
Towards Adaptive MILS Systems:
Model-Based Design, Verification and

Run-Time Adaptation

Alessandro Cimatti*, Rance DeLong†, Ivan Stojic*
and Stefano Tonetta*

MILS-Workshop 2018 Towards Adaptive MILS Systems 1

* †

CRITICAL INFRASTRUCTURE PROTECTION
USING ADAPTIVE MILS
www.citadel-project.org

http://www.citadel-project.org/

Introduction

MILS-Workshop 2018 Towards Adaptive MILS Systems 2

 MILS comprises:
 a philosophy of design
 a platform for deployment
 a set of tools for

● specification
● verification
● configuration
● assurance

 Overarching objective of MILS: the ability to
provide demonstrable assurance, necessitating
 design-time rigor
 analysability

MILS-Workshop 2018 Towards Adaptive MILS Systems 3

MILS

Application
components

Platform resources

Separation kernel

 Traditional MILS principles
 simplicity
 smallness
 isolation
 static configuration

 However, some applications
 require high assurance
 entail requirements antithetical to some of the above

principles

 In Distributed MILS Project (www.d-mils.org), isolated
and static MILS was extended to distributed systems of
multiple MILS nodes, while preserving deterministic
execution characteristics of MILS systems

MILS-Workshop 2018 Towards Adaptive MILS Systems 4

MILS

Application
components

Platform resources

Separation kernel

http://www.d-mils.org/

Formal methods in D-MILS

Static
architecture

Properties

Certification
Assurance Plane

Model

Operational Plane
(application)

Foundational Plane
(platform)

Analysis
tools

Engineer

represents

specifies

 is u
sed by

Configuration Plane

 In Distributed MILS, distributed applications with static
architectures are formally modeled in order to support system
analysis, (initial) configuration, and system certification

MILS-Workshop 2018 Towards Adaptive MILS Systems 5

Adaptive MILS

MILS-Workshop 2018 Towards Adaptive MILS Systems 6

 In CITADEL Project, distributed MILS is extended to
dynamically reconfigurable self-adaptive
systems, while
 preserving analysability
 providing demonstrably assurable adaptation

 Self-adaptation
 effective approach to deal with modern highly

complex and dynamic software systems
 major challenge: provide guarantees about the

properties of self-adaptive systems
● solution: use formal methods to

 design the system
 verify the system
 (assurably) safely adapt the system at run-time

MILS-Workshop 2018 Towards Adaptive MILS Systems 7

CITADEL Project

MILS-Workshop 2018 Towards Adaptive MILS Systems 8

CITADEL Framework and Model

 In CITADEL, applications with dynamic architectures are
formally modeled in order to additionally support dynamic
reconfiguration, self-adaptation, and run-time certification

Parametrized
architecture

Properties

Reconfiguration
transitions

Certification
Assurance Plane

Model

Operational Plane
(dynamic application)

Foundational Plane
(dynamic platform)

Analysis
tools

Engineer

represents

specifies

 is u
sed by

Monitoring Plane

Configuration Plane

Adaptation Plane

MILS-Workshop 2018 Towards Adaptive MILS Systems 9

CITADEL Framework and Model

 In CITADEL, applications with dynamic architectures are
formally modelled in order to additionally support dynamic
reconfiguration, self-adaptation, and run-time certification

Parametrized
architecture

Properties

Reconfiguration
transitions

Certification
Assurance Plane

Model

Operational Plane
(dynamic application)

Foundational Plane
(dynamic platform)

Analysis
tools

Engineer

represents

specifies

 is u
sed by

Monitoring Plane

Configuration Plane

Adaptation Plane

 Foundational Plane
 composition of MILS foundational

components based on a separation
kernel

 provides access to the platform
resources

 represented in the Model:
● some aspects of the foundational

components
● constraints on application deployment
● monitored properties and alarms

MILS-Workshop 2018 Towards Adaptive MILS Systems 10

CITADEL Framework and Model

 In CITADEL, applications with dynamic architectures are
formally modelled in order to additionally support dynamic
reconfiguration, self-adaptation, and run-time certification

Parametrized
architecture

Properties

Reconfiguration
transitions

Certification
Assurance Plane

Model

Operational Plane
(dynamic application)

Foundational Plane
(dynamic platform)

Analysis
tools

Engineer

represents

specifies

 is u
sed by

Monitoring Plane

Configuration Plane

Adaptation Plane

 Operational Plane
 contains components of the

running application
 represented in the Model:

● current architectural configuration
● possible reconfigurations
● monitored properties and alarms
● desired safety and security

properties

MILS-Workshop 2018 Towards Adaptive MILS Systems 11

CITADEL Framework and Model

 In CITADEL, applications with dynamic architectures are
formally modelled in order to additionally support dynamic
reconfiguration, self-adaptation, and run-time certification

Parametrized
architecture

Properties

Reconfiguration
transitions

Certification
Assurance Plane

Model

Operational Plane
(dynamic application)

Foundational Plane
(dynamic platform)

Analysis
tools

Engineer

represents

specifies

 is u
sed by

Monitoring Plane

Configuration Plane

Adaptation Plane
 Monitoring Plane

 contains monitors and sensors which
monitor components in the OP and
resources in the FP

 generates alarms when it detects faulty or
suspicious behaviour

 uses data from the Model:
● monitored properties and alarms

MILS-Workshop 2018 Towards Adaptive MILS Systems 12

CITADEL Framework and Model

 In CITADEL, applications with dynamic architectures are
formally modelled in order to additionally support dynamic
reconfiguration, self-adaptation, and run-time certification

