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Singing Vocal Enhancement for Cochlear Implant Users Based on Deep Learning
Models

by Tom GAJĘCKI SOMERVAIL

Severe hearing loss problems that some people suffer from can be treated by provid-
ing them with a surgically implanted electrical device called cochlear implant (CI).
These devices perform well in the context of speech intelligibility but still struggle
when it comes to representing more complex audio signals such as music. However,
previous studies show that CI recipients find music more enjoyable when enhancing
the vocals with respect to the background music. In this thesis source separation (SS)
algorithms are used to remix music multi-tracks by applying gain to the lead singing
vocal. This work proposes deep convolutional auto-encoders (DCAEs), a deep re-
current neural network (DRNN), a multilayer perceptron (MLP) and non-negative
matrix factorization (NMF) to be evaluated objectively and subjectively through two
different perceptual experiments involving normal hearing (NH) subjects and CI re-
cipients. The evaluation assesses the relevance of the artifacts introduced by the SS
algorithms considering their degree of complexity, as this study will try to propose
one of the algorithms for real-time implementation. Moreover, this work presents
a benchmark which relates the measured distortions as a function of the observed
preference ratings on CI subjects. Objective results based on the source to distor-
tion ratio (SDR) and source to artifacts ratio (SAR) show that the DCAEs outperform
only when presented with data similar to the one used for training, on the other
hand, the MLP performs in a consistent way throughout the tested data obtaining
similar performance as the DRNN while reducing algorithmic complexity. Using the
benchmark, next to a MUSHRA test we propose an MLP for real-time audio SS.

Keywords: cochlear implant, deep learning, neural networks, source separation.
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Chapter 1

Introduction

1.1 Motivation

A cochlear implant (CI) is a surgically implanted electronic device which provides
a sense of hearing to people with a severe hearing loss by stimulating the auditory
nerve [Wilson and Dorman 2008]. The CI is the most successful neural prostheses
developed to date with most of the CI recipients presenting good speech under-
standing, however music perception remains poor [McDermott 2004; Nogueira et
al. 2011]. Music perception is still a challenge because of limited pitch and timbre
these devices can transmit [Burns and Viemeister 1981; Galvin, Fu, and Shannon
2009]. CI recipients struggle when tracking the lyrics of a song with complex poly-
phonic accompaniment, but there is an improvement when the music background
is simplified [Nagathil, Weihs, and Martin 2016]. However, music perception varies
a lot between implantees and depends a lot on their previous musical experience
[Gfeller et al. 2015]. This research focuses on improving CI users’ music perception
by modifying the mixing balance between the lead singing vocals and the accompa-
niment.

It has been shown that CI users find music more enjoyable when enhancing the
vocals contained in western pop music by 6 dB and that source separation (SS) al-
gorithms can be used to achieve a new mix with these characteristics [Buyens et al.
2014; Pons et al. 2016]. Here we propose state-of-the-art SS algorithms targeting
low distortion and low latency performance and investigating the importance of the
artifacts introduced by the different algorithms.

Monaural audio SS is being paid lots of attention by many researchers. Research
has been made using non-negative matrix factorization (NMF) in order to separate
different sources within an audio mixture [Buyens et al. 2014; Pons et al. 2016; Duong
et al. 2014]. The main problem in NMF resides in its computational complexity and
latency due to its iterative nature, being difficult to adapt to real-time applications
[Marxer and Janer 2013].

It is getting more common to automatically discover the higher representations from
data by stacking several layers of nonlinear modules, applying the concept of deep
learning [Lecun, Bengio, and Hinton 2015]. Some direct applications of deep learn-
ing architectures have been recently proposed, such as deep neural networks (DNNs)
to estimate ideal binary masks to separate speech signal from noisy mixtures and to
perform multi channel audio SS by using magnitude and phase information [Wang,
Narayanan, and Wang 2014; Nugraha, Liutkus, and Vincent 2016; Nogueira et al.
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2016]. Moreover, deep recurrent neural networks (DRNNs) are proposed to over-
come algorithm complexity problems [Pons et al. 2016] and to learn timbre param-
eters from a single frame of the magnitude spectrogram [Huang et al. 2015]. These
methods work well but do not exploit completely local time-frequency features.

Deep convolutional auto encoders (DCAE) combine the concept of denoising auto
encoders (DAEs) and convolutional neural networks (CNNs) and can be used to
discover robust localized low-level features from low-dimensional patterns that re-
peat themselves over the networks’ input [Masci et al. 2011; Du et al. 2017]. A DAE
is a special type of fully connected feed forward neural network (FFNN) that takes
noisy input signals and outputs their denoised version [Xie, Xu, and Chen 2012; Vin-
cent et al. 2010]. DAEs are common in deep learning, they are used to learn robust
low-dimensional features even when the inputs are perturbed with some noise [Vin-
cent et al. 2008; Hinton and Salakhutdinov 2006] and for single channel SS (SCSS)
where the inputs consist of the spectral frames of the mixed signal and the outputs
are the spectral frames of the target sources [Kim and Smaragdis 2015; Smaragdis
and Venkataramani 2016]. Fully connected DAEs cannot capture the 2D (spectral-
temporal) structures of the spectrogram of the input and output signals. Since DAEs
are fully connected networks, they usually have a lot of parameters to be optimized
and here is where CNNs come into play. CNNs have been used successfully in
audio processing applications such as speech recognition [Qian et al. 2016], speech
enhancement [Fu, Tsao, and Lu 2016], audio tagging [Xu et al. 2017], and many mu-
sic related applications [Han, Kim, and Lee 2017; Choi et al. 2016; Korzeniowski and
Widmer 2016] for their ability in extracting robust spectral-temporal structures from
audio signals [Lee et al. 2009]. These NNs have also been implemented in previous
research to address SCSS [Uhlich et al. 2017; Grais et al. 2016; Kim and Smaragdis
2015; Chandna et al. 2017]. DCAEs are proposed to take advantage of small scale
features, investigating the feasibility of real-time implementation [Chandna 2016;
Grais and Plumbley 2017; Goehring et al. 2017].

Motivated by the aforementioned success of deep learning on monaural SS, this the-
sis investigates the performance of SS algorithms, together with their potential ap-
plication in the sound coding strategy of a CI to enhance the music enjoyment of its
recipient. In this study, we will present the design and evaluation of two DCAEs, a
DRNN, an MLP, and NMF. The way to assess their performance is divided into two
main evaluation aspects:

• Objective evaluation: The quality of the SS algorithms is assessed by obtaining
quantitative measurements which will reflect the amount of distortions and
artifacts introduced by the SS process.

• Subjective evaluation: The different algorithms are tested on normal hearing
(NH) listeners and CI recipients through two different tests. For the first test,
subjects are asked to select the most enjoyable mix between two music ex-
cerpts. The second subjective test protocol relies on the principle of multi-
criteria evaluation; The MUltiple Stimuli with Hidden Reference and Anchor
(MUSHRA) [Emiya et al. 2011].

This thesis focuses on the separation of vocal elements from the music background.
It is important to understand how susceptible the subjects are to the artifacts intro-
duced by the SS algorithms. Therefore, this work investigates the maximum levels
of acceptable signal degradation.
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1.2 Goals

The aim of the study is to answer which SS algorithm will be suitable for CI users
taking complexity and latency into account.

The main research questions are:

• Can CI users perceive the distortions and artifacts introduced by the SS algo-
rithms?

• How do the physical evaluation values relate to the separation’s quality for CI
users?

• Is there any potential applicability to the daily live music experience?

The research questions will be answered considering data gathered from objective
experiments as well as from perceptual tests conducted with CI and NH participants
(see Appendix A).

1.3 Structure of the Document

The remainder of the thesis is organized as follows. Chapter 2 reviews the state-
of-the-art surrounding CI music perception, SS, and deep learning. In chapter 3,
we introduce the different SS techniques implemented in this study next to the pro-
posed framework with detailed training configurations. The audio material used
will be described following with the objective and subjective evaluation methods’
depiction. Chapter 4 will present the results, with an analysis of the relation be-
tween the objective measures and the perceived signal degradation by the tested
subjects. Finally, chapter 5 will summarize and discuss global observations of the
results, contrast them with the latest related research and conclude the document.
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Chapter 2

State of the Art

This chapter provides the main concepts regarding CIs and audio SS. The basic prin-
ciples and theory of SS are defined in order to provide the necessary background to
the reader. All the information contained in this chapter belongs to the state-of-the-
art of these subjects.

2.1 Cochlear Implants

Sever hearing loss problems that some people suffer from can be treated by provid-
ing them with a surgically implanted electrical device called CI. Before going into
the details of how the latter is achieved is important to understand the aspects of
NH.

