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ABSTRACT 

 
With the explosive growth of the number of services published over the Internet, it is difficult to select 

satisfactory web services among the candidate web services which provide similar functionalities. Quality 

of Service (QoS) is considered as the most important non-functional criterion for service selection. But this 

criterion is no longer considered as the only criterion to rank web services, satisfying user’s preferences. 

The similarity measure (outputs–inputs similarity) between concepts based on ontology in an inter-

connected network of semantic Web services involved in a composition can be used as a distinguishing 

criterion to estimate the semantic quality of selected services for the composite service. Coupling the 

semantic similarity as the functional aspect and quality of services allows us to further constrain and select 

services for the valid composite services.   

 

In this paper, we present an overall service selection and ranking framework which firstly classify 

candidate web services to different QoS levels respect to user’s QoS requirements and preferences with an 

Associative Classification algorithm and then rank the most qualified candidate services based on their 

functional quality through semantic matching. The experimental results show that proposed framework can 

satisfy service requesters’ non-functional requirements. 
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1. INTRODUCTION 

 
Service Oriented Computing (SOC) and its predominant incarnation as Web Services have 

emerged as a powerful concept for building software systems [1]. 
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Web service technology offers a potential solution for developing distributed business processes 

and applications, which can be accessible via the Internet. Considering the rapid increase of Web 

users and the growing complexity of their demands, simple atomic services are inadequate. When 

individual Web services are not able to meet complex requirements, SOC provides a flexible 

framework for reusing and composing existing web services in order to build value-added 

composite services. At first the functionalities required for these complex requirements (namely 

the tasks) and their interactions, the control and data flow, are identified. Secondly, an appropriate 

implementation must be selected and bounded to each task. However with the rapidly growing 

number of available services, a large number of services can be found for realizing every task 

which can provide expected functionality for each of them. So it leads to the issue of selecting the 

best Web services among a list of “Candidate Web services”, with the same functionalities. These 

services are, of course, different from one another in non-functional properties such as response 

time, availability, throughput, security, reliability, and execution cost [2], and are therefore 

different in terms of efficiency. 

 

A specific issue emerges to this regard is selecting the best set of services based on their Quality 

of services (QoS) to participate in the composition, meeting QoS constraints set by users. QoS is 

a measure for how well a service serves the customer.  

 

Dynamic service environments cause some difficulties in service selection. As the services’ 

availability cannot be known a priori, or QoS conditions fluctuate in such environments, service 

selection and composition must be performed at runtime. Therefore the execution time of service 

selection algorithms is heavily constrained, whereas the computational complexity of the problem 

is NP-hard [3]. Hence, finding an optimal composite service may not be practical. Due to 

changing conditions in such environments there is no guarantee that the selected services for 

composite service will be available at runtime or its QoS will not be fixed concerning the 

advertised one in WSDL. 

 

In this paper, we present a service selection algorithm that copes with above issues. This 

algorithm consists of two phases. In the first phase, we use a classification data mining algorithm 

to classify web service candidates into different QoS levels respect to the defined QoS constraints 

form the user and using the result of this classification to define a utility value for each of the 

service candidates. In the second phase we focus on composing the best services of each task and 

more specifically on their functional level that aims to selecting and inter-connecting web 

services by means of their semantic connections. 

 

The remainder of this paper is structured as follows. In the next Section we give an overview of 

related works. In Section 3, we present our service selection approach and give the details of it, 

and we conduct a set of experiments to evaluate its timeliness and optimality in Section 4. 

Finally, in Section 5, we conclude with a summary of our contributions and the future 

perspectives of this work. 

 

2. RELATED WORKS 

 
The approaches aim at determining the optimal service composition using brute-force-like 

algorithms (i.e., the execution time and costs are exponential even if simplifications are used), 

new approaches are satisfied with finding a nearly-optimal solution. These approaches are using 

(meta-) heuristics. (Meta-) heuristics are general search methods that exclude a huge number of 

solutions, because they do not consider optimal solution in their population. Hence (meta-) 

heuristics are more efficient than exact algorithms. The main disadvantage however is that they 

do not find the optimal solution in most cases, because, the exclusion of solutions is based on 
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assumptions, thus there is no guarantee, that the excluded solutions do not contain the optimal 

one. 