Parametrized
architecture

Properties

Reconfiguration
transitions

Certification
Assurance Plane

Model

Operational Plane
(dynamic application)

Foundational Plane
(dynamic platform)

Analysis
tools

Engineer

represents

specifies

 is u
sed by

Monitoring Plane

Configuration Plane

Adaptation Plane

 Adaptation Plane
 performs reasoning about adaptive

reconfigurations of the OP and the FP
 uses the Model to analyze the current

configuration and to search for the
next configuration

MILS-Workshop 2018 Towards Adaptive MILS Systems 13

CITADEL Framework and Model

 In CITADEL, applications with dynamic architectures are
formally modelled in order to additionally support dynamic
reconfiguration, self-adaptation, and run-time certification

Parametrized
architecture

Properties

Reconfiguration
transitions

Certification
Assurance Plane

Model

Operational Plane
(dynamic application)

Foundational Plane
(dynamic platform)

Analysis
tools

Engineer

represents

specifies

 is u
sed by

Monitoring Plane

Configuration Plane

Adaptation Plane

 Configuration Plane
 implements the initial OP/FP

configuration
 implements the adaptive OP/FP

reconfiguration, reconfiguring
also the monitors

 takes in input a Model of the
next configuration

MILS-Workshop 2018 Towards Adaptive MILS Systems 14

CITADEL Framework and Model

 In CITADEL, applications with dynamic architectures are
formally modelled in order to additionally support dynamic
reconfiguration, self-adaptation, and run-time certification

Parametrized
architecture

Properties

Reconfiguration
transitions

Certification
Assurance Plane

Model

Operational Plane
(dynamic application)

Foundational Plane
(dynamic platform)

Analysis
tools

Engineer

represents

specifies

 is u
sed by

Monitoring Plane

Configuration Plane

Adaptation Plane

 Certification Assurance Plane
 verifies that the model, in the

current and next configurations,
satisfies the system properties

 constructs and maintains:
● system assurance case
● database of supporting evidence

 uses data from the Model:
● current/next configurations
● system properties

Adaptive MILS
Model-Based Design

MILS-Workshop 2018 Towards Adaptive MILS Systems 15

 Architecture description language

 Standardized by SAE International

 A hierarchical architecture can be modeled
compositionally by specifying:
 component types (interfaces)

● event ports
● data ports (of some datatype)

 component implementations
● subcomponents
● connections of ports of subcomponents
● can be empty (leaf components)

MILS-Workshop 2018 Towards Adaptive MILS Systems 16

Architecture Analysis & Design Language (AADL)

MILS-Workshop 2018 Towards Adaptive MILS Systems 17

Component types in AADL

subject databaseServer
 features
 input: in event data port sqlRequest.Data;
 output: out event data port sqlResponse.Data;
 heartbeat: out event port;
end databaseServer;

subject implementation databaseServer.impl
 -- This implementation is empty.
end databaseServer.impl;

Component
category

Component
type name

Port name
Port type

subject databaseServer

input heartbeat

output

MILS-Workshop 2018 Towards Adaptive MILS Systems 18

Component implementations in AADL

system sys
 -- This type is empty.
end sys;

system implementation sys.impl
 subcomponents
 client: subject client.impl;
 server: subject applicationServer.impl;
 database: subject databaseServer.impl;
 connections
 port server.db_output -> database.input;
 port database.output -> server.db_input;
 port client.output -> server.input;
 port server.output -> client.input;
end sys.impl;

Port
connection

Component
implementation
name

Subcomponent
name

Subcomponent
implementation

system implementation sys.impl

server database
input

output

heartbeatdb_output

db_input
input

output

client
output

input

MILS-Workshop 2018 Towards Adaptive MILS Systems 19

Modeling dynamic architectures?

 For Adaptive MILS we want to model:
 dynamic sets of components
 dynamic connections
 additional data associated with components/connections

Clients can be
added / removed

Servers can be
added / removed

Ports can be
connected /
disconnected

set of clients set of servers

database

Components can be
trusted / untrusted

MILS-Workshop 2018 Towards Adaptive MILS Systems 20

CITADEL Modeling Language

 Based on AADL/SLIM
 SLIM (System-Level Integrated Modeling

language) is an extension of AADL
● Nominal component behaviour (hybrid automata)
● Error behaviour (probabilistic)

 CITADEL Modeling Language features:
 Parametrized system architecture
 Architectural reconfigurations
 Component types and implementations
 Component behaviour
 Properties associated with model elements

MILS-Workshop 2018 Towards Adaptive MILS Systems 21

Modeling language and its semantics

Parametrized Architecture Parametrized Architecture +
Configuration Transition System

I. Finite set of
models III. One model

with finitely many
reconfigurations

IV. One model with
infinitely many
reconfigurations

Define a configuration
transition system on

instantaton
instantaton

II. Infinite set
of models

MILS-Workshop 2018 Towards Adaptive MILS Systems 22

Parametrized architecture

system implementation sys.impl
 parameters
 C: set of index;
 S: set of index;
 trustedClients: set indexed by C of bool;
 trustedServers: set indexed by S of bool;
 connectedTo: set indexed by C of index;
 assumptions
 size(S) > 0;
 subcomponents
 database: subject databaseServer.impl;
 clients: set indexed by C of subject client.impl;
 servers: set indexed by S of subject applicationServer.impl;
 connections
 port database.output -> servers[s].db_input if trustedServers[s] for s in S;
 port servers[s].db_output -> database.input if trustedServers[s] for s in S;
 port servers[s].output -> clients[c].input if s = connectedTo[c] for s in S, c in C;
 port clients[c].output -> servers[s].input if s = connectedTo[c] for s in S, c in C;
end sys.impl;