In NH, sound waves travel through air and reach the tympanic membrane via the
ear canal, causing vibrations that move three small bones in the middle ear. This
action triggers the movement of the stapes, the third bone in the chain. The "foot-
plate" of the stapes is attached to a flexible membrane in the bony shell of the cochlea
called the oval window. Inward and outward movements of this membrane induce
pressure oscillations in the cochlear fluids, which in turn initiate a traveling wave of
displacement along the basilar membrane (BM), a highly specialized structure that
divides the cochlea along its length. This membrane has graded mechanical proper-
ties. At the base of the cochlea, near the stapes and oval window, it is narrow and
stiff. At the other end, near the apex, the membrane is wide and flexible. These
properties give rise to the traveling wave and to points of maximal response accord-
ing to the frequency or frequencies of the pressure oscillations in the cochlear fluids.
The traveling wave propagates from the base to the apex. For an oscillation with a
single frequency, the magnitude of displacements increases up to a particular point
along the membrane and then drops precipitously thereafter. High frequencies pro-
duce maxima near the base of the cochlea, whereas low frequencies produce maxima
near the apex. Motion of the BM is sensed by the sensory hair cells in the cochlea,
which are attached to the top of the BM in a matrix of cells called the organ of Corti.
The cells are arranged in four rows along the length of the cochlea. The cells in the
innermost row (closest to the modiolus or "core" of the cochlea) are called the inner
hair cells (IHCs), and the cells in the remaining rows are called the outer hair cells
(OHCs).

The principal cause of hearing loss is damage to or complete destruction of the sen-
sory hair cells. The hair cells are fragile structures and are subject to a wide variety
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of insults, including but not limited to genetic defects, infectious diseases, overexpo-
sure to loud sounds, certain drugs, and aging. In the deaf or deafened cochlea, the
IHCs in particular are largely or completely absent, severing the connection between
the peripheral and central auditory systems. The function of a cochlear prosthesis is
to bypass the missing hair cells by directly stimulating the surviving neurons in the
auditory nerve. Direct stimulation of the auditory nerve is produced by currents de-
livered through electrodes placed in the scala tympani (ST), one of three fluid-filled
chambers along the length of the cochlea.

CIs act as a sensory neuroprosthesis by replacing the function of the outer, middle
and part of the inner ear [Lehnhardt and Laszig 2009]. Therefore, a microphone and
a speech processor (including a battery) are applied surrounding the outer ear. The
transmitter coil is placed externally above the internal receiver coil. The stimulator
and the electrode array are surgically implanted.

FIGURE 2.1: Ear with installed CI. (Image source: http://www.
medel.com)

2.1.1 Microphone and Speech Processor

The microphone captures surrounding sounds which are further analyzed and con-
verted into electrical signals by the speech processor. Therefore the incoming signal
is band-pass filtered and compressed to the individual electrical dynamic range. The
main function of the signal processor is to compartmentalize the input signal into its
frequency components similar to a healthy inner ear. The speech processor com-
bined with the battery as small as a common hearing aid and is worn around the
auricle. Thereby the microphone extends into the auricle for a natural audio signal
receiving due to the auricles shape.

http://www.medel.com
http://www.medel.com
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2.1.2 Transmitter and Receiver Coil

The transmitter coil is placed posterior to the ear, above the implanted receiver
coil. Energy and signals are transferred transcutaneously to the internal receiver
coil which transmits the electrical signals to the electrode array. The receiver is sur-
gically placed in a excavation drilled in the skull bone behind the auricle [Bear et al.
2001; Rau, Lenarz, and Majdani 2015].

2.1.3 Battery

To provide the CI with the required power, size 675 disposable batteries (zinc-air)
or rechargeable batteries (lithium-ion) are connected. Sound coding strategies are
being designed to reduce power consumption and minimize the size of the batteries
and hence the speech processor [Nogueira et al. 2017; Langner et al. 2017].

2.1.4 Electrode Array

The electrode array is carefully inserted into the scala tympani along the auditory
nerve. Electrode arrays differ in the number of electrodes, ranging from 8 to 22.
Material properties provide different features: non-magnetics designed for use in
the MRI environment or even materials with memory effect, ensuring the correct
bending along the auditory nerve. Therefore, a small whole is drilled right between
two facial nerve strands and passing the auditory ossicles. The surgery process takes
around 4 – 5h and needs to be executed very precisely since the cochlea is positioned
relatively deep and close to the brain as visible in Fig. 2.1. The electrode array acti-
vate the auditory nerve from the base towards the apex in a tonotopic arrangement:
stimulation along the base evokes a perception of high frequencies, stimulation at
the apex evokes low frequency sounds.

2.1.5 Sound Coding Strategies

The processor converts the received analog signal into a digital signal. Further, it
processes the signal for a better intelligibility by modulating the frequencies, for-
mants, spectral maxima and intensities. The auditory sensation is injected to the
auditory nerve by an electrical charge. The stimulation can be performed either in a
monopolar (Fig. 2.2 A) or bipolar mode (Fig. 2.2 B) mode. In the monopolar mode,
an extra-cochlear reference electrode is commonly placed at the temporal muscle.
The reference electrode for the bipolar mode accesses adjacent intra-cochlear elec-
trodes, as shown in Fig. 2.2 B [Zhu et al. 2012].

Further, electrodes can be activated simultaneously, by activating them in sequences
or at once. The parallel stimulation by two or more electrodes generates a newly
combined pitch perception at a frequency level in between. This way the number
of electrodes is expandable by adding virtual channels. An example of generating a
virtual channel is presented in Fig. 2.3 B and C.
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FIGURE 2.2: Monopolar and bipolar stimulation.

FIGURE 2.3: Electrode stimulation using virtual channels [Langner et
al. 2017].

2.2 Source Separation

2.2.1 Introduction

SS problems in digital signal processing are those in which several signals have been
mixed together into a combined signal and the objective is to recover the original
component signals from the combined one. A good example of a SS problem in
the audio context is the cocktail party effect [Bronkhorst 2000] where a number of
people are talking simultaneously in a room, and a listener is trying to follow one of
the discussions. The SS problem has gained some interest over the years and while
techniques for music separation exist, these cannot operate real time and hence, are
not suitable for applications that require low-latency processing, such as real time
speech enhancement for CIs.

Humans can easily identify the elements in a music mix, but it is still a difficult task
for a computer to automatically recognize them. This is mainly because music in the
real world is mainly polyphonic and makes extraction of the information very chal-
lenging. Furthermore, the elements of a mix vary in many ways such as in timbre,
quality, and tempo, making the problem even more complicated. In the music infor-
mation retrieval (MIR) and especially in this study is highly desirable to identify the
most important instrument in a music mix; the lead vocal. This can be demanding
since it is been shown that CI users find western pop music more enjoyable when
enhancing the lead singing vocal [Buyens et al. 2014; Pons et al. 2016].
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Audio SS can be performed in various ways. In this research a deep learning frame-
work for monaural singing voice separation is proposed, aiming at a more reliable,
robust and low latency monaural audio SS targeting the lead singing voice within
a western pop music track. A brief description of some of the state-of-the-art algo-
rithms which attempt to solve the problem is provided herewith, along with links to
original papers from which they have been cited. For a complete description of the
algorithms, please refer to the cited papers.

2.2.2 Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) [Paatero and Tapper 1994; Lee and Se-
ung 1999] has recently received much attention as an unsupervised learning method
for finding meaningful and physically interpretable latent variable decompositions.
The constraint of non-negativity is natural for a wide range of natural signals, such
as pixel intensities, amplitude spectra, and occurrence counts. NMF has found
widespread application in many areas and has for example been used in environ-
metrics [Paatero and Tapper 1994] and chemometrics [Sajda, Du, and Parra 2003]
to find underlying explanatory sources in series of chemical concentration measure-
ments; in image processing [Lee and Seung 1999] to find useful features in image
databases; in text processing [Gaussier and Goutte 2005] to find groups of words
that constitute latent topics in sets of documents; and in audio processing [Schmidt
2008] to separate mixtures of audio sources.

2.2.3 Neural Networks

A neural network (NN) is an information processing system inspired by the human
nervous system [Grossberg 1988]. Like the nervous system, artificial NNs comprise
of connections of nodes called neurons. Each neuron receives an input, processes
the information in the input and gives an output defined by certain activation func-
tion (the most common activation functions are shown in Fig. 2.4). These neurons
contain parameters, which must be optimized using a training set, which has a la-
beled ground truth. Once trained, the network can be used to input data to produce
outputs for testing and for future use.

Each layer consists of neurons, which can mathematically be described in terms of its
parameters. These parameters are optimized during the training phase. The training
methods will be described in subsection 2.2.7.

2.2.3.1 Challenges

The main challenges one will have to address when modeling a NN are listed below:

• Data Problems: Interest in artificial NNs has evolved from their capacity to
process information, which comes in data format. It is frequently necessary to
carry out a pre-processing of the data before presenting it to the NN. The main
data problems which may occur are the following:
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FIGURE 2.4: Most common activation functions used in NN architec-
tures.