 

All existing approaches can be divided into exact approaches finding the optimal service 

composition and (meta-) heuristics selecting a nearly service composition. Instead of exact 

algorithms, (meta-) heuristics seem to be the better choice for QoS-aware service selection and 

composition. 

 

Beside many proprietary heuristics [4,5,6], currently the Genetic Algorithm is the most promising 

heuristic in QoS-aware service selection and composition. C. Jaeger et al. [7] present a heuristic 

based on the genetic algorithm. A big challenge related to the Genetic Algorithms is the choice of 

the genetic operators: selection, mutation and recombination, which have a big influence of the 

efficiency and correctness of the algorithm. As these parameters are chosen randomly, the order 

in which service candidates are checked is chosen randomly. On the other hand, as the genetic 

algorithm can run endlessly, the users have to define a constant number of iterations fixed a 

priori, and fixing a high number of iterations does not give any guarantee about the quality of the 

result. Therefore, the genetic algorithm is deemed not useful for the purpose of selecting near-

optimal compositions. 

 

In recent years, some approaches (e.g., [8,9]) use the power of Data mining algorithms in 

knowledge extraction and pattern discovery among the huge amounts of data in web service 

selection. 

 

Wu et al. [8] present a Bayesian network based Qos assessment model for web services. That 

could predict the service capability in various combinations of users’ Qos requirements. This 

approach is used to evaluate the capability of each service, and the one with best capability is 

selected as the binding service. Though it uses Bayesian network classification algorithm for each 

provider/service to predict the level of QoS, it is computationally complex and is based on 

probabilities, moreover it just considers local constraints in web service selection and doesn’t 

mention the global constraints. 

 

Ben Mabrouk et al. [9] present a heuristic approach for service composition in dynamic 

environments. This solution uses the K-means algorithm to classify the web services to QoS 

levels, then it uses the result of this clustering in an utility function in order to rank web service 

candidates for each task as a local selection part, then it uses a search tree to select the best 

services to form the composition plans in an ordered way. The proposed solution is 

computationally expensive in both of the clustering algorithm and the structure of the search tree 

in a composition plans with the high number of activities, also it suffers from the deficiency of 

the clustering techniques, because clustering is an example of unsupervised learning. Furthermore 

it does not mention the semantic matching between output and input of the services. 

 

3. QOS-AWARE SERVICE SELECTION ALGORITHM 

 
Our proposed approach starts form the assumption that the user uses a graphical user interface to 

define his/her request. With the help of this interface user can express his request in terms of QoS 

requirements and his relative preferences for each of them. Then the interface formulates it as a 

machine-understandable specification. The composition plan is given from the expert that its 

functional tasks and all the controls and data flow between them are characterized. For every 

activity in the composition plan, a service discovery phase gives a set of service candidates able 

to fulfill the functional aspect. 
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The proposed service selection method consists of a heuristic algorithm based on classification 

data mining algorithm, CBA [10] algorithm. This classification allows for classifying candidate 

web services with respect to the QoS requirements and preferences defined by the user into a set 

of different QoS levels. Further with considering the functional aspect we use these levels to 

determine the utility of each candidate service to do a near-optimal selection. 

 

As the outlined process of the proposed method is depicted in figure 1, our heuristic approach 

deals with the service selection problem through the following phases: 

1. Scaling phase, which is a pre-processing phase to normalizing QoS values. 

2. Service selection by local classification, which classifies candidate services according to 

different QoS levels and determines the utility of each candidate service. 

3. Ranking based on functional aspect, which uses the results of the last phase to selecting 

the best services according to the functional aspect. 