MILS-Workshop 2018 Towards Adaptive MILS Systems 23

Parametrized architecture

system implementation sys.impl
 parameters
 C: set of index;
 S: set of index;
 trustedClients: set indexed by C of bool;
 trustedServers: set indexed by S of bool;
 connectedTo: set indexed by C of index;
 assumptions
 size(S) > 0;
 subcomponents
 database: subject databaseServer.impl;
 clients: set indexed by C of subject client.impl;
 servers: set indexed by S of subject applicationServer.impl;
 connections
 port database.output -> servers[s].db_input if trustedServers[s] for s in S;
 port servers[s].db_output -> database.input if trustedServers[s] for s in S;
 port servers[s].output -> clients[c].input if s = connectedTo[c] for s in S, c in C;
 port clients[c].output -> servers[s].input if s = connectedTo[c] for s in S, c in C;
end sys.impl;

 Parameters can be of
 simple types: index, bool, int, real,

enum(id1, …, idn)

 set types: set of <simple_type>
 indexed set type: set indexed by

<index set> of <simple_type, set_type>

MILS-Workshop 2018 Towards Adaptive MILS Systems 24

Parametrized architecture

system implementation sys.impl
 parameters
 C: set of index;
 S: set of index;
 trustedClients: set indexed by C of bool;
 trustedServers: set indexed by S of bool;
 connectedTo: set indexed by C of index;
 assumptions
 size(S) > 0;
 subcomponents
 database: subject databaseServer.impl;
 clients: set indexed by C of subject client.impl;
 servers: set indexed by S of subject applicationServer.impl;
 connections
 port database.output -> servers[s].db_input if trustedServers[s] for s in S;
 port servers[s].db_output -> database.input if trustedServers[s] for s in S;
 port servers[s].output -> clients[c].input if s = connectedTo[c] for s in S, c in C;
 port clients[c].output -> servers[s].input if s = connectedTo[c] for s in S, c in C;
end sys.impl;

 Parameters can be of
 simple types: index, bool, int, real,

enum(id1, …, idn)

 set types: set of <simple_type>
 indexed set type: set indexed by

<index set> of <simple_type, set_type>

Value of C is a set {c1, c2, …, cn}

MILS-Workshop 2018 Towards Adaptive MILS Systems 25

Parametrized architecture

system implementation sys.impl
 parameters
 C: set of index;
 S: set of index;
 trustedClients: set indexed by C of bool;
 trustedServers: set indexed by S of bool;
 connectedTo: set indexed by C of index;
 assumptions
 size(S) > 0;
 subcomponents
 database: subject databaseServer.impl;
 clients: set indexed by C of subject client.impl;
 servers: set indexed by S of subject applicationServer.impl;
 connections
 port database.output -> servers[s].db_input if trustedServers[s] for s in S;
 port servers[s].db_output -> database.input if trustedServers[s] for s in S;
 port servers[s].output -> clients[c].input if s = connectedTo[c] for s in S, c in C;
 port clients[c].output -> servers[s].input if s = connectedTo[c] for s in S, c in C;
end sys.impl;

 Parameters can be of
 simple types: index, bool, int, real,

enum(id1, …, idn)

 set types: set of <simple_type>
 indexed set type: set indexed by

<index set> of <simple_type, set_type>

Set of Boolean values
{trustedClients[c] : c in C}

Value of C is a set {c1, c2, …, cn}

MILS-Workshop 2018 Towards Adaptive MILS Systems 26

Parametrized architecture

system implementation sys.impl
 parameters
 C: set of index;
 S: set of index;
 trustedClients: set indexed by C of bool;
 trustedServers: set indexed by S of bool;
 connectedTo: set indexed by C of index;
 assumptions
 size(S) > 0;
 subcomponents
 database: subject databaseServer.impl;
 clients: set indexed by C of subject client.impl;
 servers: set indexed by S of subject applicationServer.impl;
 connections
 port database.output -> servers[s].db_input if trustedServers[s] for s in S;
 port servers[s].db_output -> database.input if trustedServers[s] for s in S;
 port servers[s].output -> clients[c].input if s = connectedTo[c] for s in S, c in C;
 port clients[c].output -> servers[s].input if s = connectedTo[c] for s in S, c in C;
end sys.impl;

 Parameters can be of
 simple types: index, bool, int, real,

enum(id1, …, idn)

 set types: set of <simple_type>
 indexed set type: set indexed by

<index set> of <simple_type, set_type>

Set of Boolean values
{trustedClients[c] : c in C}

Value of C is a set {c1, c2, …, cn}

First-order logical formula
over parameters

MILS-Workshop 2018 Towards Adaptive MILS Systems 27

Parametrized architecture

system implementation sys.impl
 parameters
 C: set of index;
 S: set of index;
 trustedClients: set indexed by C of bool;
 trustedServers: set indexed by S of bool;
 connectedTo: set indexed by C of index;
 assumptions
 size(S) > 0;
 subcomponents
 database: subject databaseServer.impl;
 clients: set indexed by C of subject client.impl;
 servers: set indexed by S of subject applicationServer.impl;
 connections
 port database.output -> servers[s].db_input if trustedServers[s] for s in S;
 port servers[s].db_output -> database.input if trustedServers[s] for s in S;
 port servers[s].output -> clients[c].input if s = connectedTo[c] for s in S, c in C;
 port clients[c].output -> servers[s].input if s = connectedTo[c] for s in S, c in C;
end sys.impl;

