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ABSTRACT
Research and development in best effort computing has taken
off since the VSW, in an emerging major technological tran-
sition that may ultimately rival the digital computing revo-
lution itself. Here at the end of the so-called First Comput-
ing Century (‘CC0’, 1940–2039), we reflect on computation’s
long fixation on the ideas of hardware determinism and soft-
ware efficiency, before their incompatibility with scalabil-
ity, robustness, and security was widely appreciated. We
go beyond questions like ‘What were they even thinking?’
and ‘How could anybody stand to compute like that?’, to
highlight hardware, architecture, software, and systems in-
novations behind best effort computing, with its crucial re-
framing of computer security as an aspect of robustness and
synchronization rather than correctness and isolation. Fi-
nally, we celebrate the emergence of the microcomputome
and ‘syncurity’ as signs we are maturing beyond hardware
determinism and the belief in the existence of the Last Bug.
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1. WHAT WERE THEY EVEN THINKING?
Despite all the terabytes of the historical record—plus the

schoolbook summaries, crack-n-hack movies, on and on—it
is difficult, today, to fathom how truly bad computer security
used to be, and how deep was the denial of all involved. It
really seemed okay that literally one tiny physical location
in space—a single ‘CPU’ chip—would touch everything from
the lowest level hardware configuration details, to the user’s
most intimate medical and financial information, to all the
catpix and the scum of the Internet. All of it. In one place.

The official reason for complacency about such an idea,
mostly, was efficiency. Nearly a century ago, the ENIAC
digital computer weighed 30 tons, ran about five thousand
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cycles per second [51], and broke down weekly or daily. Us-
ing efficient programs was an imperative—and given the ma-
chine’s inflation-adjusted construction cost of about 1B,
you really did have to make do with just the one.

In those early days, an implicit but hugely consequential
deal was struck between hardware and software: Hardware
provides reliability; software provides desirability. Hardware
had the job of turning the unruly physical world into an ut-
terly flawless automated logician. Software’s job was turn-
ing that logician into enough money to pay for the hardware
and the software both. To do that, software was all about
producing valuable outputs correctly and efficiently.

For the ensuing half century at least, that deal was the
unquestioned backbone of the digital computing revolution.
For most thinkers, the idea there could be a beneficial pur-
pose not just for inefficient software, but even for strictly
incorrect software, was quite literally inconceivable.

How times have changed!

1.1 Best effort computing
Among all the lessons of the events surrounding the VSW,

one is this: Putting all the responsibility for reliability on
hardware is irresponsible. It gives software a free pass even
though reliability, resilience, robustness, and security are
whole-system properties. In digital computing’s New Deal,
hardware provides best-effort reliability (but may fail arbi-
trarily if necessary), and software provides best-effort desir-
ability (and hiding hardware failures where possible).

It may not sound that different. If a computer scientist
could be reading this report 25 years ago, they’d probably
be nodding sagely and thinking something like: Sure, fault
tolerance is nice; if it’s really needed. But of course best
effort is not fault tolerance—and it impacts everything.

1.2 Report outline
The main content of this report is summarized in Fig-

ure 1, and we beg the reader’s indulgence in advance for the
avalanche of material—the almost-uniquely systemic nature
of computer security demands design considerations across
the computational stack.

The bulk of the text, in Sections 2–4, is a review of mile-
stones and challenges—in architecture and hardware, soft-
ware and systems, and security and society, respectively—on
humanity’s long path to best effort.

In section 5, we survey the recent history of best effort
computing, looking at the technical details behind its fa-
mous breakthrough products. Section 6 concludes with brief
thoughts on distributed systems and the microcomputome,
and looks forward to CC1, our second computing century.
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Figure 1: A timeline of the ‘First Computing Century’ (CC0). See entire report for details.

2. ARCHITECTURE AND HARDWARE
The architecture of a system is its designed structures that

change most rarely. Though such structures are typically the
biggest factors in how a system does and doesn’t work, they
are often taken for granted by system users—and they are
where the path to best effort begins.

2.1 CPU and RAM
In the 1945 EDVAC draft report [2], von Neumann de-

scribes all of a programmable digital computer’s elements:
the central processing unit operating serially, the passive
random-access memory holding both data and ‘orders’, the
binary number representations, the need for flawless opera-
tion. He considers parallel processing but rejects it for sim-
plicity; similarly he mentions errors and fault tolerance but
those parts of the report remained unwritten or were lost.

Though decades of improvements and refinements followed,
that original CPU/RAM architecture for serial deterministic
computation remained essentially unchanged while becom-
ing a towering success, triggering then dominating CC0.

2.1.1 The birth of good and evil
To help make the new digital hardware commercially vi-

able, timesharing (e.g., [4]) was developed, allowing many
users to access expensive machines like the DEC PDP-10 [6,
5] virtually at once. Crucially for our story, timesharing
demanded trust boundaries and access controls inside the
machine; physical machine security was no longer sufficient.
Despite the creation of user accounts, administrator priv-
ileges, passwords and permissions, the basic programming
model remained, but random-access memory was no longer
quite so randomly accessible. Or at least, it wasn’t supposed

to be—but since the new security boundaries themselves
were controlled by more software running atop fully RAM
hardware, computer viruses (e.g., [16, 29]) soon followed.

The economic leverage offered by the programmable com-
puter derives largely from delayed functional commitment :
Huge one-time hardware development costs can be amor-
tized over many different purposes that can be determined
long after the machine has been designed, built, and sold.
From our vantage point here at the end of CC0, we can under-
stand that principle, and we can admit that alternatives are
much more visible in hindsight, but still we conclude that
deferring security commitments was a grievous mistake.

2.1.2 The rise of personal computing
In parallel with the timesharing of expensive systems, de-

vice technology improvements—especially for making am-
plifiers, or ‘gates’, suited to digital logic—were yielding re-
lentess hardware cost reductions. The gate size kept shrink-
ing as the gate count kept growing, from a few thousand
in the Intel 4004 in the 1970s [26] to a few billion by the
late-2000s. Data widths, RAM sizes, and CPU clock speeds
kept increasing, and new capabilities became possible, then
affordable, then universal, with each passing generation.

It was a golden age for computers. People of increasingly
modest means could buy one. And then a new one. And
inside other products, many more.

2.2 The twilight of hardware determinism
By the early 2000s, however, challenges were appearing.

2.2.1 The end of the MHz race
The industry’s ability to increase CPU clock speeds—



which for decades had been their favorite performance im-
provement technique—was stalling not far above 3GHz, due
in large part to power consumption and heat dissipation
problems. As an alternative, limited amounts of true parallel
processing were deployed, and the now-dethroned ‘central’
processor was rebranded from ‘CPU’ to ‘core’ (even though
that was a previous name for memory).

Although such ‘multicore’ machines did provide perfor-
mance improvements, they brought other problems as well.
Parallel processing raises the sorts of coordination issues
that caused von Neumann to avoid it at the outset. Com-
puter architects developed cache coherence to maintain a
weakened version of the deterministic execution that soft-
ware developers relied upon, but its hardware costs grew
rapidly with the core count, and even with it, notoriously
hard-to-find “threading bugs” became commonplace.

2.2.2 Supercomputer warnings
The high-performance computing (HPC) community used

software synchronization mechanisms like MPI [27] to avoid
threading bugs while running a program simultaneously on
up to tens of thousands of cores, but as the machines grew,
hardware failures became increasingly frequent, reminiscent
of ENIAC’s problems half a century before.

Large-scale computations were typically ‘checkpointed’ to
disk at regular intervals, to be restarted after a crashed com-
puting node was fixed, but as researchers ran the numbers
for an ‘exascale’ class machine—rated for a billion billion
calculations per second—it seemed the machine might end
up spending most of its time doing checkpoint-restart and
not actually advancing the computation.