– Limited Data:

When only a limited amount of data is available cross-validation tech-
niques are commonly used based on dividing the available data into two
groups, one for learning and the other to validate the behavior of the net-
work. In order to gain a better knowledge of the network, the size and
number of elements may be modified for training and evaluating the net-
work in different situations [Geisser 1993; Kohavi 1995].

– Imbalanced Data:

A problem which occurs in learning, usually when in a classification prob-
lem there are much more elements of some classes than others [He and
Garcia 2009]. There are several techniques to solve this problem, mainly
focused either at the data level (sampling methods) or at the classifier
level (modifying it internally). The sampling methods in imbalanced learn-
ing applications try to modify the imbalanced data set by some mecha-
nisms in order to provide a balanced distribution by considering the rep-
resentative proportions of class examples in the distribution. The cost-
sensitive learning methods target the imbalanced learning problem by
using different cost matrices that describe the costs of misclassifying any
particular data example [Frasca et al. 2013]. Specific kernel-based learn-
ing methods and active learning methods for imbalanced learning have
also been developed.
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– Incomplete Data:

Sometimes a collection of data to resolve a specific task is available but
it has become incomplete due to being lost or because some of its vari-
ables or features are unknown. The solution to this problem is centered
on approximating missing values, discovering a relationship between the
known and the unknown data. Techniques based on NNs and from other
perspectives, such as Multiple Kernel Learning [Kumar et al. 2013], exist
to solve this problem.

• Learning Problems: Learning consists of estimating the parameters of a model
of given data, and this concept is one of the most notable contributions of NNs
to the field of information processing systems. However; a central problem
in machine learning is how to make an algorithm that will perform well not
just on the training data, but also on new inputs. Many strategies used in
machine learning are explicitly designed to reduce the test error, possibly at
the expense of increased training error. These strategies are known collectively
as regularization.

Regularization is “any modification we make to the learning algorithm that is
intended to reduce the generalization error, but not its training error” [Good-
fellow, Bengio, and Courville 2016] and the rest of this section will review the
most common regularization techniques used.

– Dataset augmentation:

An overfitting model (NN or any other type of model) can perform bet-
ter if learning algorithm processes more training data. While an existing
dataset might be limited, for some machine learning problems there are
relatively easy ways of creating synthetic data.

There is no general recipe regarding how the synthetic data should be
generated and it varies a lot from problem to problem. The general prin-
ciple is to expand the dataset by applying operations which reflect real
world variations as close as possible.

– Early Stopping:

Early-stopping combats overfitting interrupting the training procedure
once model’s performance on a validation set gets worse. A validation
set is a set of examples that it is never use for gradient descent, but which
is also not a part of the test set. The validation examples are considered
to be representative of future test examples. Early stopping is effectively
tuning the hyper-parameter number of epochs.
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– Dropout:

The term “dropout” refers to dropping out units (hidden and visible) in
a NN. Dropping a unit out means temporarily removing it from the net-
work, along with all its incoming and outgoing connections. The choice
of which units to drop is random. In the simplest case, each unit is re-
tained with a fixed probability p independent of other units, where p can
be chosen using a validation set or can simply be set at 0.5, which seems
to be close to optimal for a wide range of networks and tasks. For the in-
put units, however, the optimal probability of retention is usually closer
to 1 than to 0.5.

Applying dropout to a NN amounts to sampling a “thinned” network
from it. The thinned network consists of all the units that survived dropout.
A NN with n units can be seen as a collection of 2n possible thinned NNs.
These networks all share weights so that the total number of parameters
is still O(n2), or less. For each presentation of each training case, a new
thinned network is sampled and trained. So training a NN with dropout
can be seen as training a collection of 2n thinned networks with extensive
weight sharing, where each thinned network gets trained very rarely, if at
all.

2.2.4 Deep Neural Networks

Deep neural networks (DNNs) are NNs with more than one hidden layer. As data
passes through more than one layer, more abstract representations can be discov-
ered, which might help in its classification. Each layer of the deep network has in-
puts and outputs and the number of inputs of each layer is dependent on the number
of outputs of its predecessor.

Following the success of machine learning techniques in other fields, particularly
image processing, [Krizhevsky et al., 2012a] several researchers have adopted Deep
NNs to approach the SS paradigm [Huang et al. 2015; Huang et al. 2014; Grais et al.
2016; Nugraha, Liutkus, and Vincent 2016].

2.2.5 Recurrent Neural Networks

Recurrent neural networks (RNNs) are powerful learning models that achieve state-
of-the-art results in a wide range of supervised and unsupervised machine learning
tasks. They are suited especially well for machine perception tasks, where the raw
underlying features are not individually interpretable. This success is attributed to
their ability to learn hierarchical representations, unlike traditional methods that rely
upon hand-engineered features [Farabet et al. 2013]. Over the past several years,
storage has become more affordable, datasets have grown far larger, and the field
of parallel computing has advanced considerably. In the setting of large datasets,
simple linear models tend to under-fit, and often under-utilize computing resources.

Deep learning methods, in particular, those based on DNNs, which are greedily built
by stacking restricted Boltzmann machines, and convolutional NNs, that exploit the
local dependency of visual information, have demonstrated record-setting results
on many important applications. However, despite their power, standard neural
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networks have limitations. Most notably, they rely on the assumption of indepen-
dence among the training and test examples. After each example (data point) is
processed, the entire state of the network is lost. If each example is generated inde-
pendently, this presents no problem. But if data points are related in time or space,
this is unacceptable. Frames from video, snippets of audio, and words pulled from
sentences represent settings where the independence assumption fails. Additionally,
standard networks generally rely on examples being vectors of fixed length. Thus it
is desirable to extend these powerful learning tools to model data with temporal or
sequential structure and varying length inputs and outputs, especially in the many
domains where NN are already the state of the art. RNNs are connectionist models
with the ability to selectively pass information across sequence steps while process-
ing sequential data one element at a time. Thus they can model input and/or output
consisting of sequences of elements that are not independent. Further, RNNs can
simultaneously model sequential and time dependencies on multiple scales.

Since audio is sequential by nature, RNNs have emerged as a powerful tool espe-
cially for modeling of speech [Graves, Mohamed, and Hinton 2013] and music [Böck
and Schedl 2012]. In particular, they can be used for automatic speech recognition
(ASR) also in noisy and reverberated environments [Geiger et al. 2013]. In this study,
we introduce the RNN architecture for singing voice enhancement. Previous NN
based audio SS approaches for speech were based on FFNNs, despite the context-
sensitive nature of speech. Finally, we focus on low latency real-time processing,
which is possible with RNNs since their output is only based on the previous time
step and the state variable. NNs for blind non-linear SS have been extensively stud-
ied, e.g., in [Karhunen et al. 1997; Tan, Wang, and Zurada 2001].

2.2.6 Deep Convolutional Auto Encoders

Different types of DNNs have been used to tackle the audio single channel SS (SCSS)
problem [Uhlich et al. 2017, Grais et al. 2016, Kim and Smaragdis 2015, Chandna et
al. 2017]. The denoising auto-encoder (DAE) is a special type of fully connected
FFNNs that takes noisy input signals and outputs their denoised version [Xie, Xu,
and Chen 2012, Vincent et al. 2010]. DAEs are common in deep learning, they are
used to learn robust low-dimensional features even when the inputs are perturbed
with some noise [Vincent et al. 2008, Hinton and Salakhutdinov 2006]. DAEs have
been used for SCSS where the inputs of the DAE are the spectral frames of the
mixed signal and the outputs are the spectral frames of the target source [Kim and
Smaragdis 2015, Smaragdis and Venkataramani 2016]. Fully connected DAEs can
not capture the 2D (spectral-temporal) structures of the spectrogram of the input
and output signals. Since DAEs are fully connected networks, they usually have a
lot of parameters to be optimized.

For their ability in extracting robust spectral-temporal structures of different audio
signals [Lee et al. 2009], convolutional neural networks (CNN) have been used suc-
cessfully to learn useful features in many audio processing applications such as:
speech recognition [Qian et al. 2016], speech enhancement [Fu, Tsao, and Lu 2016],
audio tagging [Xu et al. 2017], and many music related applications [Han, Kim, and
Lee 2017; Choi et al. 2016; Korzeniowski and Widmer 2016]. Deep convolutional
auto-encoders (DCAEs) are also a special type of CNNs that can be used to dis-
cover robust localized low-dimensional patterns that repeat themselves over the in-
put [Masci et al. 2011; Du et al. 2017]. DCAEs differ from conventional DAEs as
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their parameters (weights) are shared which makes the DCAEs have much fewer
parameters than DAEs. The ability of DCAEs to extract repeating patterns in the in-
put makes them suitable to be used to suppress the background music signal that is
embedded in speech signals to improve the quality of the speech recognition system
[Zhao et al. 2015]. The results show that DCAE works better than DAE in removing
the background music signals from the speech signal [Zhao et al. 2015]. Recently, a
fully DCAE (all the network layers are composed of convolutional units) were used
for speech enhancement [Park and Lee 2016] that maps the distorted speech signal to
its clean speech signal. The results in [Park and Lee 2016] show that DCAE works as
well as the fully connected FFNNs and RNNs even when the number of parameters
in the DCAE is much less than the number of parameters in FFNNs and RNNs.