Indexed sets of
subcomponents

MILS-Workshop 2018 Towards Adaptive MILS Systems 28

Parametrized architecture

system implementation sys.impl
 parameters
 C: set of index;
 S: set of index;
 trustedClients: set indexed by C of bool;
 trustedServers: set indexed by S of bool;
 connectedTo: set indexed by C of index;
 assumptions
 size(S) > 0;
 subcomponents
 database: subject databaseServer.impl;
 clients: set indexed by C of subject client.impl;
 servers: set indexed by S of subject applicationServer.impl;
 connections
 port database.output -> servers[s].db_input if trustedServers[s] for s in S;
 port servers[s].db_output -> database.input if trustedServers[s] for s in S;
 port servers[s].output -> clients[c].input if s = connectedTo[c] for s in S, c in C;
 port clients[c].output -> servers[s].input if s = connectedTo[c] for s in S, c in C;
end sys.impl;

Specification of
multiple connections

Indexed sets of
subcomponents

MILS-Workshop 2018 Towards Adaptive MILS Systems 29

Parametrized architecture

system implementation sys.impl
 parameters
 C: set of index;
 S: set of index;
 trustedClients: set indexed by C of bool;
 trustedServers: set indexed by S of bool;
 connectedTo: set indexed by C of index;
 assumptions
 size(S) > 0;
 subcomponents
 database: subject databaseServer.impl;
 clients: set indexed by C of subject client.impl;
 servers: set indexed by S of subject applicationServer.impl;
 connections
 port database.output -> servers[s].db_input if trustedServers[s] for s in S;
 port servers[s].db_output -> database.input if trustedServers[s] for s in S;
 port servers[s].output -> clients[c].input if s = connectedTo[c] for s in S, c in C;
 port clients[c].output -> servers[s].input if s = connectedTo[c] for s in S, c in C;
end sys.impl;

Specification of
multiple connections

Connection guard (first-
order logical formula
over parameters)

Indexed sets of
subcomponents

MILS-Workshop 2018 Towards Adaptive MILS Systems 30

Modeling language and its semantics

Parametrized Architecture Parametrized Architecture +
Configuration Transition System

I. Finite set of
models III. One model

with finitely many
reconfigurations

IV. One model with
infinitely many
reconfigurations

Define a configuration
transition system on

instantaton
instantaton

II. Infinite set
of models

MILS-Workshop 2018 Towards Adaptive MILS Systems 31

Configuration transition system

CTS sys_cts
 architecture
 a: sys.impl;
 initial
 forall(c in a.C, forall (s in a.S, (not a.trustedClients[c] and s = a.connectedTo[c])
 implies (not a.trustedServers[s])));
 transitions
 make_server_untrusted[s]: step(next(a.trustedServers[s]) = false)
 for s in a.S;

 add_trusted_server[s]: step(next(a.S) = add(a.S, {s}) and
 next(a.trustedServers[s]) = true)
 for s not in a.S;

 add_untrusted_client[c][s]: step(next(a.C) = add(a.C, {c}) and
 next(a.connectedTo[c]) = s and
 next(a.trustedClients[c]) = false)
 when (not a.trustedServers[s])
 for c not in a.C, s in a.S;
end sys_cts;

MILS-Workshop 2018 Towards Adaptive MILS Systems 32

Configuration transition system

CTS sys_cts
 architecture
 a: sys.impl;
 initial
 forall(c in a.C, forall (s in a.S, (not a.trustedClients[c] and s = a.connectedTo[c])
 implies (not a.trustedServers[s])));
 transitions
 make_server_untrusted[s]: step(next(a.trustedServers[s]) = false)
 for s in a.S;

 add_trusted_server[s]: step(next(a.S) = add(a.S, {s}) and
 next(a.trustedServers[s]) = true)
 for s not in a.S;

 add_untrusted_client[c][s]: step(next(a.C) = add(a.C, {c}) and
 next(a.connectedTo[c]) = s and
 next(a.trustedClients[c]) = false)
 when (not a.trustedServers[s])
 for c not in a.C, s in a.S;
end sys_cts;

Referenced parametrized
architecture, with a label

MILS-Workshop 2018 Towards Adaptive MILS Systems 33

Configuration transition system

CTS sys_cts
 architecture
 a: sys.impl;
 initial
 forall(c in a.C, forall (s in a.S, (not a.trustedClients[c] and s = a.connectedTo[c])
 implies (not a.trustedServers[s])));
 transitions
 make_server_untrusted[s]: step(next(a.trustedServers[s]) = false)
 for s in a.S;

 add_trusted_server[s]: step(next(a.S) = add(a.S, {s}) and
 next(a.trustedServers[s]) = true)
 for s not in a.S;

 add_untrusted_client[c][s]: step(next(a.C) = add(a.C, {c}) and
 next(a.connectedTo[c]) = s and
 next(a.trustedClients[c]) = false)
 when (not a.trustedServers[s])
 for c not in a.C, s in a.S;
end sys_cts;