Alternatives were explored [34], but node crashes were not
the only problem. As bad or worse was the growing risk of
“silent data corruption” [40]: When supposedly determinis-
tic big computations were rerun, sometimes they produced
different outputs, due to undetected hardware errors.

Hardware’s gold-plated reliability guarantee was failing—
because it had never actually been unconditional anyway.
Device manufacturers could provide whatever non-zero fail-
ure rate you chose, although eventually with eye-popping
prices—but no matter what, if you ran enough of your cho-
sen hardware long enough, it would have undetected failures.

2.2.3 Escaping the trap of hardware determinism
The experience of the HPC community was a canary in the

coal mine for a systemic architectural problem in computing:
Global hardware determinism does not scale.

Though a great start for small systems, hardware deter-
minism served society less and less well as machine sizes
grew and grew—but as the core principle of CPU + RAM
architecture, it was virtually immune to incremental change.

But, a competing architectural core principle could arise.

2.3 Indefinitely scalable architecture
Although it gets tiresome to keep starting historical com-

puting stories with John von Neumann, here we are again.

2.3.1 Cellular automata
Not only did von Neumann understand the limits of hard-

ware determinism (see Section 4) and suggest alternatives
based on thermodynamics [1], he also did early work on cel-
lular automata (CA) [3], which ditched CPU+RAM in favor
of many small sites, each with both processing and memory.

The sites are arranged in some chosen spatial pattern, and
interact with each other only within some local neighbor-
hood, with no option for random access to memory. An up-
date rule determines how a site changes its state depending
on the state of its neighborhood. Overall, a computation is
defined by a site update rule, plus initial states for all sites.

Von Neumann’s CA interest was in formal properties of
self-reproducing machines, rather than manufacturable com-
puter architectures, and much subsequent CA research was
likewise mathematical in nature. There was, however, recog-
nition that CAs could be useful for scientific problems in-
volving spatial dynamics—such as modeling fluid flows in
2D or 3D—and some hardware ‘cellular automata machines’
were designed and built in the 1980s and ’90s [17, 24].

Such cellular automata models and machines presumed
synchronous updating: Each site updated simultaneously
based on the prior states of its neighbors. The assumption
of synchrony was viewed as minor because several authors
had proven that an asynchronous CA could always simulate
a synchronous one, but as was pointed out in 2013 [43] such
constructions demanded global hardware determinism. Syn-
chronous CAs, like CPU+RAM, were only finitely scalable.

2.3.2 Hardware tiles
The primary concern of that 2013 paper was using CAs

not as formal mathematical objects but to shape computer
architectures that could finally escape finite scalability. To
do so, both asynchronous operation and robustness to even
undetected hardware errors would be required.

For convenient handling and to amortize hardware over-
head, a ‘subarray’ of asynchronous CA sites could be col-
lected into a hardware ‘tile’, and then any number of those
tiles could be connected into an ever-growing machine, until
we“run out of money or real estate or power or cooling” [49].

The “bespoke physics” paper, also published in 2013 [45],
proposed several metrics to quantify and compare indefi-
nitely scalable tiles, the most well-known of which is the
average event rate, scalable (AERs) defined as the average
number of events per site per second, measured across a grid
large enough that edge and intertile effects wash out.

2.3.3 The start of the AER race
Hardware tiles for computing date back at least to the

Transputer systems (e.g., [13, 21]) in the 1980s, although
the perspectives on software were quite different. The first
tile in the direct line of descent to today’s notions of indef-
initely scalability was the “Illuminato X Machina” (IXM)—
built using relatively old ARM7TDMI processors, and mar-
keted briefly in 2009 [31]. Here we assign it ∼1 AERs as
an honorary degree, but since the event-processing software
and benchmarking metrics were developed a few years later,
no actual scalable values were ever obtained for the IXM.

The report on the T2 tile [55] did include hard numbers,
setting the bar at 6.5 AERs on DReg physics, although with
unreported and apparently significant temporal distortion.
However, little follow-up occurred until after the war, when
simple but extremely tough signal processing systems—at
first using mobile, robust Kalman filters [61] running on T3
tiles [60]—were demonstrated. Public and then private fund-
ing opened up, launching the now-well-known “AER race”
among several groups, and producing a series of increasingly
capable indefinitely scalable tiles [66, 72, 74].

The champion tile at present is the “TILE7” [76], offer-



ing a banquet of luscious specifications including less than
1 PPB spatial anisotropy, and less than 10% mean temporal
distortion running at the emerging standard of 400 AERs.
And all that while scoring an amazing 15.3 on log Peak
Power Efficiency (LPPE)—which is a 100x improvement in
only two years, compared to the MIT1 tile [74] that debuted
stochastic resonance for programmable transitions. TILE7
has yet to move into production, and initial prices will be
high, but turning 400 AERs cool to the touch opens up
exciting possibilities indeed. Your author can barely wait.

2.3.4 Indefinite scalability from hardware to software
A programmable computer architecture defines an inter-

face between hardware and software, creating roles for each.
Although computer engineering is now brimming with radi-
cal innovations for indefinitely scalable tiles, the early best-
effort designs used entirely standard hardware technologies.
The real question was not ‘How should we do it?’ but ‘What
should we want it to do?’—and answering that took experi-
ence with best-effort software and systems, our next topic.

3. SOFTWARE AND SYSTEMS
The massive software systems built during CC0 were ab-

solutely stunning achievements. Whether measured by the
number of ‘moving parts’ that they orchestrated in memory,
or by the degree of the input-output nonlinearities they cre-
ated during execution, those systems were, by far, the most
complex machines ever manufactured by humanity.

3.1 Correctness and efficiency only
What those systems were not, however, was correct.
As mentioned in Section 1, the ‘correct and efficient’ soft-

ware imperative is as old as digital hardware. However, the
realization that “it was not so easy to get programs right as
at one time appeared” is nearly as old [14]—and in the end,
no matter what the purists wished and hoped, software’s
ultimate goal of being useful almost never required it to be
literally, completely, formally, strictly correct.

The glory of CC0’s software research and development was
its data structures and algorithms, evolving programming
languages and computing paradigms, the software engineer-
ing methodologies, best practices, and so forth, as suggested
by the ‘Software’ timeline in Figure 1. The widespread senti-
ment today is that those successes were not about achieving
correctness but managing complexity, in the face of stagger-
ing exponential mountains of interacting design decisions in
every significant piece of software.

For most of CC0, however—in programming classes and
texts, in papers and discussions, and in the deepest intu-
itions of computer scientists and programmers—there was a
ubiquitous belief that software is really about Correctness
and Efficiency Only (CEO). As a software design priority,
“robustness” was, at best, a distant third. Although holding
such a viewpoint, today, seems to demand a willful credulity,
to understand our long and winding path to best effort, we
need to unpack the mindset in some depth.

‘CEO thinking’ was doggedly persistent, in part, because
it was really a constellation of mutually reinforcing beliefs
that all increasingly feel like relics today, including:

7 Correctness is all-or-none; The Last Bug can be found.

7 Efficiency is a pure virtue; the alternative is waste.

7 Scale independence is possible; size doesn’t matter.

7 Faults, if any, will be rare and simple—i.i.d. random.

Indeed, such obsolete notions of software have an undeni-
able germ of truth—so long as reliability is just a hardware
problem. And see how naturally they reinforced each other:

7 Since small software for small problems can be proven
correct, and size doesn’t matter, provable correctness
should be the gold standard for large software as well.

7 Since memory is perfect and efficiency is always a virtue,
any software that ever recomputes anything non-trivial
is poorly written, wasting time and energy.