Motivated by the aforementioned successes of using CNNs and DCAEs in a variety
of audio signals, we propose in this thesis to use DCAEs for the audio SCSS. The
main idea in this thesis is to train a DCAE to extract one target source from the mix-
ture and treats the other sources as background noise that needs to be suppressed.
This means that the number of DCAEs equal the number of sources to be estimated.
This is a very challenging task because each CDAE has to deal with highly non-
stationary background signals/noise. Each DCAE sees the magnitude spectrograms
as 2D segments which help in learning the temporal and spectral information for
the audio signals. From the ability of DCAEs in learning noise robust features, in
this work, we train each DCAE to learn unique temporal-spectral patterns for its
corresponding target source. Each trained DCAE is then used to extract the related
patterns of its corresponding target source from the mixed signal.

2.2.7 Training Algorithms

Gradient descent is one of the most popular algorithms to perform optimization
and by far the most common way to optimize NNs. At the same time, every state-
of-the-art Deep Learning library contains implementations of various algorithms to
optimize gradient descent (e.g. lasagne’s, caffe’s, and kera’s documentation). These
algorithms, however, are often used as black-box optimizers, as practical explana-
tions of their strengths and weaknesses are hard to come by.

Gradient descent is a way to minimize an objective function J(θ) parameterized by
a model’s parameters θ ∈ Rd (where R is the real space) by updating the parameters
in the opposite direction of the gradient of the objective function ∇θJ(θ) w.r.t. to
the parameters. The learning rate η determines the size of the steps taken to reach a
(local) minimum.

2.2.7.1 Gradient Descent Variants

There are three variants of gradient descent, which differ in how much data is used
to compute the gradient of the objective function. Depending on the amount of
data, making a trade-off between the accuracy of the parameter update and the time
it takes to perform an update.
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• Batch gradient descent:

Vanilla gradient descent, aka batch gradient descent, computes the gradient of
the cost function w.r.t. to the parameters θ for the entire training dataset:

θ = θ − η∇θJ(θ). (2.1)

As theres the need to calculate the gradients for the whole dataset to perform
just one update, batch gradient descent can be very slow and is intractable for
datasets that do not fit in memory. Batch gradient descent also does not allow
us to update the model on line, i.e. with new examples on-the-fly.

Then, the parameters are updated in the direction of the gradients with the
learning rate determining how big of an update performed. Batch gradient
descent is guaranteed to converge to the global minimum for convex error
surfaces and to a local minimum for non-convex surfaces.

• Stochastic gradient descent:

Stochastic gradient descent (SGD) in contrast performs a parameter update for
each ith training example x(i) and label y(i):

θ = θ − η∇θJ(θ;x(i); y(i)). (2.2)

Batch gradient descent performs redundant computations for large datasets,
as it recomputes gradients for similar examples before each parameter update.
SGD does away with this redundancy by performing one update at a time. It
is therefore usually much faster and can also be used to learn on line.

While batch gradient descent converges to the minimum of the basis the pa-
rameters are placed in, SGD’s fluctuation, on the one hand, enables it to jump
to new and potentially better local minima. On the other hand, this ultimately
complicates convergence to the exact minimum, as SGD will keep overshoot-
ing. However, it has been shown that when slowly decreasing the learning
rate, SGD shows the same convergence behavior as batch gradient descent,
almost certainly converging to a local or the global minimum for non-convex
and convex optimization respectively.

• Mini-batch gradient descent:

Mini-batch gradient descent finally takes the best of both worlds and performs
an update for every mini-batch of n training examples:

θ = θ − η∇θJ(θ;x(i:i+n); y(i:i+n)). (2.3)

This way, it a) reduces the variance of the parameter updates, which can lead to
more stable convergence; and b) can make use of highly optimized matrix op-
timizations common to state-of-the-art deep learning libraries that make com-
puting the gradient w.r.t. a mini-batch very efficient. Common mini-batch
sizes range between 50 and 256 but can vary for different applications. Mini-
batch gradient descent is typically the algorithm of choice when training a NN
and the term SGD usually is employed also when mini-batches are used.
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2.2.7.2 Challenges

Vanilla mini-batch gradient descent, however, does not guarantee good convergence,
but offers a few challenges that need to be addressed:

• Choosing a proper learning rate can be difficult. A learning rate that is too
small leads to painfully slow convergence, while a learning rate that is too
large can hinder convergence and cause the loss function to fluctuate around
the minimum or even to diverge.

• Learning rate schedules [Robinns and Monro 1951] try to adjust the learning
rate during training by e.g. annealing, i.e. reducing the learning rate accord-
ing to a predefined schedule or when the change in objective between epochs
falls below a threshold. These schedules and thresholds, however, have to be
defined in advance and are thus unable to adapt to a dataset’s characteristics
[Darken, Chang, and Moody 1992].

• Additionally, the same learning rate applies to all parameter updates. If data is
sparse and the features have very different frequencies, it is maybe not a good
idea to update all of them to the same extent, but perform a larger update for
rarely occurring features.

• Another key challenge of minimizing highly non-convex error functions com-
mon for NNs is avoiding getting trapped in their numerous suboptimal local
minima. Dauphin et al. [Dauphin et al. 2014] argue that the difficulty arises
in fact not from local minima but from saddle points, i.e. points where one
dimension slopes up and other slopes down. These saddle points are usually
surrounded by a plateau of the same error, which makes it notoriously hard
for SGD to escape, as the gradient is close to zero in all dimensions.

2.2.7.3 Gradient Descent Optimization Algorithms

In the following, some algorithms that are widely used by the deep learning com-
munity to deal with the aforementioned challenges will be presented.

• Momentum:

SGD has trouble navigating ravines, i.e. areas where the surface curves vary
much more steeply in one dimension than in another [Sutton 1986], which are
common around local optima. In these scenarios, SGD oscillates across the
slopes of the ravine while only making hesitant progress along the bottom
towards the local optimum.

Momentum [Qian 1999] is a method that helps accelerate SGD in the relevant
direction and dampens oscillations. It does this by adding a fraction γ of the
update vector of the past time step to the current update vector:

vt = γvt−1 + η∇θJ(θ), (2.4)
θ = θ − vt. (2.5)

Essentially, when using momentum, a ball is pushed down a hill. The ball ac-
cumulates momentum as it rolls downhill, becoming faster and faster on the
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way (until it reaches its terminal velocity if there is air resistance, i.e. (γ < 1).
The same thing happens to the parameter updates: The momentum term in-
creases for dimensions whose gradients point in the same directions and re-
duces updates for dimensions whose gradients change directions. As a result,
faster convergence and reduced oscillation is achieved.

• Nesterov accelerated gradient:

However, a ball that rolls down a hill, blindly following the slope, is highly
unsatisfactory.

Nesterov accelerated gradient (NAG) [Nesterov 1983] is a way to give the mo-
mentum term this kind of prescience. The momentum term γvt−1 is used to
move the parameters θ. Computing θ − γvt−1 thus gives us an approximation
of the next position of the parameters (the gradient is missing for the full up-
date), a rough idea where the parameters are going to be. A look ahead can be
done by calculating the gradient not w.r.t. to the current parameters θ but w.r.t.
the approximate future position of the parameters:

vt = γvt−1 + η∇θJ(θ − γvt−1), (2.6)
θ = θ − vt. (2.7)

Again, the momentum term γ is set to a value of around 0.9. While Momentum
first computes the current gradient and then takes a big jump in the direction
of the updated accumulated gradient, NAG first makes a big jump in the direc-
tion of the previously accumulated gradient, measures the gradient and then
makes a correction, which results in the complete NAG update. This anticipa-
tory update prevents the minimization from going too fast and results in in-
creased responsiveness, which has significantly increased the performance of
RNNs on a number of tasks [Bengio, Boulanger-Lewandowski, and Pascanu
2013].

• Adagrad:

Adagrad [Duchi, E.Hazan, and Singer 2011] is an algorithm for gradient-based
optimization that does just this: It adapts the learning rate to the parameters,
performing larger updates for infrequent parameters and smaller updates for
frequent parameters. For this reason, it is well-suited for dealing with sparse
data. [J.Dean et al. 2012] have found that Adagrad greatly improved the ro-
bustness of SGD and used it for training large-scale neural nets at Google.
Moreover, [Pennington, Socher, and Manning 2014] used Adagrad to train
GloVe word embeddings, as infrequent words require much larger updates
than frequent ones.