 

 

Figure 1. The outlined process of the proposed method  
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3.1. Scaling Phase 

 
QoS attributes could be either positive or negative, thus some QoS values need to be maximized, 

(i.e., the higher the value, the higher the quality) for example availability and reliability, whereas 

other values have to be minimized, (i.e., the higher the value, the lower the quality). This includes 

criteria such as execution time and execution price. To cope with this issue, the scaling phase 

normalizes every QoS attribute value according to the following formulas [11]. The values of 

negative attributes are normalized by expression (1) and the values of positive attributes are 

normalized by (2). 

 

��,�� = � �	
����,	�	
���	
�� , �� ����� − ����� ≠ 0
1,               ���� �          (1) 

��,�� = � ��,	�	
��
�	
���	
�� , �� ����� − ����� ≠ 0

1,               ���� �          (2) 

 

Where ��,��  signifies the normalized value of QoS attribute j associated with candidate service  �. 

It is computed using the current value ��,�  and ����� and ����� which respectively denote the 

maximum and minimum values of QoS attribute j among all the candidate services. 

After the data normalization is completed, all the QoS attributes values are lying in the [0, 1] 

interval and also have the same utility increase direction. 

 

3.2. Service Selection by Local Classification 

 
The classification is performed on candidate web services for all the activities in the abstract 

service composition. The purpose of this phase is to classify candidate web services to the 

multiple QoS levels with respect to the user’s preferences on QoS attributes. In this classification 

each level consists of a set of candidate services that have approximately the same QoS value. 

These levels determine the relative importance of candidate services for selecting near-optimal 

compositions. To perform this classification we use an Associative Classification technique, CBA 

algorithm. 

 

3.2.1. Classification Overview 

 

CBA algorithm is based on Associative Classification which is the integration of two important 

data mining techniques, Classification rule mining and association rule mining. Associative 

Classification is a novel strategy performing classification where model of classification is based 

on a set of association rules in which consequent of each rule is restricted to contain only class 

attribute values.  

 

Some definitions of associative classification are introduced here: 

 

Definition 1 (Training Data Set !). If an object can be described by features "#, "$, "%, . , "� and 

each object belongs to some class in a finite set of classes ', then training data set ! is a 

collection of instances < )#, )$, )%, . , )�, * > where )� ranges over the domain of feature vector "�  and * represents the class of the object. As a preprocessing step any continuous valued 

attribute need be discretized.  
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Definition 2 (Future Object ,). An instance < )#, )$, )%, . , )� > whose class label is not known 

will be called future object and classifier will be used to predict its class.  

 

Definition 3 (Class Association Rules: CARs). CARs will be mined from Training data set !. A 

special subset of association rules in which the precedent of rule contains the form of attribute 

value pairs and the consequent is restricted to take only class attribute value. Like association 

rules, CARs are also subjected to a minimum support and confidence threshold values. For 

instance a rule -, "�  )#, "�  )$, … ! *0 is a CAR and supp(-), conf(-) respectively denote support 

and confidence of rule. 

 

CBA algorithm is an ordered rule algorithm based on coverage analysis. It consists of two parts 

Rule Generator and Classifier Builder. The goal of rule generator part is to mine all CARs from ! 

that their support and confidence are above minimum threshold values. Rule generation approach 

is based on Apriori [12]. Classifier builder uses class association rules (CARs). The goal is to 

short list high confidence rules from CARs to form a classifier. CARs are sorted in the 

descending order of their precedence. We call this set of CARs 1. To build the classifier we select 

high precedence rules -� in 1 to cover !. Finally classifier takes the form < -#, -$, -%, . , -�, 2��34�5_*�3�� >. 2��34�5_*�3�� is the most probable class for all items. If all 

rules in the classifier are unable to classify a future object then it will be classified according to 

default class. 

 

3.2.2. Defining QoS Levels 

 

In order to classify candidate services, first we need to determine the QoS levels. To this regard 

we define 7 QoS levels, where the value of 7 is defined with respect to the service density and the 

expected accuracy for producing service classes. 