7 Since faults are rare it’s more efficient to do nothing
until they arise, at which point—since they are i.i.d.—
a little local modular redundancy will eliminate them.

7 Since correctness is strict, yes or no, that means all
incorrect outputs are equally bad, so comparisons are
pointless and no useful distinctions can be made.

That last claim, in particular, was insidiously powerful be-
cause it implied there was a ‘research desert’ outside of strict
correctness. Although one might imagine, for example, that
fault tolerance work (e.g., [39]) would naturally deal with
degrees of incorrectness, its actual mission is to improve the
probability of reaching that unique strictly correct output.

3.1.1 Embracing incorrectness
But as we’ve seen, eventually hardware determinism does

fail, taking any illusions of guaranteed strict correctness
down with it. Now what? How well does some Algorithm A
do, vs some Algorithm B? To put the question bluntly:
Which algorithm will give the better wrong answer?

Starting in the 2000s the field of approximate computing
(e.g., [35, 44, 36, 32, 46]) did begin to ask such questions, but
even there, the allowable deviations from strict correctness
were carefully controlled, and typically limited to data cor-
ruptions in numeric tasks like image processing. For exam-
ple, one might allow random bits to flip, but only in floating
point numbers, and even then, only in the mantissa.

A much more radical stance was taken in the 2013 es-
say [47] that coined the phrase ‘CEO software’. Using pair-
wise comparisons to sort a standard deck of cards, the essay
asked: How incorrect are typical sorting algorithms, if the
‘pairwise comparator’ can fail? Figure 2 shows the results.

The humble, much-maligned bubble sort utterly crushes
the efficient algorithms. Its wrong outputs are so much bet-
ter! And its glaring inefficiencies—it reconsiders card pairs
it has already looked at, and only swaps cards one position
at a time—are exactly why it tolerates failures so well.

Bubble sort shines here because—of course—one alterna-
tive to efficiency is not waste but robustness. And yes, this
may all seem terribly obvious now. But let’s listen to robust-
first computing (RFC) and CEO talk a little bit longer:

CEO: Well so what if inefficient algorithms do better when
hardware fails? In fact hardware rarely fails! And,
bubble sort is so inefficient it’s useless for large tasks!

RFC: Sure, but lots of problems are small. Bubble sort
would work for my TODO list, my shopping list, my...

CEO: OK whatever. Well the fix is easy: Just oversample
the comparisons! At 7x they’re 99.99% correct, and
‘MergeSort7x’ is still faster than bubble at n = 52.

RFC: But you’re assuming comparison failures are indepen-
dent and identically distributed! What if they’re not?
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CEO: Well then what are they? You have to specify the
error model first ! Or else nothing can be said!

And, scene. That exchange illustrates a crucial point:
With the best effort computing contract, CEO’s demand for
an a priori error model must go unanswered. Hardware has
the right to fail arbitrarily. If CEO therefore has nothing to
say, we need to be talking to someone else.

3.2 The original best effort software
Section 2 showed how the core architectural principle of

indefinite scalability blocked global hardware determinism;
the replacement was best effort hardware. We just saw
how best effort hardware undermines CEO software. But if
software execution isn’t a completely predictable problem-
solving process, unfolding correctly and efficiently from be-
ginning to end, step by tiny step, what could it be?

3.2.1 Meaningful spaces
The alternative software organizing principle was so obvi-

ous that it took us decades and disasters to see and accept:
Don’t try to solve it; just make things better.

Without global determinism, there’s a vanishingly small
chance that a correct and efficient sequence of steps will ar-
rive at the desired output, as the sequence length grows.
But if we replace that long chain of tiny steps with a set
of broad goals, and empower myriads of tiny ‘workers’ or
‘agents’ to make things better according to those goals, given
their immediate circumstances, then problems can be effec-
tively addressed—if not strictly solved—in a robust fashion.

For indefinite scalability, each agent will have access only
to limited processing power, limited internal memory, and
limited communications with nearby agents. The best ef-
fort software programming task is to design ways for such
an agent to decide, from a standing start, which of its ac-
tions is currently most likely to make things better. That
determination need not be perfect, but does need to be lo-
cal—and to achieve that, one basic software design strategy
is to assign broad meanings to large regions of space within
the machine—like house vs garage or kitchen vs bathroom.
Then, appropriate processing depends on where you are,
and large data movements depend not on finicky pointers
in RAM but on broad directions in space.
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3.2.2 Demon Horde Sort
Sorting, as an example, was one of the first applications

demonstrated for the (at the time, simulated) indefinitely
scalable tiles discussed in Section 2.3.2. The method pre-
sented, Demon Horde Sort (DHS), works on a spatial grid
in which data “atoms”appearing on the right side of the grid
must be transported to the left, while also moving vertically
so that large items fall to the bottom and small items rise
to the top (see Figure 3).

However, given that there are only a limited number of
“output atoms” on the left, but many possible data values,
even in the best case multiple data values will be aliased to
each absorber. And worse than that, the data items to be
sorted are not presented in neat batches. The “input atoms”
(on the right in green) emit new “Datum” atoms (blue) into
the grid asynchronously and opportunistically. So a Datum
with a much bigger value might appear around an input,
grid right, just as the previously biggest Datum was about
to be absorbed at the bottom, grid left—and now what?

Demon Horde Sort is a best effort method for a best effort
task : The method doesn’t promise to get the correct an-
swer, but then the task doesn’t promise any correct answer
exists. All DHS does promise is its best effort—to be there
and to make things better. A 2013 video [41] showed DHS
recovering from not just i.i.d. bit-flipping “X-rays” but also a
“power outage” that blacked out fully two-thirds of the grid.

3.3 Modern software
Many properties of DHS apply to general robust compu-

tations on indefinitely scalable tiles. They:

• Are explicitly spatial processes, and do useful work
with only local communications.

• Define custom spatial semantics—like left is output,
down is big—so local actions can advance global goals.

• Run asynchronously in parallel, and tolerate variations
in event delivery rates.

• Are self-stabilizing, self-repairing and/or self-rebuilding.



As originally presented, the 2013 DHS had one huge flaw:
Its input and output grids were immobile, and cancerous. As
can be seen in the above-cited video, the emitters and ab-
sorbers achieve robustness simply by growing vertically until
they hit the “edge of the universe.” Naturally, this approach
will not play well with any northern or southern neighbors,
and significant early work (e.g., [53]) focused on developing
a variety of “membrane” mechanisms to help computations
grow locally but remain bounded globally.

3.3.1 Movable robust software engineering
mrDSM [56]—a“movable robust distributed state machine”—

was an influential demonstration of modularity and scalabil-
ity in best effort software. It could grow from a ‘seed’ placed
in any sufficiently large region of empty space, and could
make position adjustments while maintaining and updating
its state according to an arbitrary transition function spec-
ified in firmware. Its innovative but clean SPLAT code [54]
made repurposing easy, and it spawned several generations
of “mr” constructs, including the famous mrEKF [61] that ar-
guably triggered the AER race, as discussed in Section 2.3.3.

More fancifully, it also attracted a coterie of retrocomput-
ing fans dedicating to recreating famous vintage hardware
and software. For a time at least, such nearly-pointless con-
fections were produced to demonstrate the power of a new
tile, beginning with the mr4004 [58], a model Intel 4004 chip
running on the DISCO tiles [66], and reaching an outrageous
peak with mrDOS [75] running on prototype MIT1 tiles [74].

Today, to the properties displayed by the DHS, most soft-
ware engineers would add that mobile, robust computations:

• Grow only into empty sites and manage their own size.

• Die cleanly if too damaged for safe self-repair.