Previously, the update was performed for all parameters θ at once as every pa-
rameter θi used the same learning rate η. As Adagrad uses a different learning
rate for every parameter θi at every time step t, first, Adagrad’s per-parameter
update is shown, vectorizing it. For brevity, gt,i is set to be the gradient of the
objective function w.r.t. to the parameter θi at time step t:

gt,i = ∇θJ(θi). (2.8)
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The SGD update for every parameter θi at each time step t then becomes:

θt+1,i = θt,i − ηgt,i. (2.9)

In its update rule, Adagrad modifies the general learning rate η at each time
step η for every parameter θi based on the past gradients that have been com-
puted for θi:

θt+1,i = θt,i −
η√

Gt,ii + ε
gt,i. (2.10)

Gt ∈ Rd×d here is a diagonal matrix where each diagonal element i, i is the sum
of the squares of the gradients w.r.t. θi up to time step i, while ε is a smoothing
term that avoids division by zero (usually on the order of 10−8). Interestingly,
without the square root operation, the algorithm performs much worse.

As Gt contains the sum of the squares of the past gradients w.r.t. to all param-
eters θ along its diagonal, vectorizing the implementation by performing an
element-wise matrix-vector multiplication � between Gt and gt obtaining:

θt+1,i = θt,i −
η√

Gt + ε
� gt,i. (2.11)

One of Adagrad’s main benefits is that it eliminates the need to manually tune
the learning rate. Most implementations use a default value of 0.01 and leave
it at that.

Adagrad’s main weakness is its accumulation of the squared gradients in the
denominator: since every added term is positive, the accumulated sum keeps
growing during training. This, in turn, causes the learning rate to shrink and
eventually become infinitesimally small, at which point the algorithm is no
longer able to acquire additional knowledge. The following algorithms aim to
resolve this flaw.

• Adadelta:

Adadelta [Zeiler 2012] is an extension of Adagrad that seeks to reduce it’s ag-
gressive, monotonically decreasing learning rate. Instead of accumulating all
past squared gradients, Adadelta restricts the window of accumulated past
gradients to some fixed size w.

Instead of inefficiently storing w previous squared gradients, the sum of gradi-
ents is recursively defined as a decaying average of all past squared gradients.
The running average E[g2]t at time step t then depends only on the previous
average and the current gradient:

E[g2]t = γE[g2]t−1 + (1− γ)g2t . (2.12)
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γ is set to a similar value as the momentum term, around 0.9. The vanilla SGD
update can now be expressed in terms of the parameter update vector ∆θt:

∆θ = −ηgt,i, (2.13)
θt+1 = θt + ∆θt. (2.14)

The previously derived parameter update vector of Adagrad thus takes the
form:

∆θt = − η√
Gt + ε

� gt. (2.15)

Replacing the diagonal matrixGt with the decaying average over past squared
gradients E[g2]t provides the following expression:

∆θt = − η√
E[g2]t + ε

gt. (2.16)

As the denominator is just the root mean squared (RMS) error criterion of the
gradient, it can be replaced by the criterion short-hand:

∆θt = − η√
RMS[g]t

gt. (2.17)

The authors note that the units in this update (as well as in SGD, Momentum,
or Adagrad) do not match, i.e. the update should have the same hypothetical
units as the parameter. To realize this, they first define another exponentially
decaying average, this time not of squared gradients but of squared parameter
updates:

E[∆θ2]t = γE[∆θ2]t−1 + (1− γ)∆θ2t . (2.18)

The root mean squared error of parameter updates is thus:

RMS[∆θ]t =
√
E[∆θ2]t + ε. (2.19)

SinceRMS[∆θ]t is unknown, it can be approximated by the RMS of parameter
updates until the previous time step. Replacing the learning rate η in the pre-
vious update rule with RMS[∆θ]t−1 finally yields the Adadelta update rule:
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∆θt = −RMS[∆θ]t−1
RMS[g]t

gt, (2.20)

θt+1 = θt + ∆θt. (2.21)

With Adadelta, no default learning rate has to be set up, as it has been elimi-
nated from the update rule.

• Adam:

Adaptive Moment Estimation (Adam) [Kingma and Ba 2014] is another method
that computes adaptive learning rates for each parameter. In addition to stor-
ing an exponentially decaying average of past squared gradients vt like Adadelta
and RMSprop, Adam also keeps an exponentially decaying average of past
gradients mt, similar to momentum:

mt = β1mt−1 + (1− β1)gt, (2.22)

vt = β2vt− 1 + (1− β2)g2t . (2.23)

mt and vt are estimates of the first moment (the mean) and the second moment
(the uncentered variance) of the gradients respectively, hence the name of the
method. As mt and vt are initialized as vectors of 0’s, the authors of Adam
observe that they are biased towards zero, especially during the initial time
steps, and especially when the decay rates are small.

They counteract these biases by computing bias-corrected first and second mo-
ment estimates:

m̂t =
mt

1− βt1
, (2.24)

v̂t =
vt

1− βt2
. (2.25)

The authors propose default values of 0.9 for β1, 0.999 for β2, and 10−8 for
ε. They show empirically that Adam works well in practice and compares
favorably to other adaptive learning-method algorithms.

• AdaMax:

The vt factor in the Adam update rule scales the gradient inversely proportion-
ally to the l2 norm of the past gradients (via the vt−1 term) and current gradient
|gt|2:

vt = β2vt− 1 + (1− β2)|gt|2. (2.26)

This update is generalized to the lp norm. Note that [Kingma and Ba 2014] also
parameterize β2 as βp2 :
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vt = βp2vt− 1 + (1− βp2)|gt|p. (2.27)

Norms for large p values generally become numerically unstable, which is why
l1 and l2 norms are most common in practice. However, l∞ also generally ex-
hibits stable behavior. For this reason, the authors propose AdaMax [Kingma
and Ba 2014] and show that vt with l∞ converges to the following more sta-
ble value. To avoid confusion with Adam, ut is used to denote the infinity
norm-constrained vt:

vt = β∞2 vt− 1 + (1− β∞2 )|gt|∞ = max(β2vt−1, |gt|). (2.28)

Plugging this into the Adam update equation by replacing
√
v̂t + ε with ut the

AdaMax update rule is obtained:

θt+1 = θt −
η

ut
m̂t. (2.29)

Good default values are again η=0.002, β1=0.9 and β2=0.999.

• Nadam:

Adam can be viewed as a combination of RMSprop and momentum: RMSprop
contributes the exponentially decaying average of past squared gradients vt,
while momentum accounts for the exponentially decaying average of past gra-
dients mt. Is been shown also that Nesterov accelerated gradient (NAG) is
superior to vanilla momentum.

Nadam (Nesterov-accelerated Adaptive Moment Estimation) [Dozat 2015] thus
combines Adam and NAG. In order to incorporate NAG into Adam, its mo-
mentum term mt needs to be modified.

Recalling the momentum update rule:

gt = ∇θtJ(θt), (2.30)
mt = γmt−1 + ηgt, (2.31)
θt+1 = θt −mt, (2.32)

where J is the objective function, γ is the momentum decay term, and η is the
step size. Expanding the third equation above yields:

θt+1 = θt − (γmt−1 + ηgt). (2.33)
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This demonstrates again that momentum involves taking a step in the direc-
tion of the previous momentum vector and a step in the direction of the current
gradient.

NAG then provides a more accurate step in the gradient direction by updating
the parameters with the momentum step before computing the gradient. Now,
only the gradient gt needs to be modified in order to arrive at NAG:

gt = ∇θtJ(θt − γmt−1), (2.34)
mt = γmt−1 + ηgt, (2.35)
θt+1 = θt −mt, (2.36)

[Dozat 2015] proposes to modify NAG the following way: Rather than apply-
ing the momentum step twice – one time for updating the gradient gt and a
second time for updating the parameters θt−1 – a look-ahead momentum vec-
tor is directly applied to update the current parameters:

gt = ∇θtJ(θt), (2.37)
mt = γmt−1 + ηgt, (2.38)

θt+1 = θt − (γmt + ηgt). (2.39)

In order to add Nesterov momentum to Adam, the previous momentum vector
can be similarly replaced with the current momentum vector. First, recall that
the Adam update rule is the following:

mt = β1mt−1 + (1− β1gt), (2.40)

m̂t =
mt

1− βt1
, (2.41)

θt+1 = θt −
η√

v̂t + ε
m̂t. (2.42)

Expanding the second equation with the definitions ofmt andmt in turn gives:

θt+1 = θt −
η√

v̂t + ε

(
β1mt−1
1− βt1

+
(1− β1)gt

1− βt1

)
. (2.43)

Replacing it with m̂t−1:

θt+1 = θt −
η√

v̂t + ε

(
β1m̂t−1 +

(1− β1)gt
1− βt1

)
. (2.44)
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Nesterov momentum is added by replacing the bias-corrected estimate of the
momentum vector of the previous time step mt−1 with the bias-corrected es-
timate of the current momentum vector mt, which gives the Nadam update
rule:

θt+1 = θt −
η√

v̂t + ε

(
β1m̂t +

(1− β1)gt
1− βt1

)
. (2.45)
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Chapter 3

Methods & Materials

3.1 Source Separation Framework

The SS problem, in the signal processing context, is defined as the extraction or iso-
lation of different components of a mixture. In the following, it is assumed a single
channel music down-mix x̄[t] ∈ R to be the sum of J single channel sources ȳj [t] ∈ R.
The mixture signal x̄[t] observed at discrete time t can be expressed as:

x̄[t] =

J∑
j=1

ȳj [t]. (3.1)

As all the algorithms in this research are implemented in the frequency domain, it
is more convenient to use the frequency representation of (3.1). Let x[f, n] ∈ C and
y[f, n] ∈ C denote the short-time Fourier transform (STFT) coefficients of x̄[t] and
ȳj [t] for frequency bin f and time frame n. Also, let F be the number of frequency
bins and N the number of time frames. The mixture spectrum can be expressed as
follows:

x[f, n] =
J∑
j=1

yj [f, n]. (3.2)

After the mixture signal has been processed by the SS algorithm, the estimated
source spectrogram ỹj [f, n] is obtained. The estimated source signals are calculated
by performing the inverse short time Fourier transform (ISTFT) of each estimated
source spectrogram yj [f, n]. The magnitude spectrogram is processed by the SS al-
gorithm, while the phase of the original mixture is used to synthesize the estimated
sources, which are used to generate a new mix based on the desired vocal to in-
struments ratio (VIR) as shown in Fig. 3.1. The new mix is then processed by the
CI.

The following sections present the proposed SS algorithms for the multi-track esti-
mation.
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FIGURE 3.1: Block diagram showing the proposed general SS frame-
work for CI users. The mixture spectrum is masked in order to esti-
mate the vocal and the instruments. These are then transformed to
the time domain where a vocal to instruments ratio (VIR) gain is ap-

plied before being processed by the CI.

3.1.1 NMF

Non-negative Matrix Factorization was introduced by Lee and Seung [Lee and Se-
ung 1999] as an alternative to k-means clustering and principal component analysis
(PCA) for data analysis and compression. Let X ∈ CF×N be the N frame matrix
representation of the input mixture spectrogram:

X =
J∑
j

Yj . (3.3)

NMF aims at decomposing the F × N non-negative matrix X as a product of two
non-negative matrices V and H of dimensions F × K and K × N (where K is the
number of basis vectors), respectively, such that X ≈ X̂ = VH. Here V contains the
basis vectors and H the activations. The key property of NMF is that W and H are
constrained to be positive matrices. This is in contrast with PCA, where there are no
positivity constraints or k-means clustering where each column of X is constrained
to be a unit vector. Subject to the positivity constraints, we seek a solution to the
following minimization problem

(W,H)∗ = argmin
W,H

D(X̂||WH). (3.4)

Here, the function D(·||·) is a suitably chosen error function. One particular choice
for D(·||·), on which we will focus here, is the information (Kullback-Leibler) di-
vergence [Kullback and Leibler 1951], which measures the similarity between two
probability distribution functions P and Q as follows:

D(P||Q) = −
∑
ντ

(
pντ log

qντ
pντ
− qντ + pντ

)
. (3.5)

Using Jensen’s inequality [Bishop 2006] and concavity of log(x) (∀ x ∈ R+), it can be
shown, that D(·||·) is non-negative and D(P||Q) = 0 ⇐⇒ P = Q. The objective in
(5) could be minimized by any suitable optimization algorithm. Lee and Seung [Lee
and Seung 1999] have proposed a very efficient variational bound minimization al-
gorithm that has attractive convergence properties and which has been successfully
applied in various applications in signal analysis and SS, e.g. [Virtanen 2006]. The
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estimation algorithms of Lee and Seung minimize the chosen cost function by ini-
tializing the entries of W and H with random positive values, and then by updating
them iteratively using multiplicative rules. Each update decreases the value of the
cost function until the algorithm converges.

The factorizations obtained are represented by Equivalent Rectangular Bandwidth
(ERB) spectrograms extracted from the input spectrogram, acquired through a 0.025s
Hamming window with a 0.013s hop size for a 1024 sample FFT at a 44.1 kHz sample
rate.

3.1.2 MLP

A multilayer perceptron (MLP) [Gardner and Dorling 1998; Kriesel 2007] consists
of a system of simple interconnected neurons (AKA units), representing a nonlinear
mapping between an input vector and an output vector. The units are connected
by weights and output signals which are a function of the sum of the inputs to the
unit modified by a simple nonlinear, transfer, or activation function. Is the super-
position of these simple nonlinear functions that enable the MLP to model com-
plex nonlinear functions. During this study a rectifier linear unit (ReLU), defined by
φ(x) = max(0, x), ∀ x ∈ R (see Fig. 2.4), is used as the activation function applied
to each connection. The output of a unit is scaled by the connecting weight and fed
forward to be an input to the units in the next layer of the network. This implies a
direction of information processing, hence the MLP is known as a FFNN. Given an
input vector x, the output y at frame n is given by:

y[n] = φ(Wx[n] + β), (3.6)

where W and β are the weight matrix and bias, respectively. By selecting a suitable
set of connecting weights and transfer functions, it has been shown that a multilayer
perceptron can approximate any smooth, measurable function between the input
and output vectors [Hornik, Stinchcombe, and White 1989].

The proposed network consists of a 16 unit hidden layer and it is been implemented
with the code provided by [Huang et al. 2015] (which can be found on-line1). At
frame n the input x[n] is the concatenation of features from a mixture within a win-
dow. The magnitude spectra is obtained with a 1024 analysis window for a 1024 FFT
and 50% overlap. This network contains 25,666 trainable parameters.

Given the output predictions ỹ1 and ỹ2 from the original sources y1 and y2, is a com-
mon practice to optimize the parameters by minimizing the squared error between
them [Huang et al. 2014]:

JMSE = ‖y1 − ỹ1‖
2
2 + ‖y2 − ỹ2‖

2
2, (3.7)

where ‖ · ‖2 is the l2 norm between the two vectors.

However, previous research [Huang et al. 2015] suggests a slightly modified version
of (3.7) where a γ factor is introduced as follows:

1 https://github.com/posenhuang/deeplearningsourceseparation

https://github.com/posenhuang/deeplearningsourceseparation
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JR = ‖y1 − ỹ1‖
2
2 − γ‖y1 − ỹ2‖

2
2 + ‖y2 − ỹ2‖

2
2 − γ‖y2 − ỹ1‖

2
2. (3.8)

The MLP model has been optimized by back-propagating the gradients through time
with respect to the objectives [Bishop 1995] for 200 iterations with a γ value of 0.05.
The L-BFGS algorithm is used to train the models from normalized random initial-
ization. Feedforward connections are initialized randomly with the initialization
scheme proposed by [Hochreiter et al. 2001], with the following uniform distribu-
tion:

U

(
−
√

6

nin + nout
,

√
6

nin + nout

)
. (3.9)

nin refers to the number of hidden neurons in the previous layer and nout refers to
the number of hidden neurons in the forthcoming layer.

Bias weights are initialized to zero. This initialization is the one proposed by default
in [Huang et al. 2014] code.

3.1.3 DRNN

This is a particular case of artificial NNs [Kriesel 2007] where connections between
units form a direct loop, meaning that they can consider temporal context when
training and testing. The general scheme of a DRNN can be defined as follows.
Given an L hidden layer DRNN with the recurrent connection at layer l, the lth
hidden activation at frame n is defined as:

hl[n] = φl(Wl
rech

l[n− 1] + Wlhl−1[n] + βl), (3.10)

h1[n] = φ1(W1
rech

1[n− 1] + W1x[n] + β1), (3.11)

and the output, y[n], can be defined as:

y[n] = WLhL−1[n], (3.12)

where x[n] is the vectorial representation of (3.2) containing F frequency bins of the
mixture signal’s magnitude spectrum at frame n, φl is an element-wise non-linear
function (in this case a ReLU) and Wl is the weight matrix for the lth layer.

[Huang et al. 2014] obtained best results when using a deep recurrent architecture
based on 3 hidden layers where the second is recurrent. Each hidden layer has 1000
units characterized by a RELU non-linear function, the output layer is a linear layer
modeling two sources (see Fig. 3.2): denoted as ŷ1[n] and ŷ2[n].

Once the network estimated the desired target sources, a time-frequency mask was
applied to the output source layer (see formulas 3.13 and 3.14). Thus imposing that
the sum of the predictions is equal to the original mixture.
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ỹ1[n] =
|ŷ1[n]|

|ŷ1[n]|+ |ŷ2[n]|
� x[n], (3.13)

ỹ2[n] =
|ŷ2[n]|

|ŷ1[n]|+ |ŷ2[n]|
� x[n]. (3.14)

x[n] refers to the input magnitude spectrum at frame n, � denotes element-wise
matrix multiplication and | · | is the absolute value operator.