 

Further the training data set is defined by the expert and the number of classes is the number of 

QoS levels and the attributes are requested QoS attributes defined by the user.  

 

Each class defines the attributes which their values have a defined distance from the range of the 

values that specified from the user’s request. (i.e., the first class shows the services which the 

value of their QoS attributes are in the same range with the user’s demand and the second class 

shows the services which the value of their QoS attributes are one level lower than the user’s 

demand and so on). 

 

3.2.3. Computing the Service Utilities 

 

The objective of our proposed algorithm is selecting the best services for the near-optimal 

compositions. Indeed, having a large number of choices for services during dynamic binding 

increases the number of alternative service compositions and subsequently a large number of 

compositions prevent the starvation in dynamic service environments. 

 

In this regard, we define a utility function 8� which shows the relative importance of a candidate 

service  �. This function is computed based on two parameters: the first one is the QoS level 

which the service is classified in it through the classification, it represents the importance of the 

service (i.e., if it belongs to a class that its attributes are closer to the user demands, it will be 

better choice for selecting). The second one is the overall quality of the service. Concerning to 

this parameter, the service with the higher quality has the higher ability to be selected. 

This function is computed as follows: 
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8� = '�3��� ∗ ")��           Where        ")�� = ∑ ��,	;�	<=�         (3) 

Where '�3��� is the coefficient of the class to which service  � belongs. ")�� is the total quality 

of service  �, which computed as the average of the normalized QoS attributes values. 

 

3.3. Ranking Based on Functional Aspect 

 
The aim of this phase is selecting the best services for the near-optimal compositions such that 1) 

consider the best quality regard to the user’s demand and 2) the composition of these services has 

high functionality. 

 

3.3.1. Considering the Most Eligible Services 

 
In order to select services for the near-optimal compositions we use the utility function that we 

have computed from the result of the classification part. So we do not consider all the possible 

combinations of services. In this regard, we just mention the candidate services that have a utility 

value over a defined threshold. This threshold allows us to focus on the most qualified services to 

our regard.  

 

For defining threshold we consider two aspects: the number of required compositions and the 

execution time of the algorithm. Indeed, if we decrease the value of this threshold, the number of 

considered candidate services decreases. Consequently, the number of compositions and the 

execution time of the algorithm decreases respectively. Tuning the trade-off between these two 

aspects will make our algorithm adaptable; hence it could be applied to multiple dynamic service 

environments according to their constraints. 

 

3.3.2. Functional Aspect of the Composition 

 
Unlike most of approaches which just focus on the quality of composition by means of non 

functional parameters (i.e. QoSs), the quality of semantic links can be considered as a 

distinguishing functional criterion for semantic web service compositions.  

 

Here we focus on the functional level of composing the candidate web services. The functional 

criteria of semantic link, was introduced for the first time in [13] which defined as a semantic 

connection between an output of a service and an input parameter of another service. Since the 

qualities of these connections are valued by a semantic matching between their parameters, 

semantic link composition could be estimated and ranked as well. Through the results of these 

estimations some compositions are inappropriate. Indeed a composite service which does not 

provide acceptable quality of semantic links might be useless as a service that does not provide 

the desired functionality. Indeed the semantic connection between Web services is considered as 

essential to form new value-added Web services. 

 

Here we address the problem of optimizing in service selection with respect to this functional 

criterion. In other words, we focus on the aspects of selecting a set of appropriate service 

candidates for each task. We define an objective function In order to consider this aspect, 

preferences and constraints which are defined by end-user. 

3.3.2.1. Semantic Links 

 

In semantic web, input and output parameters of web services are concepts referred to an 

ontology >, where the OWL-S profile [14], SA-WSDL [15] or WSMO capability [16] can be 

used to describe them (through semantic annotations). 
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At functional level, web service composition consists of retrieving some semantic links between 

output parameters ,45_�� ∈ > of service �� and input parameters @7_�� ∈ > of other service ��. 