• Participate in standard apoptosis signaling.

• Interact across layers only with your own type.

3.3.2 Computing in 2.1D
That last bullet point is concerned with multilayer tiles,

which debuted with the T3 tile [60], long after the original
DHS. Although the T3 tile—like the T2—was indefinitely
scalable in only two directions, it was reconfigurable inter-
nally to support up eight “Z” layers; the X and Y extents
shrunk to maintain the total site count. This “2.1D” or “thin
film” style became standard on subsequent tiles, but start-
ing with DISCO it was no longer configurable; instead, tiles
were offered with varying layer counts and price points.

Thin-film computing is proving extremely popular and
powerful, even though Z access is limited to the immediately
adjacent layers, and then only within the Moore neighbor-
hood. TILE1 tiles, currently the most widely used, have 3,
8, and 16 layer versions—but the 16 layer monsters are still
hard to find at any price, with most production long since
locked up by the big AI companies and Microcomputech.

3.3.3 Best effort today
The rise of a new computer architecture is an exceed-

ingly rare and exciting event. Best effort software and sys-
tems are now rapidly gaining capabilities and design wins.
Systems built on traditional hardware determinism are still
widespread, but their functions, scale, and market are now
shrinking in size and power.

Best effort is for systems with big responsibilities. Hard-
ware determinism is for tools with small consequences. As
it’s said: “There is nothing wrong with the von Neumann
machine that cannot be fixed by making it a small and in-
dividually insignificant piece of a larger robust system.”

4. SECURITY AND SOCIETY
Throughout CC0 there were fitful attempts to go beyond

hardware determinism, including—and this is the last time,
promise—von Neumann himself attacking it directly [1]:

Thus the [future] logic of automata will differ
from the present system of formal logic in two
relevant respects:

1. The actual length of “chains of reasoning,”
that is, of the chains of operations, will have
to be considered.

2. The operations of logic...will all have to be
treated by procedures which allow excep-
tions (malfunctions) with low but non-zero
probabilities.

But von Neumann’s predictions of future computer archi-
tecture went nowhere, while his deterministic hardware went
everywhere, for another eight decades.

The CEO paradigm was so dominant, so interlocked and
so dug in, not even the Words of the Master could touch it.
Ideas that increased robustness by increasing redundancy,
like N-version programming (e.g., [9]), or undermined cor-
rectness for any reason, like the approximate computing dis-
cussed in Section 3.1.1, rarely gained much traction.

4.1 Security lost
Looking back, it almost seems the CEO paradigm could

have controlled the narrative forever—except for its naked
Achilles heel, its glowing kryptonite, its one very tragic flaw:

Hardware determinism makes computer security impossible.

For the security and securability of real-world systems—
not just abstract correctness proofs—the already-discussed
technical problems of hardware determinism are compounded
by misaligned economic incentives and negative externalities
for computer security—that are also created or exacerbated
by hardware determinism. Here we review the history.

4.1.1 Physical space lost
In the earliest days, a computer was secured just like any

other valuable—by locking it away from untrusted prying
eyes and grubby hands. But that all changed with the rise
of computer timesharing (Section 2.1.1), allowing people to
sit at scattered terminals while cables teleported their eyes
and hands straight into the guts of the machine.

With a timesharing architecture, unfettered access to the
machine was prevented not by the computer room walls but,
in the end, by a single bit. One modifiable bit value, in one
single register, buried in a machine whose memory was now
packed cheek to jowl with friends and strangers alike.

Security issues were soon found in timesharing systems—
there were ample hints about the risks of this ‘software-
managed single-point security’ idea (e.g., [8]). But after each
hole was found, it was fixed, and any damage was minimal
because the users were few and the stakes low.

‘OK’ computer security gave way to ‘fair’ computer secu-
rity, but faith in the Last Bug said that would be temporary.



4.1.2 Human input lost
Timesharing was terrible for security—but at least, at one

end of the cable there was usually a human, operating at
human speeds, who had to sign in with a password before
most interactions could occur. But that all changed with the
rise of local area networking and ‘personal computers’ in the
1970s and 1980s: Now the human interacted with some local
machine, which in turn interfaced with some remote host.

That change may seem minor, but in practice machine
communications were often trusted more than human ones.
With no human in the loop, machine-machine interactions
both could be, and needed to be, much faster—and the
simplest, fastest approach was to treat the remote machine
like more local hardware. Short-range hardware protocols
like PCMCIA and Firewire—at least in early versions—
deliberately granted full memory access, with no authentica-
tion, to every remote device encountered. Add in hardware
and software bugs, and longer-range machine protocols, like
Ethernet and USB, had similar problems (e.g., [33, 42]).

‘Remote exploits’—operating via networks—were found,
and then fixed, as before. Now though, the value at risk
was swelling as business processes and data poured onto the
company network—but the potential efficiency gains looked
dazzling, and anyway everybody was doing it.

And so ‘fair’ computer security gave way to ‘poor’ com-
puter security. But hope for the Last Bug remained.

4.1.3 Shared fate lost
Local area networking was terrible for security—but at

least, the machines were mostly controlled by the same or-
ganization that owned the local area network. A misbehav-
ing computer could be unplugged and fixed or replaced; a
misbehaving human could be summoned and punished or
fired. But that all changed as the Internet went mainstream
in the 1990s and 2000s, and local area networks began in-
terconnecting everywhere, with IP addressing providing—
for starters, stable and globally public—addresses for nearly
every machine in the interconnected network.

Over the two decades starting in 1990, billions of Internet-
capable personal computing devices were sold, Internet traf-
fic approximately doubled every year, and computer secu-
rity failures likewise exploded in frequency, scale, and cost.
Physical security, and social or organizational enforcement,
were all toothless when victim and attacker had different
lands, languages, and laws.

Software-managed single-point security was left as the last
line of defense, facing a net full of malware, and a churn-
ing ocean of software bugs—arising from new apps and new
versions, from misconfigurations and unexpected interac-
tions, from users unwilling to be unpaid administrators. And
software-managed single-point security was like a picket fence
in a tornado, like a stop sign in a stampede.

4.1.4 The end of computer security
Looking back today, for most purposes computer security

ended with the rise of Internet-connected personal comput-
ing devices. Forget about the software users—even the soft-
ware creators and vendors couldn’t keep up with their own
‘issues’. People tossed the Last Bug in with Santa Claus and
the Easter Bunny, and adopted a security fatalism echoing
Blanche DuBois, the famous Tennessee Williams character
who ‘always depended on the kindness of strangers.’

In the 2010s, bugs were so rampant and attacks so re-

lentless the only safe assumption was that any Internet-
connected device more than a year or so old was probably
‘0wned’ by some miscreant somewhere. Successful attacks
were sometimes overtly monetized via identify theft or ‘ran-
somware’ extortion—but sometimes the results were nearly
imperceptible: A bit more video buffering for the owner, per-
haps, and an imperceptible uptick in spam for everybody.

In one crazy sense, Blanche DuBois was right: Some at-
tackers might take more dependable care than you did—
acting, in effect, as a paid-by-crime system administrator
for your device. And, for a while anyway, you survive as the
oblivious patsy, a squatter on your own property.

By late in the decade, inside legions of Internet-connected
devices—and many that officially weren’t—small-time spam-
mers and botnetters were being driven out or taken over by
organized crime and hostile nation-states. The big players
were assembling armies of hijacked devices, holding them at
the ready, exploring their capabilities, quietly feuding and
poaching among themselves, and biding their time.

4.2 The tipping point
This section draws heavily from Chapters 2 and 9 of [67].
We take as given the ERC consensus regarding the eco-

nomic, climatological, social, and political factors in the run-
up to the VSW. Here we briefly review the surrounding time-
line, focusing on key events that emphasize pre- and postwar
computational issues in both technology and society.