Estimated sources

Hidden layers

Input layer

hl[n− 1] hl[n+ 1]

x[n]

h1[n]

h2[n]

hL−1[n]

hL[n]

ŷ1[n] ŷ2[n]

· · ·

· · ·

· · ·

· · ·

· · · · · ·

...
...

FIGURE 3.2: Baseline DRNN architecture based on the work by
[Huang et al. 2014].

The implemented algorithm is based on the same code as the MLP [Huang et al.
2014]. The architecture proposed consists of 3 hidden layers with 1000 units each.
This architecture presents a recurrence of three frames on the second hidden layer,
also referred as a three frame context window. The network takes a 1024 point mag-
nitude spectra as input, extracted from the audio signal through a 1024 sample raised
sine window with a 50% overlap. This DRNN contains 5,569,026 trainable weights.

The training is achieved by minimizing (3.8) like in the case of the MLP for 400
iterations. In this case the recurrent connections are initialized with the initialization
scheme proposed by [Hochreiter et al. 2001] but smaller:

U

(
−
√

6

3 · nin
,

√
6

3 · nin

)
. (3.15)
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3.1.4 DCAE

A DCAE is a special case of DAE which performs dimensionality reduction by taking
advantage of the characteristic operations involved in CNNs. A DAE consists of two
parts, a coder and a decoder, which can be referred to as functions such that:

ε : RF → RFc

σ : RFc → RF

ε, σ = argmin
ε,σ
‖x− (ε ◦ σ)x‖2, (3.16)

where F and Fc are the length of the input and code, respectively.

Fig. 3.3 shows a schematic of a simple auto encoder, similar to a fully connected
DNN with an input layer, 3 hidden layers and an output layer.

x −→

...

d

Coder

Code

Decoder

−→ y

...

...

...
...

FIGURE 3.3: Schematic representation of a deep auto encoder (see eq.
3.16) with three fully connected hidden layers.

The coder generates a code for each frame n as follows:

d[n] = φ(Wx[n] + β), (3.17)

where φ(·) is a ReLU, d[n] is a vector containing the activation values of the coded
input, x[n] is an input vector, β is the vector containing the unit biases and W are the
trainable weights of the encoder. Then, the decoder applies the following transfor-
mation to obtain the output of the network:

y[n] = φ(W’d[n] + β′), (3.18)

where β′ and W’ are the biases and trainable weights for the decoder.
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The here proposed DCAEs are fed with the mixture input signal X containing F fre-
quency bins and N time frames, which provide time context to the network. The
input feature map will now start reducing its size in the encoder part, which is com-
posed of repetitions of convolutional layers and pooling layers, generating a code
in a fully connected layer, as shown in Fig. 3.4. The convolutional layers consist of
a set of filters that extract features from their input layers, the pooling is chosen to
be max-pooling [Scherer, Müller, and Behnke 2010]. Max-pooling does the down-
sampling of the latent representation by a constant factor by taking the maximum
value within a certain scope of the mapping space and generates a new mapping
space with a reduced dimension. The fully connected layer behaves like the layers
found in a typical MLP. The decoder part consists of repetitions of deconvolution
and unpooling layers, providing a nonlinearity layer at the output. In this work, the
data, as well as the performed operations are two-dimensional. This means that the
convolution of r A × B filters over an input will produce r 2D outputs. The (j, k)
element obtained after the operation is given by:

aj,k = φ
(
β +

A∑
l=1

B∑
m=1

wl,mxj+l,k+m

)
. (3.19)

In other words, the convolutional layer computes the activation of a feature of di-
mensions A × B across different regions of the input layer. The mapping from the
input layer to the convolutional layer is often called a feature map and the shared
weights and the bias unit are termed as the kernel. Since each of these kernels is
detecting one feature over the input layer, the convolutional layer usually includes
more than one kernel or feature map. CNNs have extensively been used for image
classification including the MNIST handwritten digit set [Krizhevsky, Sutskever,
and Hinton 2012]. One of the biggest advantages of using CNNs is that memory
and resources required are lower than those used by a regular fully connected NN,
as the weights and biases across hidden layers are shared.

The spatial distribution of the convolving operations is determined by a parameter
called stride specifying how much the filter (AKA kernel) slides in space between
each operation.

After convolving the whole input, pooling layers are introduced, by eliminating
non-maximal values, it reduces computation for upper layers. The different layers
are described using their hyper-parameters. The convolutional layers are character-
ized by specifying the number of kernels r, its shape A × B and its stride S1 × S2.
The pooling will only be described by its size p1 × p2 as the pooling method will
always be max-pool. With this notation, the first element of any parameters’ shape
will cover the frequency dimension and the second element will cover the temporal
dimension. Finally, the fully connected layers are characterized by the number of
units they contain. In this research two different DCAEs have been trained:

• DCAE1: This architecture consists of 2 convolutional layers, a pooling layer
and a fully connected layer acting as a bottleneck. Table 3.1 shows the numeric
values of each hyper parameter.

The idea behind the shape of the first kernel is to focus only on the timbre
properties of the input features, while the second convolution takes care of the
dynamical behavior of the signal by introducing a time context of 20 frames
after the first convolution.
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FIGURE 3.4: DCAE1 architecture for audio SS.

TABLE 3.1: DCAE1 Topology

Type Kernel Stride Number of Filters
Conv 1×50 1×3 50
Pool 1×2 - -
Conv 10×20 1×1 60

Fully Connected - - 256
Number of parameters: 206,839,778

• DCAE2: This architecture consists of only one convolutional layer and a fully
connected layer, as shown in Table 3.2. In this case, the architecture provides
only one convolution, where timbre and temporal feature extraction is per-
formed.

The input X of the network, given by (3.3), is obtained by stacking T frames of 1024
frequency bins with a 1024 sample window and 50% overlap. The parameter T refers
to the time context in which the network is working and in this research has been set
to 30 frames based on observations on the algorithms’ performance.

The networks were trained by updating the weights using mini-batch gradient de-
scent (MBSGD) with the ADADELTA algorithm [Zeiler 2012] to minimize a slightly
modified version of (3.8):

JC = 2αL1 + αL2 − γL12 − γL21, (3.20)
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TABLE 3.2: DCAE2 Topology

Type Kernel Stride Number of Filters
Conv 20×5 1×1 5

Fully Connected - - 64
Number of parameters: 20,798,346

where,

L1 = ‖Y1 − Ỹ1‖22,
L2 = ‖Y2 − Ỹ2‖22,
L12 = ‖Y1 − Ỹ2‖22,
L21 = ‖Y2 − Ỹ1‖22. (3.21)

In this study α = 0.09 and γ = 0.05. The batch size has been set to 20 training sam-
ples and iterated through 100 epochs using a NVIDIA TESLA k40 as an accelerated
processor unit.

During this study, several objective experiments regarding DCAEs were conducted
in order to select the appropriate architectures to be tested with subjects. The results
provided by these experiments are presented in Appendix C.

3.2 Evaluation

This section presents the evaluation methods carried out during this study. These
will involve objective evaluation methods based on existing standards and percep-
tual experiments. The evaluation aims at three different goals:

• Assess each SS algorithm’s performance.

• See the relation between the obtained objective results with the subjective re-
sults.

• Evaluate the trade-off between generalization capacity and complexity for each
algorithm.

The last goal has to do with a very important problem involved in deep learning
techniques which is the generalization. This phenomenon is investigated in this
thesis by proposing two evaluation scenarios:

• Ideal case: test set belongs to the training data set’s same library.

• General case: test set will not belong to the training data set.

These two scenarios will illustrate how the different multi-track estimation strategies
generalize.
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3.2.1 Objective Evaluation

The SS quality is quantified by the Source-to-Distortion Ratio (SDR), the Source-to-
Artifacts Ratio (SAR), and the Source-to-Interference Ratio (SIR). The computation
of these values requires the assumption that the introduced degradation is a combi-
nation of errors coming from noise, artifact and interference factors:

etotal(t) = enoise(t) + eartifacts(t) + einterference(t), (3.22)

where einterference(t), enoise(t), eartifacts(t) are the interferences, noise, and artifacts
error terms, respectively. Now the estimated source can decomposed as a combina-
tion of the original source starget(t) and the introduced errors:

s̃target(t) = starget(t) + etotal(t). (3.23)

These error terms are computed by using the BSS Eval Toolbox [Vincent, Gribonval,
and Févotte 2006]. The way the original signal is decomposed in these four terms is
described in the following lines.

Let us denote in the following 〈a, b〉 =
∑T−1

t=0 a(t)b̄(t) the inner product between
two possibly complex-valued signals a and b of length T , where b̄ is the complex
conjugate of b, and ‖a‖2 := 〈a, a〉 the energy of a.