Such a link i.e., semantic link, ���,� (Figure 2) between two functional parameters of �� and �� is 

formalized as 〈��,  �BCD,45_��, @7_��E, ��〉. Thereby �� and �� are partially linked according to a 

matching function  �BC. This function expresses which matching type is employed to chain 

services. 

 

The range of  �BC is reduced to the four well known matching types: 

• Exact If the output parameter ,45_�� of �� and the input parameter @7_�� of �� are 

equivalent; formally, > ⊨ ,45_�� ≡ @7_��. 

• PlugIn If ,45_�� is sub-concept of @7_��; formally, > ⊨ ,45_�� ⊆ @7_��. 

• Subsume If ,45_�� is super-concept of @7_��; formally, > ⊨ @7_�� ⊆ ,45_��. 
• Intersection If the intersection of ,45_�� and @7_�� is satisfiable; formally, > ⊭,45_�� ⊓ @7_�� ⊆ ⏊. 

• Disjoint Otherwise ,45_�� and @7_��  are incompatible i.e., > ⊨ ,45_�� ⊓ @7_�� ⊆ ⏊. 

 

Figure 2. A Semantic Link ���,� between ��, ��. 

 

3.3.2.2. Semantic Link Quality 

 
Several candidate services are grouped together in every task of an abstract composition. A 

method to differentiate their semantic links is to consider their different functional quality criteria. 

In this way, we use the semantic link quality model introduced in [17]. 

 

Here We consider the matching quality as the quality criteria for the semantic links ���,� defined 

by 〈��,  �BCD,45_��, @7_��E, ��〉. The Matching Quality M� of a link ���,� is a value in (0, 1] 

defined by  �BCD,45_��, @7_��E i.e., 1 for Exact matching type, 
%N for PlugIn, 

#$ for Subsume and 
#N 

for Intersection. 

 

The Disjoint match type is not considered since ,45_�� ⊓ @7_�� is satisfied. 

Given the above quality criteria, the quality vector of a semantic link ���,� is defined as follows: 

MD���,�E = OM�D���,�EP          (4) 

In case of services �� and �� related by more than one semantic link, the value of each criterion is 

retrieved by computing their average. 
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3.3.2.3. Generation of the Search Graph 

 
Our algorithm uses the structure of a graph for selecting the most appropriate candidate services 

for the composition. Moreover in this graph we use a priority queue to exploring the candidate 

services in a defined order corresponding to their importance of QoSs and semantic similarities 

with other services. These priority queues reduce the time spend for building and traversing the 

search graph by inclusion the unexplored candidate services in themselves. In addition they can 

increase the speed of search to acquiring the optimal composite services according to their 

importance, by visiting the first services of each queue. Hence this structure will decrease the 

computational complexity of traversing the graph and memory usage in the cases which the 

abstract service compositions comprises a large number of tasks or there are many candidate 

services for each task. 

 

This graph is built from the candidate services according to the following rules: 

• Each node represent a task in the abstract service composition; 

• The order of these nodes is the corresponding order in the composition plan (i.e., if there 

is a link from task >� to >Q in the abstract service composition, then the corresponding 

node of >Q will be after the corresponding node of >�); 

• These nodes are made of  a priority queue which consists of all the service candidates for 

the corresponding task which its 8� is above the defined threshold as we have introduced 

before; 

Candidate services for each task go to the priority queue in this order: 

• For the tasks which do not have any incoming task in the composition plan, web services 

stay in the queue based on their utility values, i.e. the service with the highest utility value 

(8�) stays at the top of the queue; 

• For the other tasks, web services stay in the queue based on the following formula: R� = 8� ∗ MD���,�E         (5) 

Where R� is the final utility value for each candidate service based on their QoS values 

that respects the user needs and the matching quality of their semantic links between 

them and their preceding service; 

 

To build the search graph, first of all we add the nodes correspond to the tasks which do not have 

any incoming task. Then we select a web service which is at the top of its queue. To select the 

services for the other nodes, we compute the matching quality of semantic links between the 

selected services and all the candidate services for the subsequent nodes then based on these 

values and the utility values (which was computed in the local selection part), stay the candidate 

services for these nodes in the priority queue based on their R� values. As the previous nodes, the 

service which is top of the queue is selected as the chosen service. And so on the other services 

for each node will have selected which the candidate services of each node stay in their 

corresponding queue based on the value of their R�. 
 