It’s always about the people. And about the architecture.

4.2.1 Prewar instability
In the 2010s, concerns had been aired about humanity

getting wiped out in the future by a“super genius AI”sprung
from our information technology, but by 2025 it was seeming
we’d be lucky to get that far. On February 2nd, we found
out it took only level 2 autonomous cars, plus over-the-air
software updates, plus ordinary human patience, ingenuity
and malice, to amass a battalion of hacked empty vehicles
that killed hundreds and maimed thousands as they exited
the American football championship [59].

Some postwar reporting [65] has pointed to instabilities
caused by an undisclosed eleven-digit theft from the SWIFT
network, shortly after the EU fell apart in 2020—but, in the
public mind at least, the Parking Lot Massacre was what put
the Earth inexorably on the path to war. Over the follow-
ing year, Internet QoS was punished as huge DDOS attacks
targeted network and national infrastructures, and route in-
stabilities and network partitions grew commonplace.

Sociopolitical polarizations hardened across the globe.

4.2.2 The VSW
On Friday morning, April 17, 2026, at 04:36:32 Eastern

time, signal quality degraded on the Apollo2 transatlantic
cable between La Rochelle and Toms River, though landing
conditions were nominal and no warnings had been raised.
Partial load shedding to the FA-1 cable began automati-
cally, but for nearly ninety seconds a significant fraction of
westbound packet payloads were corrupted, due in part to a
misconfiguration in La Rochelle, and in part to a previously-
unseen race condition in an upgraded router in Toms River.

By 04:41:00, in a likely related development—though no
details are known, at least by the public—a ‘go code’ had
been received by long-dormant malware in a residential elec-
tric meter in West Windsor Township, New Jersey, USA.



The activated malware began disconnecting and reconnect-
ing the customer load—mostly a heat pump at the time—
four times a minute, with an irregular duty cycle that proved
to repeat each hour. This created a weak but distinctive pat-
tern of pulses in the line voltage, which was detected by other
hacked meters on the secondary circuit, and they activated
as well. Soon, their synchronized switching caused voltage
pulses to appear on the distribution transfomer primary.

By 04:50:00, complaints had begun coming into the Pub-
lic Services Jersey reporting systems. At 04:56:07, PSJ per-
formed a microgrid reset for all of Mercer County, to no
avail. The power triacs had failed in some meters, but thou-
sands were flipping in sync. At 05:14:00, the alarmed PSJ
operators—reluctantly admitting that the affected electrical
meters were ignoring WAN commands—disconnected their
systems from the regional grid and blacked out the state.

But that was too late. The huge load swings had already
been pulsing the HV transmission lines, and the rogue sync
was starting to build on Long Island and in eastern Pennsyl-
vania. Over the next two hours, regions from the northeast
through the midwest went erratic and then dark.

By 07:30, it appeared the sync growth had been stopped
by preemptive firebreak black-outs at the borders of the
Eastern Interconnection, and at that point the western states
still had power. Actually eradicating the malware would ul-
timately require a truck roll to each infected meter, but on
that Friday morning, over a hundred million people in the
USA and Canada had no power, and at 09:00 the USA Pres-
ident declared war on the Actors or Nations Responsible.

During 2025, cooler heads globally had become rare and
unheeded, and by 12:30, GPS and most satcom had been
taken out by orbiting lasers and kinetic interceptors, plus
high altitude EMPs which also blacked-out most of the world.

By 15:00, four unlaunched missiles had exploded in their
silos in North Dakota and Wyoming, and similar events had
occurred in other countries. Still, by 22:30, six of the Earth’s
great metropolitan regions were burning, at least two by
accident, along with many less densely populated areas.

4.2.3 Shared fate
Everyone knows how this ended.
At 00:13 Eastern time, Saturday, April 18, 2026, a group

of fifty-one submarine commanders from nations around the
world—organized by the “Six Heroes” deep in the North
Atlantic—issued a joint statement that moved as flash traf-
fic on all reachable military channels. Each commander also
made a video and uploaded it, by undersea cable injection
in some cases, and by every data carriage still accessible.

In their mother tongue, each commander announced their
immediate and irrevocable defection from their respective
country, and swore a nuclear-backed oath of loyalty “to the
Earth and all its life.” Each then made the same suggestions:
“Stay calm and help others stay calm. Move if you must,
stay put if you can and take in those who had to move.
Help however you can, and respect those who are helping.”

And each video ended the same way, with the same state-
ment: “The war is over. Earth is rising.”

Over the next days and months, people repeated it. The
war is over. Earth is rising. In tent hospitals and on soup
lines, out apartment windows and over back fences, in meme
and ink and spray paint, people joined the sync, and the
signal grew and grew.

Earth is rising. Earth is rising. Earth is rising.

4.2.4 Postwar reconstruction
Forty million people died on Friday, April 17, 2026. Ninety

million more by New Years’ Day. Vast regions are poisoned.
Global disease and deformity will be elevated for centuries.

Now thirteen years on, though the dying has slowed, the
survivors still grieve and ghosts are everywhere. But most
of humanity lived, and many felt their heart turn to the
Earth. Not everybody, never that, but enough, then, and
multitudes more now. Much infrastructure survived. Food
grows. There is rebuilding. There are children.

The EU reconstituted itself as the REU, an open regional
cooperative that looks to the Earth; other interlinked sibling
regionals soon followed. The Weavers design and deploy
interaction protocols, including successes like our beloved
ERC itself [63], our emerging public credit unit ‘ ’ [68], and
their famously-quirky ‘Long Bond Awards’ [71].

There is still competition, still advantage and disadvan-
tage. There are still angels and jerks, good and bad ideas
and luck, winners and losers. Innovation matters so we try
to avoid undue damping, but opportunity also matters so
we try to avoid undue accumulation. Connectivity matters,
so we try to stay in touch and not lose anybody.

And our machines matter, so we try to compute better.

5. BEST EFFORT COMPUTING
To this day there is no public certainty whether the VSW

was finally an accident, but with a systems eye it hardly mat-
ters. Unmanaged positive feedbacks had generated stagger-
ing potential differences all across our economic, social, and
technological circuits; at such voltages, focusing on which
capacitor exploded first is tiresome and disingenuous.

It was found that since only untriggered meters accepted
WAN commands, broadcasting a thirty-seconds-wrong clock
update would have stopped rogue sync growth. But so what.

Yes, and the malware was traced to a 2024 meter update,
which had been altered, before signing, by the software con-
tractor’s compiler, hacked after a normal zero-day exploit.

But so what, and so what. Postwar, there was little ap-
petite for such near-sighted cleverness and peephole blame.

The question was how to do it all much better.

5.1 Deleveraging information systems
The principle of leverage goes back to Archimedes: Given

time and a lever long enough, even the tiniest force can move
the biggest mountain. But the bigger the mountain to move,
the more likely the lever or the fulcrum will break instead.

With guaranteed deterministic execution, hardware was
treated as literally unbreakable. So computer scientists and
software engineers just naturally kept ratcheting up the lever-
age. They relentlessly eliminated redundancy so the tiniest
difference could have the hugest impact. They championed
‘mechanism not policy’ which amounted to making every-
thing as programmable as possible. And they built programs
using ever more tiny steps, containing ever more complex
contraptions of compound levers and switches, to move ever
more massive, more valuable, and more dangerous loads.

Eventually, the complexity of those software contraptions
themselves became the major source of vulnerabilities, but
it was the extraordinary leverage built into the machines
that made those vulnerabilities so damaging.

And the device vendors pumped out a billion copies.
For our own safety, such relentless leveraging had to end.