Referenced parametrized
architecture, with a label First-order logical formula over

parameters, defining the set of
initial architectures

MILS-Workshop 2018 Towards Adaptive MILS Systems 34

Configuration transition system

CTS sys_cts
 architecture
 a: sys.impl;
 initial
 forall(c in a.C, forall (s in a.S, (not a.trustedClients[c] and s = a.connectedTo[c])
 implies (not a.trustedServers[s])));
 transitions
 make_server_untrusted[s]: step(next(a.trustedServers[s]) = false)
 for s in a.S;

 add_trusted_server[s]: step(next(a.S) = add(a.S, {s}) and
 next(a.trustedServers[s]) = true)
 for s not in a.S;

 add_untrusted_client[c][s]: step(next(a.C) = add(a.C, {c}) and
 next(a.connectedTo[c]) = s and
 next(a.trustedClients[c]) = false)
 when (not a.trustedServers[s])
 for c not in a.C, s in a.S;
end sys_cts;

Transition label

MILS-Workshop 2018 Towards Adaptive MILS Systems 35

Configuration transition system

CTS sys_cts
 architecture
 a: sys.impl;
 initial
 forall(c in a.C, forall (s in a.S, (not a.trustedClients[c] and s = a.connectedTo[c])
 implies (not a.trustedServers[s])));
 transitions
 make_server_untrusted[s]: step(next(a.trustedServers[s]) = false)
 for s in a.S;

 add_trusted_server[s]: step(next(a.S) = add(a.S, {s}) and
 next(a.trustedServers[s]) = true)
 for s not in a.S;

 add_untrusted_client[c][s]: step(next(a.C) = add(a.C, {c}) and
 next(a.connectedTo[c]) = s and
 next(a.trustedClients[c]) = false)
 when (not a.trustedServers[s])
 for c not in a.C, s in a.S;
end sys_cts;

Specification
of multiple
transitions

Transition label

MILS-Workshop 2018 Towards Adaptive MILS Systems 36

Configuration transition system

CTS sys_cts
 architecture
 a: sys.impl;
 initial
 forall(c in a.C, forall (s in a.S, (not a.trustedClients[c] and s = a.connectedTo[c])
 implies (not a.trustedServers[s])));
 transitions
 make_server_untrusted[s]: step(next(a.trustedServers[s]) = false)
 for s in a.S;

 add_trusted_server[s]: step(next(a.S) = add(a.S, {s}) and
 next(a.trustedServers[s]) = true)
 for s not in a.S;

 add_untrusted_client[c][s]: step(next(a.C) = add(a.C, {c}) and
 next(a.connectedTo[c]) = s and
 next(a.trustedClients[c]) = false)
 when (not a.trustedServers[s])
 for c not in a.C, s in a.S;
end sys_cts;

Formula specifying the transition
step (functional dependency,
implicitly includes frame condition)

Specification
of multiple
transitions

Transition label

MILS-Workshop 2018 Towards Adaptive MILS Systems 37

Configuration transition system

CTS sys_cts
 architecture
 a: sys.impl;
 initial
 forall(c in a.C, forall (s in a.S, (not a.trustedClients[c] and s = a.connectedTo[c])
 implies (not a.trustedServers[s])));
 transitions
 make_server_untrusted[s]: step(next(a.trustedServers[s]) = false)
 for s in a.S;

 add_trusted_server[s]: step(next(a.S) = add(a.S, {s}) and
 next(a.trustedServers[s]) = true)
 for s not in a.S;

 add_untrusted_client[c][s]: step(next(a.C) = add(a.C, {c}) and
 next(a.connectedTo[c]) = s and
 next(a.trustedClients[c]) = false)
 when (not a.trustedServers[s])
 for c not in a.C, s in a.S;
end sys_cts;

Formula specifying the transition
step (functional dependency,
implicitly includes frame condition)

Specification
of multiple
transitions

Transition label

First-order formula over
parameters specifying the
transition guard (component
states can be referenced)

Adaptive MILS
Verification

MILS-Workshop 2018 Towards Adaptive MILS Systems 38

Information flows in classic MILS

FBK Operational Plane support 39

 The classic MILS approach relies on strictly controlled
information flows in order to enable compositional
assurance of systems

A B

DC

Static MILS policy architecture

 The problem: Decide whether information can flow
from a source component to a destination component

 In classic MILS, the architecture is static and it is easy
to verify information flow properties, such as “there is
no information flow from A to D”

Adaptive MILS information flows

FBK Operational Plane support 40

 In adaptive MILS, verifying information flow is more
difficult, due to
 Dynamic connections
 Addition and removal of components
 Potentially infinite number of architectural

configurations (and unbounded number of variables)

A B

DC

Information can flow from A to D across
architectural reconfigurations

A B

DC

 Approach
 Consider a fragment of the CITADEL modeling language

● No architecture hierarchy
● No component behaviour
● Some restrictions on formulas in PA and CTS

 Encode the model and the information flow property using the
theory of array, for model checker MCMT
(users.mat.unimi.it/users/ghilardi/mcmt/)

FBK Operational Plane support 41

Information flow verification

Dynamic
architecture

Add tokens

Dynamic architecture with
informaton fow

Encode

array C bool;
array S bool;
…
array C_token bool;
array S_token bool;

initial …
transitions …
unsafe …

Array-based
transiton system

http://users.mat.unimi.it/users/ghilardi/mcmt/

 Results
 We were able to specify and automatically verify several non-

trivial examples of dynamic architectures
 The approach is feasible and promising