The selected services from top of the queues form the near-optimal composite service. This 

composite service is the first service that have the highest importance and unexplored services in 

each queue are the candidates for alternative composite services which when the services in the 

first composite service are no longer available or their QoS decreases (e.g., due to network 

disconnection or weak network connectivity) during the execution of the composition, could be 

replace with it. 
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The introduced structure of the search graph, allow for producing all the alternative composite 

services by selecting the unexplored candidate services in each queue. But on the other side, 

producing all the alternative composite services needs more computation so it is a time 

consuming process (for calculating semantic similarities between services), also saving these 

composite services need high memory, hence for tuning the trade-off between memory usage and 

the execution time of the algorithm, we produce only the first alternative composite service which 

is the best alternative. 

We also propose a method for the case when a service which takes part in the composite service 

is no longer available, we could propose another composite service by replacing the unavailable 

service with another candidate service in its corresponding node of the search graph. In this case, 

for switching to another composite service we must rearrange the priority queue in that 

corresponding node, based on new utility values. This utility value is as the same as the R� 
function but the quality of the semantic links will be calculated as the follow: 

 

At first we calculate the semantic quality of the connection between the selected service in the 

previous node with the services for this node and the semantic quality of the connection between 

the selected service in the following node with the services for this node, then the new semantic 

quality value for the new R� is computed based on the average of these two computed quality for 

each service in this node. 

 

4. EXPERIMENTAL EVALUATION 

 
4.1. Experimental Settings 

 
We conducted experiments on an Intel(R) Core(TM) Duo CPU, 2.53GHz, 4GB RAM and a 

windows 7 operating system. In this experiment we focus on the execution time of our method. 

This metric measures the response time of our algorithm with respect to the size of the problem in 

terms of the number of activities and the number of services per activity. In these experiments, we 

measure the execution time of the ranking phase. 

 

For the quantity allocation of the service qualitative parameters we use the QWS real dataset [18, 

19]. This dataset includes measurements of 9 QoS attributes for 2500 real web services. The 

dataset was measured using commercial benchmark tools for web services, which were located 

using public sources on the Web, including UDDI registries, search engines and service portals.  

In these studies, the authors provide a set of QoS metrics (i.e., response time, throughput, 

availability, validation accuracy, reliability). We use these metrics as a sample input data for our 

algorithm. 

 

To accomplish the classification, we used the CBA
1
 tool for implementing the classification 

algorithm. This tool has a graphical user interface and is designed particularly for implementing 

the CBA algorithm. Hence for this part we do not measure the response time. 

For classifying the candidate services we have defined 3 different quality levels. These levels are 

specified to the distance of the QoS attributes to the user demands. 

After the classification carried out, the classes’ coefficient were defined as follow: 1 for services 

in the first class, 
%N for services in the second class and 

#N for services in the third class. 

 

In general, on Contrary to QoS given by providers, the quality of semantic links are estimated 

according to DL reasoning. Matching quality of each semantic link has been inferred in a pre-

                                                
1 http://www.comp.nus.edu.sg/~dm2/ 
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processing step of semantic reasoning. Standard DL reasoning inference is achieved by means of 

a DL reasoner Fact++2 [20]. 

 

For the purpose of these experiments, we vary the number of activities and the number of services 

per activity between 10 and 50. The number of QoS constraints is fixed to 4 constraints (i.e., 

Response time, Availability, Throughput and Reliability) and for the sake of precision each 

experiment is executed 20 times and finally we calculate the mean value of the obtained results 

for our evaluation. 