5.1.1 Short-term mitigations
Some steps were easy. Software updating without an end-

user unique physical action (UPA) was banned in all new
devices. Autonomous cars, severely curtailed since 2025,
acquired mechanical hit-stop lockouts with a UPA reset.

A ‘#PasswordsR4People’ PSA was a hit—with its catchy
tune and people wagging their finger as whiny animated TVs
and fridges begged for WiFi—and the ‘Internet of Things’
cloud-backed-device model withered in earnest.

5.1.2 Software liability
Some steps were harder. Software liability finally took

hold, vastly restricting the ability of device vendors to dis-
claim liability for damages caused by faulty software in the
device. This impacted upstream software vendors, but those
risk-sharing mechanisms were contractual rather than leg-
islative. Open source developers were unaffected, though
their code got ample scrutiny before commercial adoption.

Device purposes narrowed, prices rose, and after-market
software updating became rarer. Fixed-function device man-
ufacturers rolled out a “Pure X ” certification and marketing
campaign. Pure TV. Pure Fitness. Pure Firewall.

General-purpose programmable computers were sold as
power tools rather than appliances. Purchasers and users ac-
cepted more risk and liability, beginning with I/O leverage:
Who put it on the net? Who connected it to the chainsaw?

Such changes were not about making security guarantees,
but for improved computing hygiene for the public health.
Manfacturers squawked but there was broad consensus on
earth.gov that internalizing security costs was the only ob-
vious way for such industries to remain in private hands.

5.1.3 The great respatialization
Software liability hit phones the hardest. Dodgy chaotic

‘app stores’ gave way to a tightly-curated set of core app-
lications—centering on text and voice, camera and gallery,
and an enlightened HTTP/1.9-noscript browser.

Though long-distance travel decreased greatly after the
war, navigation was still the most-missed phone app. But
map data and satellite imagery was obsolete in many re-
gions, and there was no immediate consensus on when or
even whether to relaunch GPS or its ilk.

Undeterred, a group of students in Coimbra built a phone
app that used ‘Simultaneous Location And Mapping’ [19,
28] (SLAM) to build local 3D maps based on camera input,
while also inferring the phone’s pose within the constructed
model. Their ‘MyHometown’ [62] app combined SLAM local-
ization with IMU dead reckoning and speech-to-text, so the
students could build and label open-source maps of their own
neighborhoods just by walking and pointing and talking.

Before the students were done, MyHometown allowed peer-
to-peer map fusion and label sharing via phone mesh net-
working, and offered a slick fish-eye view interface [15] for
landmark navigation. Even though at first it had to be side-
loaded into phones, it caught fire as the students and their
friends, and then seemingly all of Coimbra, ran around flesh-
ing out their city models and its surrounds. Label spam was
minimized via consensus models and civic pride, plus use-
and edit-wear visual cues [20] to hint at local model quality.

In 2030, the students formed an REU-affiliated startup,
which was promptly acquired [64], and within two years
most of Earth’s populated lands were part of MyHometown.
The students’ localizer had become the Globalizer.

5.2 Living computation
As discussed in Section 2.3.3, there was a concerted post-

war effort to develop a new best-effort architecture and an
associated computing ecosystem. It is perhaps ironic, but af-
ter years of research and relatively small-niche milspec and
ruggedized applications, the breakthrough best-effort prod-
uct was a kid’s toy. At this point it’s hard not to know lots
about “Baby Dooper,” the star of the 2032 holiday season;
here we focus on its technical innovations and their impact.

5.2.1 Hardware
Developed by Entire Gizmos Studio, with global market-

ing by Bandbro, Baby Dooper is an oblong plastic device fit
for a child’s hand. It has a plastic necklace at one end, a
charging port at the other, a narrow reflective color touch-
screen running up the front, and sensors on the back.

Inside is a sizable custom battery, more sensors, two piezos
for vibration and a speaker—and two flip-mounted bare T3
chips, newly affordable since the Tusken tile announcement.
The T3s provide a total of 130K live sites, configured in four
layers, running at about 15 AER to save power.

5.2.2 Bringing up baby
Baby Dooper evokes the ‘digital pets’ that debuted in the

’90s, but its gameplay is open-ended exploration, teaching
and interaction. Aside from “instincts” like getting cranky
on low battery, a new Baby Dooper just shows slow swirly
colors, with a cute soft boop or daroop sound sometimes.

Baby Dooper’s signature feature is its ability to learn from
the player, Baby Dooper’s ‘parent’. It vibrates happily when
rocked around its waist, and squawks displeasure if shaken
along its length. The vigor of the motions provide degrees
of parental feedback about whatever Baby Dooper is up to.
Approval encourages more and similar; disapproval, change.

There’s no inherent limit to the patterns and sounds and
sequences you can teach your Baby Dooper, though part of
the fun is you never know exactly what it will learn from
your feedback. With some player investment, Baby Dooper
can learn to imitate patterns drawn on the touchscreen, and
sketch them more or less accurately or freely later.

5.2.3 Software
Inside the T3s, Baby Dooper runs a best-effort imple-

mentation of ‘Simultaneous Recognition And Interaction’
(SRAI) [57], a variant on the SLAM algorithms mentioned
in Section 5.1.3. SRAI is built around a high-dimensional
‘interactions map’, which in Baby Dooper’s case involves the
screen state plus all its physiological and environmental sen-
sor data. SRAI uses the SLAM math to estimate that map,
while simultaneously estimating its current “pose” within it,
which means deciding what is the current interaction, how
far along is it, and what Baby Dooper should tell its crews
of pixel painting and buzz generating atoms to do now.

Baby Dooper’s ‘Garden of Eden’ state is loaded from a
ROM, which also holds the state transition code. I/O ele-
ments, for handling sensors, piezos, and screen, go on the
three open edges of each T3; custom SRAI mrEKFs get the
outer layers, and a best-effort sparse distributed memory [18,
69] gets the inner layers for the interactions map. The teach-
ing gestures inject ‘change agent’ atoms into memory, which
diffuse in search of a marginal link to reinforce or flip.



5.2.4 Getting to know you
Aside from its preprogrammed instincts, Baby Dooper’s

‘interactions’ emerge entirely from its unique shared history
with, and feedback from, its parent. And the single biggest
reason Baby Dooper was, and is still, so popular—and why
it changed the shape of computing—is its uncanny ability to
recognize the hand of its parent, and respond to no other.

The box instructions specify that only the child—Baby
Dooper’s new ‘parent’—should handle it for the first few
days. After a week or two, if anybody other than the child—
perhaps a covetous sibling or nosy parent—picks up the
child’s Baby Dooper, within a couple minutes, almost in-
variably, Baby Dooper will start making angry blinking pat-
terns. If it’s not set down or given to its parent, it will start
to cry, then really wail, then go dark. It will then take sig-
nificant coaxing from Baby Dooper’s parent to wake it up.

Even if the child tries to explain to someone how to handle
their Baby Dooper properly, the child isn’t really sure what’s
critical and what isn’t. They just know that what they do
works. And their interactions have usually become so subtle
and fast nobody else can make them work anyway.

5.2.5 Birth and death
Baby Dooper uses a small ASIC to handle power, clock,

watchdog, and sensorimotor conditioning to and from the
T3s. But no CPU. No flash storage. And no power switch.

A brand new Baby Dooper has a one-time pull-string to
engage the battery. A full charge supports a couple days
of heavy activity, or a few weeks on standby—but the site
SRAM draws power even at 0 AER, and if voltage falls too
low, bit reliability decays and Baby Dooper begins to lose
its mind. If caught in time, the Baby Dooper may survive,
though likely with some aphasia, but if it’s too damaged
when power returns, the watchdog reset fires, and all is lost.