 Ongoing/Future work
 Target other model checkers

● CUBICLE (cubicle.lri.fr)
● nuXmv (nuxmv.fbk.eu)

 Generate proof certificates
 Extend the approach

● Hierarchical architectures
● Trusted (filtering) components
● Component behaviour
● Checking of general properties

 Evaluate on realistic problems

FBK Operational Plane support 42

Verification results

Flattn

Hierarchical
architecture
(connectons
not shown)

Flat
architecture

http://cubicle.lri.fr/
http://nuxmv.fbk.eu/

Adaptive MILS
Run-Time Adaptation

MILS-Workshop 2018 Towards Adaptive MILS Systems 43

MILS-Workshop 2018 Towards Adaptive MILS Systems 44

Adaptation Plane in the CITADEL Framework

 The Adaptation Plane receives alarms from the Monitoring
Plane, decides on the next architectural configuration,
synthesizes its model and sends it to the Configuration Plane.

Parametrized
architecture

Properties

Reconfiguration
transitions

Certification
Assurance Plane

Model

Operational Plane
(dynamic application)

Foundational Plane
(dynamic platform)

Analysis
tools

Engineer

represents

specifies

 is u
sed by

Monitoring Plane

Configuration Plane

Adaptation Plane

 Purpose
 Listen to alarms from the Monitoring Plane
 Decide the next architectural configuration
 Communicate it to the Configuration Plane and to the Certification

Assurance Plane

 Alarms and architectural reconfigurations are specified by
the designer in the system model

 Next architectural reconfiguration is decided based on a
reconfiguration strategy
 Specified in the reconfiguration rule table
 Maps alarms to reconfiguration actions
 A reconfiguration action decides the next architectural configuration

 The Strategy is implemented by the Adaptation Engine

 The evaluation/reasoning is performed by the Evaluator
Module

FBK Adaptation Plane 45

Adaptation Plane

 Adaptation Engine
 Implements the reconfiguration strategy
 Based on the reconfiguration rule table
 Decides on adaptation actions, which may be

● specific reconfigurations (CTS transitions)
● reasoning-based adaptation
● reconfiguration obtained from an Operator

 Evaluator Module
 Checks and evaluates the adaptation actions generated

by the Adaptation Engine
● Performing the requested reconfiguration action may be

impossible in the current circumstances
 Computes the (instantiated) model of the next

configuration of the system

MILS-Workshop 2018 Towards Adaptive MILS Systems 46

Adaptation Plane subcomponents

FBK Adaptation Plane 47

Adaptation Plane subcomponents

Monitoring
Plane

Configuration
Plane

Operator
Adaptation

Engine
Evaluator
Module

Adaptation Plane

 Location of the Adaptation Engine and
the Evaluator Module in the system:

Certification
Assurance

Plane

FBK Adaptation Plane 48

Nominal behaviour

Monitoring
Plane

Configuration
Plane

Operator
Adaptation

Engine
Evaluator
Module

Adaptation Plane

 Monitoring Plane sends an alarm to the
Adaptation Engine

Certification
Assurance

Plane

1. alarm

FBK Adaptation Plane 49

Nominal behaviour

Monitoring
Plane

Configuration
Plane

Operator
Adaptation

Engine
Evaluator
Module

Adaptation Plane

Certification
Assurance

Plane

1. alarm

2. request

2. alert

 Adaptation Engine alerts the Operator, decides
on the reconfiguration action and requests its
evaluation from the Evaluator Module

FBK Adaptation Plane 50

Nominal behaviour

Monitoring
Plane

Configuration
Plane

Operator
Adaptation

Engine
Evaluator
Module

Adaptation Plane

 Evaluator Module computes the model of the next
architectural configuration and sends it to the
Adaptation Engine and the Certification Assurance
Plane

Certification
Assurance

Plane

1. alarm

2. request

3. model

3. model

2. alert

FBK Adaptation Plane 51

Nominal behaviour

Monitoring
Plane

Configuration
Plane

Operator
Adaptation

Engine
Evaluator
Module

Adaptation Plane

 Adaptation Engine sends the model of the
next architectural configuration to the
Configuration Plane

Certification
Assurance

Plane

1. alarm

2. request

3. model

3. model

4. model

2. alert

FBK Adaptation Plane 52

Nominal behaviour

Monitoring
Plane

Configuration
Plane

Operator
Adaptation

Engine
Evaluator
Module

Adaptation Plane

 Configuration Plane reconfigures the
system and sends status “success” to the
Adaptation Engine

Certification
Assurance

Plane

1. alarm

2. request

3. model

3. model

4. model5. success

2. alert

FBK Adaptation Plane 53

Nominal behaviour

Monitoring
Plane

Configuration
Plane

Operator
Adaptation

Engine
Evaluator
Module

Adaptation Plane

 Operator is notified of the successful
system reconfiguration

Certification
Assurance

Plane

1. alarm

2. request

3. model

3. model

4. model5. success

6. status
2. alert

FBK Adaptation Plane 54

Reconfiguration rule table

Id Alarm pattern Action Priority Time limit

r1 database_failed ask 10 300

r2 - halt 11 -

r3 malicious_client(c) make_client_untrusted[c] 0 0

r4 - reason 1 15

r5 - ask 2 -

r6 - halt 3 -

 Rules are triggered by matching the incoming alarm
with alarm patterns
 Alarm malicious_client(1) triggers rule r3, yielding action

make_client_untrusted[1]