 

4.2. Performance Results 

 
In figure 3 we demonstrate the execution time of ranking phase for the calculated near-optimal 

composite service. These measurements are obtained by fixing the number of QoS constraints to 

4 and varying the number of activities and the number of service candidates per activity between 

10 and 50. The obtained measurements show that the execution time of our algorithm increases 

along with the number of activities and the number of services per activity, which is an expected 

result. 

 

 

Figure 3. Execution time of the ranking phase for near-optimal composite service 

Also figure 4 demonstrates the execution time of ranking phase for the first alternative composite 

service. The increment of the execution time compared with the figure 3 is due to the increment 

of the number of tasks and candidate services so the spending time for calculating semantic 

similarity of output-input concepts increases subsequently. DL reasoning is the most time 

consuming process in large-scale problem of quality-driven semantic web service composition 

(i.e., number of tasks and candidate services greater than 100 and 350).This is caused by the large 

number of potential semantic links between tasks. 

                                                
2 http://owl.man.ac.uk/factplusplus/ 
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Figure 4. Execution time of the ranking phase for first alternative composite service 

 

As the figure 3 and 4 show, our method has a good execution time compared with the 

evolutionary algorithms which the later algorithms (e.g., genetic algorithms, PSO) take a long 

time to execute composite service (e.g., for a number of activities more than 25, it takes 2847 and 

2236 ms, respectively for the PSO and GA algorithms [21]).  

 

Moreover unlike our proposed method which aims to produce the composite services in an 

ordered way, the evolutionary algorithms produce the composite services in an unordered way 

and there is no evidence that the first composite service which produced by these algorithms be 

the optimal one, in other words the next produced composite services may be better than the first 

one. 

 

5. CONCLUSION 

 
As the number of the services published over the internet is growing at a very fast pace, selecting 

satisfactory web services among the candidate web services which provide the same 

functionalities is difficult. QoS is considered as the most important non-functional criterion for 

further filtering services. Besides this criterion, the quality of semantic links can be considered as 

a distinguishing functional criterion for semantic web service selection and composition.  

We address the web service selection problem by defining constraints within a quality model to 

balance QoS metric with functional quality. The functional quality evaluates the quality of 

semantic links between the semantic description of output-input parameters of web services, 

while QoS focuses on the non-functional criterion to retrieve the satisfactory services regard to 

the user’s requirements and preferences.  

 

Our objective has been to address service selection in the context of a QoS-aware middleware for 

dynamic service environments. To do so we have proposed an approach which at first by using 

the CBA algorithm, aims to classify the candidate web services to different QoS levels, 

differentiate the services within each class, respect to their distances from the user’s demand for 

the QoS criterion. By this classification a utility value is defined for each service that shows its 

relative importance. In the next part, by the use of the structure of a graph, we have ranked the 

candidate services by defining the final utility of each service considering the results of the 

classification phase and their functional quality through measuring the semantic similarity 
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between their output-input concepts. Finally by producing alternative composite services in an 

ordered way, we could cope with changing conditions of dynamic service environments. 

 

Our proposed approach has four advantages: First, it uses the classification data mining algorithm 

to specify the most eligible services respect to the user demand. Applying data mining algorithms 

to this field brings new ideas. Second, by producing alternative composite services satisfying QoS 

constraints, our algorithm could cope with changing conditions in dynamic service environments. 

Third it shows a satisfying capability in terms of execution time, which it is an important point in 

dynamic service environments and finally with applying the semantic similarity between services 

by semantic links it increases the accuracy of selection.  

 

Our proposed method makes part of our ongoing research by using strong data mining algorithm 

in order to decrease the execution time and improve the optimality of our heuristic algorithm, and 

besides the local optimization, by combining the global constraint of the user to the local 

constraints, considering the QoS constraints through the whole composition to ensure meeting 

global QoS constraints. 
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