5.2.6 Impact
In recent news, it seems the world’s oldest living Baby

Dooper turned eight this year. Raised by one Janosch Cortez,
a former Entire Gizmos Studio engineer, today the prelaunch
prototype mostly snoozes in its solar charging cradle, and its
touchscreen is iffy, but Baby and parent have still got it:

As he tilts and jiggles it, a tiny cigar-shaped
‘rocket’ rises up the screen and explodes with a
pop, then colorful sparkles rain down and spell
out ‘ECS’. Cortez laughs, “It’s supposed to be
EGS,”—his old employer’s initials—“but Baby re-
ally doesn’t like to cross the ‘G’.” [77]

Informal surveys suggest hundreds of seven-year-old Baby
Doopers may still live, but even reaching three is uncommon.
The usual cause of death is neglect, though sometimes the
battery is drained deliberately, to start over or give it away.

Certainly, an unexpected Baby Dooper death can be trau-
matic, and some parents argued for adding flash memory
or some other backup mechanism. But Entire Gizmos was
adamant. Let someone else make that toy, they said. Life
needs life. A little daily charge is not too much to ask.

5.3 Security in best-effort computing
It didn’t help grieving owners, but researchers soon showed

how to clone a live Baby Dooper fairly easily, since the T3
JTAG interfaces were pinned out [70]. It did take some care

to get into the case without distressing the Baby Dooper,
and thus rousing the ire of burgeoning machine rights groups.

A complete site SRAM snapshot contains a tremendous
amount of information, and capturing one is absolutely a
serious compromise. But a well-used Baby Dooper is full of
partially redundant interactions with slightly different ac-
tions, and its model is always changing at least slightly.
Without also knowing the parent’s moves it’s generally only
possible to make approximate guesses about what will hap-
pen in actual use. The gameplay and appeal is all about
Baby Dooper and its parent learning to ‘dance’ together,
using poses and steps that only they know.

Researchers saw that the ‘generalized synchronization’ dis-
played by Baby Dooper and parent had potential applica-
tions in security, and ‘sync-for-security’ or “syncurity” was
born. In particular, syncurity might provide a high-usability
solution to the long-vexing problem of passwords.

5.3.1 Bad passwords
The presentation of a shared secret is a time-honored way

to link a current interaction to some pre-existing relation-
ship, allowing it to persist even if its participants interact
only rarely. Users have ‘logged in’ with secret passwords
since timesharing (Sections 2.1.1 and 4.1.1), and the weak-
nesses of passwords as proof of relationship are well-known.

5.3.2 Multifactor authentication
During the 2010s and ’20s, rising damages due to poorly-

chosen and stolen passwords spurred the spread of multifac-
tor authentication. Unfortunately, each added ‘factor’ hurt
usability, and for the exact same reason it helped security:

• Something you know, like a good password, is a pain
to remember because the whole point is it’s supposed
to be arbitrary.

• Something you have, like a time-based token genera-
tor, is yet another thing to have to lug around, because
the whole point is it’s a physical object.

• Something you are, a ‘biometric’ marker like a finger-
print, is hard to keep secret because the whole point
is it’s an actual part of the person.

Users naturally resisted such aggravations, especially since
authentication is not per-user but per-relationship, so their
necessary factors tended to multiply absurdly.

5.3.3 Password managers
Over the years a variety of hardware-, software-, and cloud-

based ‘password managers’ were developed in attempts to
tame that proliferation. The user needed only remember
the password to the password manager itself, was the pitch,
and then it would do the rest. Though it usually did not
involve token generation or biometrics, the argument was
really good passwords were helpful all by themselves.

But concentrating many secrets under one just increases
the leverage on the one remaining secret. Without funda-
mental improvement in how that master secret is managed,
the expected loss is unchanged but the variance grows: The
system becomes more brittle, and the failures grow larger.

Perhaps, the thinking went, something like Baby Dooper
could be that fundamental improvement.



5.3.4 Early attempts
The 2033 ‘PasswordFriend’, claiming to be ‘Baby Dooper

inspired’, was a regular Bluetooth (BLE) hardware password
manager with an accelerometer added so a “pass gesture”
could be used to open it. This did avoid telltale wear marks
on the chiclet keyboard, as advertised, but since the pass
gesture was defined during setup and not tuned interactively,
its moves had to be big and slow for reliable recognition.
The user traded a subtle long-term information leak for an
extremely public password entry mechanism.

PasswordFriend had other problems. Out of the box it
demanded a network pairing for software updates (with a
pinhole button UPA). And it backed up your encrypted pass-
words to its servers by default. And so on. PasswordFriend
ultimately became a case study of—and nerd slang for—not
getting the lessons of Baby Dooper. It was an epic flop.

Similar password management products launched over the
next two years. While none of them were PasswordFriend-
bad, and some of them were profitable, they weren’t particu-
larly successful or compelling either. They were just devices.

5.3.5 Skini
During those same years, however, a startup named ‘Mi-

crocomputech’, spun out of CSIRO with heavy financing and
networking out of Sydney and Shanghai, was quietly refining
prototypes that did get the lessons of Baby Dooper. Micro-
computech finally launched ‘Skini’ in July 2035, with physi-
cal design by Kinki Himego Chimu, UX flow by White/Space,
and manufacturing and fulfillment by KKST Chennai.

Skini is “Baby Dooper all grown up.” Still fits in the hand,
still a necklace, but it’s a keystone-shaped gold pendant with
a black glass display inset on the front, sensors on the back,
and hidden chip LIDAR on both sides. It charges wirelessly
and has only one tiny hole on the back, plus two ‘Skini
catches’—custom 1.35mm twist-lock connectors—at the top.

The necklace is made of ‘Skini cable’, a 1.2mm gold wire
braid covering two power lines and a plastic BIDI fiber,
with a mating pair of Skini catches. Four ‘Skini stones’
also launched—an extra battery, extra sensors, WBAN in-
terface, and conventional encrypted storage—each housed
in a semi-precious stone fitting. Skini stones twist-lock onto
each other or onto cable segments to form the necklace itself.

5.3.6 Beyond Baby Dooper
After unboxing, the owner removes the one-time pull-wire,

then wears Skini around and plays with it, using the Baby
Dooper teaching gestures to make patterns and sounds, as
Skini builds up its interaction map. Going beyond Baby
Dooper, Skini also uses ‘BodySLAM’ processing to build
a crude map of the owner’s body, and localize itself with
respect to that. Skini interactions can depend, for example,
on whether the pendant is facing the owner. With Skini
bracelets and anklets, launched in 2036, extremely subtle
whole-body gestures became possible—although of course
they are yet more devices to keep charged, and they require
a WBAN stone for communications [37].

Creating shared sequences is just the beginning with Skini;
there are six ‘topics’ or modes, each associated with an
‘achievement’ for the owner-Skini team to unlock together.
For example, like PasswordFriend, the pendant contains BLE,
but with Skini the “Touch the World” achievement is re-
quired before that interface will even power up.

Interacting about a topic adds new inputs and actions that

can become waypoints or endpoints in the team’s shared
sequences. As a result, there could never be a ‘user manual’
explaining how to access BLE, for example, because each
team develops their own unique way to bring up that topic.

5.3.7 The security frontier
It usually takes at least a week of ‘bonding’ before the

owner can even get the option of teaching Skini a password,
but that’s all part of team building—and again, storing pass-
words is just the beginning. Once BLE comes up, you can
pair Skini with your phone. As achievements accumulate,
different Bluetooth profiles become available, and Skini can
filter and prioritize texts and other modalities, vibrating for
urgent ones then displaying them when the owner looks at
the pendant, and so forth.