 Rules without the alarm pattern are fallback rules for
the rule above
 Triggered on Evaluator Module evaluation failure

 Priorities
 While a rule is being processed

● triggered rules of lower or equal priority are ignored
● triggered rules of higher priority (or actions requested by the

Operator actions) preempt the processing of the current rule

 Time limits
 Specify the maximum amount of time within which the

Evaluator Module must respond with a model or a failure

 Reconfiguration by the Configuration Plane
 During reconfiguration, alarms are ignored

● In this phase, the actual architecture is “outside the model”
and the alarms cannot be interpreted

 Reconfiguration failure is considered fatal; Adaptation
Engine halts and dumps its state

MILS-Workshop 2018 Towards Adaptive MILS Systems 55

Priority, time limit, reconfiguration

 EM synthesizes the next architectural configuration so
that it satisfies all assumptions on the parameters, and
all safety and security properties specified in the model

 Synthesis modes:
 Simple evaluation (automatic)

● For a deterministic transition (e.g. make_client_untrusted[1])
● EM checks the transition guard and computes the next values

of parameters by evaluating the transition step expression
 Parameter synthesis (automatic)

● For a non-deterministic transition (e.g.
add_untrusted_client[1][*], specifying addition of client 1
and its connection to any untrusted server)

● EM utilises SMT-based techniques to synthesize the values of
the unspecified indexes, and then performs the simple
evaluation of the resulting deterministic transition

MILS-Workshop 2018 Towards Adaptive MILS Systems 56

Evaluator Module

 Synthesis modes (cont.):
 Reasoning (automatic)

● For action “reason”
● EM automatically selects a reconfiguration

transition and synthesizes its indexes
● EM attempts to minimize the difference between

the current and next architectural configurations
 Querying an engineer

● For action “ask”
● EM interactively queries an engineer who provides

the next architectural configuration (i.e. the next
values of parameters)

MILS-Workshop 2018 Towards Adaptive MILS Systems 57

Evaluator Module

Thank you!

MILS-Workshop 2018 Towards Adaptive MILS Systems 58

CRITICAL INFRASTRUCTURE PROTECTION
USING ADAPTIVE MILS
www.citadel-project.org

http://www.citadel-project.org/

 Architecture Analysis & Design Language (AADL) (rev. B). SAE Standard AS5506B,
International Society of Automotive Engineers, Sept. 2012.

 P. H. Feiler and D. P. Gluch. Model-Based Engineering with AADL - An Introduction to the
SAE Architecture Analysis and Design Language. SEI series in software engineering.
Addison-Wesley, 2012.

 SLIM 3.0 - Syntax and Semantics. Technical Note D1-2, Issue 4.7, COMPASS Project, June
2016.

 CITADEL Modeling and Specification Languages. Technical Report D3.1, Version 2.2,
CITADEL Project, Apr. 2018.

 A. Cimatti, I. Stojic, and S. Tonetta. Formal Specification and Verification of Dynamic
Parametrized Architectures. In FM 2018. Springer International Publishing, 2018,
forthcoming.

 S. Ghilardi and S. Ranise. MCMT: A Model Checker Modulo Theories. In Automated
Reasoning, 5th International Joint Conference, IJCAR 2010, Edinburgh, UK, July 16-19,
2010. Proceedings, pages 22–29, 2010.

 S. Conchon, A. Goel, S. Krstic, A. Mebsout, and F. Zaïdi. Cubicle: A Parallel SMT-Based
Model Checker for Parameterized Systems - Tool Paper. In Computer Aided Verification -
24th International Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings,
pages 718–724, 2012.

 R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S. Mover, M. Roveri,
and S. Tonetta. The nuXmv Symbolic Model Checker. In CAV 2014. Springer International
Publishing, 2014.

MILS-Workshop 2018 Towards Adaptive MILS Systems 59

References

 The system represents a network of computers, in
which
 there is a database that contains sensitive data,
 there are servers which can connect to the database,
 there are clients which connect to servers.

 The numbers of servers and clients are arbitrary,
and more clients and servers can be added.

 Servers and clients are either trusted or untrusted
to access the sensitive data which is stored in the
database.
 Trusted servers and clients can be compromised,

becoming untrusted.

MILS-Workshop 2018 Towards Adaptive MILS Systems 60

Example Model

MILS-Workshop 2018 Towards Adaptive MILS Systems 61

Example Model Parametrized Architecture

?

?

?

?

?

?

 Diagram of the Example Model parametrized architecture
 monitors are not shown

MILS-Workshop 2018 Towards Adaptive MILS Systems 62

Example Model instance

 Diagram of an instance of the Example Model,
instantiated from the shown assignment to parameters
 monitors are not shown

 Required property is to prevent any leak of sensitive
data from the database to the untrusted clients.
 Verification of the model without the highlighted parts

produces a counterexample, showing that this model is
unsafe.
● The counterexample: the sensitive data can 1) flow from the

database to a server while it is trusted, then 2) a
reconfiguration can happen making the server untrusted,
after which 3) the data can flow to an untrusted client.

 Verification proves that the model with the highlighted
parts included is safe.
● Highlighted parts introduce two phases (represented by the

Boolean parameter “protected”): connections to the
database are allowed only in the protected mode, while
reconfigurations downgrading the servers are allowed only in
the unprotected mode.

