdEl CITADEL

B Required property is to prevent any leak of sensitive
data from the database to the untrusted clients.

¢ Verification of the model without the highlighted parts
produces a counterexample, showing that this model is

unsafe.
e The counterexample: the sensitive data can 1) flow from the

database to a server while it is trusted, then 2) a
reconfiguration can happen making the server untrusted,
after which 3) the data can flow to an untrusted client.

¢ Verification proves that the model with the highlighted

parts included is safe.

e Highlighted parts introduce two phases (represented by the
Boolean parameter “protected”): connections to the
database are allowed only in the protected mode, while
reconfigurations downgrading the servers are allowed only in

the unprotected mode.

MILS-Workshop 2018 Towards Adaptive MILS Systems

Example model listing (1/8)

package networkExampleModel

data sglRequest
end sqglRequest;

data implementation sglRequest.Data
end sqglRequest.Data;

data sglResponse
end sqglResponse;

data implementation sglResponse.Data
end sqlResponse.Data;

data message
end message;

data implementation message.Data
end message.Data;

MILS-Workshop 2018 Towards Adaptive MILS Systems

Example model listing (2/8)

subject databaseServer
features
input: in event data port sqlRequest.Data;
output: out event data port sglResponse.Data;
heartbeat: out event port;
end databaseServer;

subject implementation databaseServer.impl
end databaseServer.impl;

system heartbeatMonitor
features
heartbeat_in: in event port;
database_failed: out event port {
Alarm => true;
MonitoringProperty =>
"always (time_until(heartbeat_in) msec < HeartbeatTimeout)";
b
properties
FDIR => true;
end heartbeatMonitor;

MILS-Workshop 2018 Towards Adaptive MILS Systems

Example model listing (3/8)

system implementation heartbeatMonitor.impl
end heartbeatMonitor.impl;

subject applicationServer
features
db_input: in event data port sglResponse.Data;
db_output: out event data port sqlRequest.Data;
input: in event data port message.Data;
output: out event data port message.Data;
end applicationServer;

subject implementation applicationServer.impl
end applicationServer.impl;

subject client
features
input: in event data port message.Data;
output: out event data port message.Data;
end client;

MILS-Workshop 2018 Towards Adaptive MILS Systems

Example model listing (4/8)

subject implementation client.impl
end client.impl;

system clientMonitor
parameters
client_id: index;
features
client_out: in event data port message.Data;
malicious_client: out event data port index {
Alarm => true;
MonitoringProperty => "never Malicious(last_data(client_out))";
AlarmArguments => "client_id";
¥
properties
FDIR => true;
end clientMonitor;

system implementation clientMonitor.impl
end clientMonitor.impl;

MILS-Workshop 2018 Towards Adaptive MILS Systems

Example model listing (5/8)

system sys
end sys;

system implementation sys.impl

parameters
C: set of index;
S: set of index;
trustedClients: set indexed by C of bool;
trustedServers: set indexed by S of bool;
connectedTo: set indexed by C of index;
protected: bool;

assumptions
size(S) > 0;

subcomponents
database: subject databaseServer.impl;
database_monitor: system heartbeatMonitor.impl;
servers: set indexed by S of subject applicationServer.impl;
clients: set indexed by C of subject client.impl;
client_monitors: set indexed by C of system clientMonitor.impl

where forall(c in C, client_monitors[c].client_id = c);

MILS-Workshop 2018 Towards Adaptive MILS Systems

Example model listing (6/8)

connections

port database.output -> servers[s].db_input if protected and trustedServers[s]
forsinS;

port servers[s].db_output -> database.input if protected and trustedServers[s]
forsinS;

port database.heartbeat -> database_monitor.heartbeat_in;

port servers[s].output -> clients[c].input if s = connectedTo[c] forsin S, cin C;

port clients[c].output -> servers[s].input if s = connectedTo[c] forsin S, cin C;

port clients[c].output -> client_monitors[c].client_out for c in C;

end sys.impl;

CTS sys_cts

architecture
a: sys.impl;

initial
not a.protected and
forall(c in a.C, forall (s in a.S, (not a.trustedClients[c] and s = a.connectedTol[c])

implies (not a.trustedServers[s])))

and forall(c in a.C, forall (s not in a.5, s != a.connectedTo[c]));

MILS-Workshop 2018 Towards Adaptive MILS Systems

Example model listing (7/8)

transitions
protect: step(next(a.protected) = true);

add_trusted_server[s]: step(next(a.S) = add(a.S, {s})

and next(a.trustedServers[s]) = true)
for s not in a.S;

make_server_untrusted[s]: step(next(a.trustedServers[s]) = false)

when (not a.protected)
forsina.S;

add_untrusted_client[c][s]: step(next(a.C) = add(a.C, {c})

and next(a.connectedTo[c]) = s

and next(a.trustedClients[c]) = false)
when (not a.trustedServers[s])
forcnotina.C, sina.S;

add_trusted_client[c][s]: step(next(a.C) = add(a.C, {c})

and next(a.connectedTo[c]) = s

and next(a.trustedClients[c]) = true)
when (a.trustedServers[s])
forcnotina.C,sina.S;

MILS-Workshop 2018

Towards Adaptive MILS Systems

Example model listing (8/8)

make_client_untrusted[c][s]: step(next(a.trustedClients[c]) = false
and next(a.trustedServers[s]) = false)
when (a.trustedClients[c]
and s = a.connectedTo[c]
and not a.protected)
forcinC,sinS;
end sys_cts;

properties
Constants => "Malicious: function message.Data -> bool;
HeartbeatTimeout: clock msec := 10 msec;";

end networkExampleModel;

MILS-Workshop 2018 Towards Adaptive MILS Systems

-

CITADEL

-y
N
)

End

MILS-Workshop 2018 Towards Adaptive MILS Systems