The Skini pendant is built around two 16 layer TILE1
chips (Section 3.3.2), providing 2M sites clocked for about
10 to 100 AER depending on the layer. It also has a stock
BLE controller, and a custom ASIC for tile control and in-
terfacing to BLE and the Skini necklace.

One of the top questions on the Microcomputech FAQ [73]
is: “How come Skini isn’t a phone too?”—and if their answer
is too simple, it does highlight Skini’s core value proposition
and security stance: “Skini’s job is to interact with you, not
with the world. Skini can operate phones on your behalf,
but it will never trust one, let alone be one.”

5.3.8 Attacking Skini
The Skini ecosystem has been growing for four years now,

and several specialized and ‘economy models’ have followed
the original celebrity launch. Millions are in use, and though
social engineering never ends, nothing like a remote exploit
against Skini itself has been reported.

Closer in, it’s easy to snoop on the Skini cable, and not
that hard to spoof a stone. On the other hand, the ca-
ble protocol is weak, and the packets are encrypted when it
matters. Also, pendant communications are initiated by the
best-effort hardware, against which timing and differential
power attacks have, to date, proved virtually useless (see
Section 5.3.9 below). Similarly, the BLE controller is mini-
mally trusted and Bluetooth profile processing is sequenced
by mrDSMs on two tile layers.

Although Skini is significantly hardened compared to Baby
Dooper, researchers have no doubt that some physical cloning
attack against the pendant itself would succeed—perhaps
drilling the battery wire, while freezing the pendant to in-
crease SRAM remanence, then going in for JTAG or decap-
ping. Although no one knows what happens in the dark, no
such attempts have been reported in the open literature.

Baby Dooper and Skini have driven a growing sense in
society that some machines really deserve to be called ‘alive’.

5.3.9 Security lessons from best-effort computing
Against CC0’s grim computer security history, two lessons

stand out, here early in the era of best-effort computing.
First, whole families of attacks against traditional com-

puting depend heavily or critically on hardware determin-
ism. This includes not just overtly hardware attacks like the
classic ‘Rowhammer’ [48], but also many side-channel [30]
and weird machine [52] attacks.

Side-channel and differential attacks benefit from a ‘quiet’
execution environment, to ease detection of the attack’s ef-
fects. Attempted mitigations often work by adding i.i.d.



noise, but if a probe can be repeated arbitrarily, arbitrary
amounts of noise can be washed out. By contrast, as best-
effort ‘mr’-style components (Section 3.3.1) adjust and move,
they create multiscale spatiotemporal non-determinism with
respect to the fixed hardware, not just low-order noise. Add
in ‘Heisenberg effects’—where the attacks themselves also
change the system state in uncertain ways—and successful
side-channel attacks are inherently hard to mount.

Similarly, with deterministic execution, it is typically dif-
ficult to avoid creating ‘weird machines’, which assemble
many unrelated pieces of code and data to form a remotely-
programmable virtual machine. Although traditional code
is typically brittle due to CEO design, weird machine code
is vastly more brittle, because it is a high-order pastiche of
nearly arbitrary co-occurrences in memory.

That leads to the second security lesson: Although in-
definitely scalable architecture and best-effort execution do
make things harder for the software developer ‘defender’,
they are asymmetrically much worse for the attacker.

Best-effort software builds and maintains whatever ob-
ject relationships it needs using exclusively short-range and
low-order ‘neighborhood’ dependencies, as illustrated in Sec-
tion 3.2.2. Even though that is usually less efficient then
a tangle of pointers crisscrossing user RAM, it means that
only short-range memory access needs to be provided, which
vastly reduces the raw material available to the attacker to
‘get weird with’ during the most delicate stages of an exploit.

Also, as discussed above, the redundancy and mobility of
best-effort software components largely decouples program
semantics from specific hardware locations, except near the
‘edges of the universe’, where the uniform grid of sites gives
way to device-specific I/Os. Of course there is no magic,
and best-effort developers can squander their home court
advantage with deliberately insecure elements. For example,
a T2 tile programmer could use native code to create a state
transition that routes site data directly to bash.

The inherent advantage for incumbents is that they are
there first. For eighty years, by insisting on flat RAM and
hardware determinism, the ‘good guys’ threw away their
edge, in exchange for short-term programming convenience.

For shame.

6. ONWARD TO CC1
Here at long last, we have reached the present. Best effort

design wins are still the exception rather than the rule, but
research and development is white hot, and deployment is
accelerating. CEO is fading, and robust-first is rising, and
attitudes are shifting in computation and in society at large.

We have a just a few concluding thoughts.

6.1 The microcomputome
In the human body, the “microbiome” [38, 50] is the vast

constellation of microbes—comparable in number to our own
human cells—that live within and on our bodies. In ex-
change for a reasonably cozy place to live, many of these
microbes perform helpful or essential services for us—such
as crowding out other types of microbes that would cause us
illness or death. By and large, it is advantageous for them
to defend us because of shared fate: If we die, they die too.

Our microbiome is a buffer between us and the great un-
washed microbial world outside, prepared to meet micro-
scopic would-be invaders on their own terms. The “mi-
crocomputome” performs the same function for the digital

world: It interacts with external computational entities on
our behalf, and depends on us for its survival. At least
intuitively and esthetically, the designers at Entire Gizmos
understood that. The Skini designers viewed themselves as
building the microcomputome explicitly—so much so that
they built it into the ‘Microcomputech’ company name.

A microcomputome is physically close to us and contin-
ually observing and interacting with us. The only reason
we let that happen is that we know it, know its capabilities
and its limitations, as intimately as we know anything. And
we know it is making its best effort to be loyal to us, and
not to some device vendor or software developer or cloud
services provider—let alone some tinpot dictator or would-
be nation-state. Such a rent-free product has a higher price
and a lower margin, and so justifying it to investors can be a
heavy lift. We salute Microcomputech, and especially Entire
Gizmos Studio, for finding ways to thread that needle.

6.2 Distributed systems vs tools
Although CC0 was awash in CEO, especially pedagogically,

it is important to note there were competing voices as well—
often, in particular, from authors experienced in systems,
distributed computing, or networking. Unlike the hospital-
corners crispness of a good algorithms paper, systems papers
were usually less abstract and declarative, and more specific
and narrative, often organized around war stories or lists of
principles (e.g., [7, 12, 23]).

A system is a complete unit embedded in the world, with a
place and a size and, somehow, inevitably, with bills to pay.
It is judged by its ability to generate positive net value—for
its owner at least, and hopefully for society at large.

An algorithm, by contrast, is a tool, in itself incomplete
and unconnected, and meant to be used by systems and
other tools. Given it’s correct, it is judged by its ease of use,
its range of applicability, and the resources it requires.

Increased efficiency increases a tool’s appeal but also its
fragility, destroying its result quality when determinism fails,
whether that’s due to hardware aging, environmental stresses,
bugs, or malice. But distributed systems thinking was too
rare, and CC0 was blind to the systemic costs of its tools.
CEO birthed fragile architectures running fragile operating
systems under towering card-house skyscapers of fragile li-
braries and applications—controlling an aggregate value-at-
risk that only stopped growing due to global war.

Today, we say “How could anybody stand to compute like
that?” If only they had known there was an alternative.

6.3 Space
Our first computing century began by obliterating space

using random access memory, so there is perhaps some sat-
isfaction, or at least narrative closure, as it ends with the
reintroduction of spatial constraints and concerns across the
computational stack, from neighbor grid sites, to intertile
cache lines, to the microcomputome, and on up the scales.

It has been a very, very long path to best effort. But it is
a good beginning for our second computing century.
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