MILS-Workshop 2018 Towards Adaptive MILS Systems 63

Example Model

MILS-Workshop 2018 Towards Adaptive MILS Systems 64

Example model listing (1/8)

package networkExampleModel

data sqlRequest
end sqlRequest;

data implementation sqlRequest.Data
end sqlRequest.Data;

data sqlResponse
end sqlResponse;

data implementation sqlResponse.Data
end sqlResponse.Data;

data message
end message;

data implementation message.Data
end message.Data;

MILS-Workshop 2018 Towards Adaptive MILS Systems 65

Example model listing (2/8)
subject databaseServer
 features
 input: in event data port sqlRequest.Data;
 output: out event data port sqlResponse.Data;
 heartbeat: out event port;
end databaseServer;

subject implementation databaseServer.impl
end databaseServer.impl;

system heartbeatMonitor
 features
 heartbeat_in: in event port;
 database_failed: out event port {
 Alarm => true;
 MonitoringProperty =>
 "always (time_until(heartbeat_in) msec < HeartbeatTimeout)";
 };
 properties
 FDIR => true;
end heartbeatMonitor;

MILS-Workshop 2018 Towards Adaptive MILS Systems 66

Example model listing (3/8)

system implementation heartbeatMonitor.impl
end heartbeatMonitor.impl;

subject applicationServer
 features
 db_input: in event data port sqlResponse.Data;
 db_output: out event data port sqlRequest.Data;
 input: in event data port message.Data;
 output: out event data port message.Data;
end applicationServer;

subject implementation applicationServer.impl
end applicationServer.impl;

subject client
 features
 input: in event data port message.Data;
 output: out event data port message.Data;
end client;

MILS-Workshop 2018 Towards Adaptive MILS Systems 67

Example model listing (4/8)

subject implementation client.impl
end client.impl;

system clientMonitor
 parameters
 client_id: index;
 features
 client_out: in event data port message.Data;
 malicious_client: out event data port index {
 Alarm => true;
 MonitoringProperty => "never Malicious(last_data(client_out))";
 AlarmArguments => "client_id";
 };
 properties
 FDIR => true;
end clientMonitor;

system implementation clientMonitor.impl
end clientMonitor.impl;

MILS-Workshop 2018 Towards Adaptive MILS Systems 68

Example model listing (5/8)
system sys
end sys;

system implementation sys.impl
 parameters
 C: set of index;
 S: set of index;
 trustedClients: set indexed by C of bool;
 trustedServers: set indexed by S of bool;
 connectedTo: set indexed by C of index;
 protected: bool;
 assumptions
 size(S) > 0;
 subcomponents
 database: subject databaseServer.impl;
 database_monitor: system heartbeatMonitor.impl;
 servers: set indexed by S of subject applicationServer.impl;
 clients: set indexed by C of subject client.impl;
 client_monitors: set indexed by C of system clientMonitor.impl
 where forall(c in C, client_monitors[c].client_id = c);

MILS-Workshop 2018 Towards Adaptive MILS Systems 69

Example model listing (6/8)
 connections
 port database.output -> servers[s].db_input if protected and trustedServers[s]
 for s in S;
 port servers[s].db_output -> database.input if protected and trustedServers[s]
 for s in S;
 port database.heartbeat -> database_monitor.heartbeat_in;
 port servers[s].output -> clients[c].input if s = connectedTo[c] for s in S, c in C;
 port clients[c].output -> servers[s].input if s = connectedTo[c] for s in S, c in C;
 port clients[c].output -> client_monitors[c].client_out for c in C;
end sys.impl;

CTS sys_cts
 architecture
 a: sys.impl;
 initial
 not a.protected and
 forall(c in a.C, forall (s in a.S, (not a.trustedClients[c] and s = a.connectedTo[c])
 implies (not a.trustedServers[s])))
 and forall(c in a.C, forall (s not in a.S, s != a.connectedTo[c]));

MILS-Workshop 2018 Towards Adaptive MILS Systems 70

Example model listing (7/8)
 transitions
 protect: step(next(a.protected) = true);

 add_trusted_server[s]: step(next(a.S) = add(a.S, {s})
 and next(a.trustedServers[s]) = true)
 for s not in a.S;

 make_server_untrusted[s]: step(next(a.trustedServers[s]) = false)
 when (not a.protected)
 for s in a.S;

 add_untrusted_client[c][s]: step(next(a.C) = add(a.C, {c})
 and next(a.connectedTo[c]) = s
 and next(a.trustedClients[c]) = false)
 when (not a.trustedServers[s])
 for c not in a.C, s in a.S;

 add_trusted_client[c][s]: step(next(a.C) = add(a.C, {c})
 and next(a.connectedTo[c]) = s
 and next(a.trustedClients[c]) = true)
 when (a.trustedServers[s])
 for c not in a.C, s in a.S;

MILS-Workshop 2018 Towards Adaptive MILS Systems 71

Example model listing (8/8)
 make_client_untrusted[c][s]: step(next(a.trustedClients[c]) = false
 and next(a.trustedServers[s]) = false)
 when (a.trustedClients[c]
 and s = a.connectedTo[c]
 and not a.protected)
 for c in C, s in S;
end sys_cts;

properties
 Constants => "Malicious: function message.Data -> bool;
 HeartbeatTimeout: clock msec := 10 msec;";

end networkExampleModel;

End

MILS-Workshop 2018 Towards Adaptive MILS Systems 72