When A is a time-invariant instantaneous matrix and when the mixture is separated
by applying a time-invariant instantaneous matrix W, ŝj can be decomposed as:

ŝj = (WA)jjsj +
∑
j′ 6=j

(WA)jj′sj′ +
m∑
i=1

Wjini. (3.24)

Since (WA)jj is a time-invariant gain, it seems natural to identify the three terms
of this sum with starget, einterf and enoise respectively (eartif = 0 here). However,
equation 3.24 cannot be used as a definition of starget, einterf , enoise and eartif since
the mixing and demixing systems are unknown. Also the two first terms of 3.24 may
not be perceived as separate sound objects when a nonwanted source sj′ is highly
correlated with the wanted source sj .

Instead, the proposed decomposition is based on orthogonal projections. Let us de-
note Π{y1 · · · , yk} the orthogonal projector onto the subspace spanned by the vectors
{y1 · · · , yk}. The projector is a T × T matrix, where T is the length of these vectors.
Considering the three orthogonal projectors

Psj := Π{sj}, (3.25)
Ps := Π{(sj′)1≤j′≤n}, (3.26)

Ps,n := Π{(sj′)1≤j′≤n, (ni)1≤i≤m}. (3.27)

And decomposing them ŝj as the sum of the four terms
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starget := Psj ŝj , (3.28)
einterf := Psŝj − Psj ŝj , (3.29)
enoise := Ps,nŝj − Psŝj , (3.30)
eartif : ŝj − Ps,nŝj . (3.31)

The computation of starget is straightforward since it involves only a simple inner
product: starget = 〈ŝj , sj〉sj/‖sj‖2. The computation of einterf is a bit more complex.
If the sources are mutually orthogonal, then einterf =

∑
j 6=j′〈ŝj , sj′〉sj′/‖sj′‖2. Other-

wise, using a vector c of coefficients such that Psŝj =
∑n

j′=1 c̄jj′sj′ = cHs where (·)H

denotes Hermitian transposition, then c = R−1ss [〈ŝj , sj′〉, · · · , 〈ŝj , sn〉]H where Rss is
the Gram matrix of the sources defined by (Rss)jj′ = 〈sj , sj′〉. The computation of
Ps,n proceeds in a similar fashion, however most of the time it can be assumed that
the noise signals are mutually orthogonal and orthogonal to each source, so that
Ps,nŝj ≈ Psŝj +

∑m
i=1〈ŝj , ni〉ni/‖ni‖2.

Starting from the decomposition of sj , one can now define numerical performance
criteria by computing energy ratios as follows:

SDR = 10 log10
‖starget(t)‖2

‖etotal(t)‖2
, (3.32)

SIR = 10 log10
‖starget(t)‖2

‖einterf (t)‖2
, (3.33)

SAR = 10 log10
‖starget(t) + einter(t) + enoise(t)‖2

‖eartifacts‖2
. (3.34)

All these values are expressed in dBs and are defined as their mean value weighted
by the length of the evaluated music segment. Higher SDR/SAR/SIR values will
result in a better separation quality.

These four measures are inspired by the usual definition of the SNR, with a few mod-
ifications. For instance the definition of the SNR involving the term starget+einterf at
the numerator aims at making it independent of the SIR. Indeed consider the case of
an instantaneous noisy 2× 2 mixture where ŝ1 = εs1 + s2 + enoise with ‖εs1‖ � ‖s2‖
and ‖enoise‖ ≈ ‖εs1‖. Then ŝ1 is perceived as dominated by the interfering sig-
nal, with the noise energy making an insignificant contribution. This is consistent
with SIR ≈ −∞ and SNR ≈ ∞ using the previous definitions. A SNR defined
by 10log10(‖starget‖2/‖snoise‖2) would give SNR ≈ 0 instead. Similarly, the SAR is
independent of the SIR and the SNR since the numerator in 3.34 includes the inter-
ferences and noise terms as well.

Note that the numerical precision of the measures is lower for high-performance val-
ues than for low ones. For example, a high SAR means that the denominator in 3.34
is very small, so that small constant-amplitude errors in starget (due to signal quanti-
zation) result in large SDR deviations. In particular, when the signals corresponding
to sound files, the precision of the results depends on the number of bits per sample.
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3.2.2 Subjective Evaluation

The audio was played through a speaker (Genelec 8240 APM) while the listener
was sitting at a distance of 1 m from it in an acoustically treated room. The sound
pressure level was set to 60 dB(A) at that distance.

Subjects (see Appendix A) had no time limits in order to finish the different tests
and were allowed to have a break whenever they desired. After the test, subjects
were asked to fill a form providing information about their musical background or
knowledge and music genre preference.

• Pairwise comparison: This experiment was designed to determine how suscep-
tible CI recipients are to the degradation of the songs after the SS process.
This was achieved by comparing processed and unprocessed music excerpts
in pairs. The aim of this perceptual experiment was to provide a benchmark
which related the observed algorithm preference on CI subjects as a function
of the measured distortions [Pons et al. 2016]. The remix pre-set was set to a
VIR of 6 dB as it has been shown that is the one preferred by CI users [Pons
et al. 2016].

TABLE 3.3: Pairwise Comparison Pairs.

Pairwise Comparison

VMR
Mixing Condition
Song A Song B

6 dB
Original MT NMF

DCAE2 DRNN2
DCAE1 DRNN1

Pairs shown in Table 3.3 were randomly presented with a VIR of 6 dB three
times for each of the songs listed in Table 3.4 (6 songs x 3 repetitions x 3 com-
parisons = 54 pairs). Each excerpt has a duration of 5 seconds and can be
played multiple times.

TABLE 3.4: Music tracks used in the pairwise comparison.

ID Song
161V 10161_verse (iKala)
171V 10171_ verse (iKala)
174C 10174_chorus (iKala)
Hall Hallelujah (Leonard Cohen)
Jude Hey Jude (Excerpt 2) (The Beatles)
Mic Michel (Anouk)

Each subject was asked to choose the most enjoyable song (A or B) through the
interface shown in Fig. 3.5. When both songs were equally enjoyable, partici-
pants were asked to find any detail that would allow them to decide whether
they prefer A or B. If they were not capable of finding it, they were asked to
guess. A and B were the same song with the same mixing configuration but
one of them was obtained by summing the two estimated sources provided by
the SS algorithm while the other was obtained by mixing the original multi-
tracks. The order of the mix assigned to song A or B was randomized. The
estimated multi-tracks were obtained applying NMF as the SS algorithm.
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FIGURE 3.5: Pairwise comparison GUI. Subjects can listen and choose
which song do they enjoy most. GUI adapted from [Pons et al. 2016].

• MUSHRA: This experiment was designed to obtain a relative SS separation
quality score with respect to the original mix. For this test, 6 different 5-second
song excerpts have been tested; 50% from the iKala database and the other 50%
from the music material used in [Buyens et al. 2014]. Table 3.5 shows the used
song excerpts which were chosen to cover a wide range of audio SS distortions.
Each song is presented once with a VIR of 6 dB, making a total of 6 MUSHRA
tests.

TABLE 3.5: Music tracks used in the MUSHRA test.

ID Song
161C 10161_chorus (iKala)
171C 10171_chorus (iKala)
174V 10174_verse (iKala)
Jud Hey Jude (Excerpt 1) (Leonard Cohen)
Jude Hey Jude (Excerpt 2) (The Beatles)
Mic Michel (Anouk)

In each test, the subject is presented with eight versions of an excerpt; seven to
be evaluated and the reference. They were first asked to listen to the reference
(target) and proceed by addressing the global quality of the other seven by
moving a slider which assigned a score between 0 and 100 to each song. They
were imposed to set at least one of the sliders to 100. The seven tested songs
include a hidden reference and an anchor. The other five songs correspond
to mixes after performing SS with each of the algorithms investigated in this
thesis. The interface presented (see Fig. 3.6) to the subjects can be found on-
line2.

The reference corresponds to the original multi-track mixed with a 6 dB VIR.
The anchor was created by low-pass filtering the target reference signal with
a linear phase FIR filter. The filter was designed imposing 3.5 kHz passband
edge frequency, 0.01 dB peak to peak ripple, 80 dB stop-band attenuation and
setting 20% of the obtained coefficients to zero.

2http://c4dm.eecs.qmul.ac.uk/downloads/index.html#mushram

http://c4dm.eecs.qmul.ac.uk/downloads/index.html#mushram
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FIGURE 3.6: MUSHRA GUI. Subjects can listen and rate the quality
of each sing excerpt. GUI adapted from MUSHRAM2 (Queen Mary

University of London).

For more details on the experiment’s settings, the reader should refer to Appendix
B.

3.3 Statistical Analysis

3.3.1 Chi-squared Test

The Chi-Square (χ2) test of Independence is used to determine if there is a signifi-
cant relationship between two nominal (categorical) variables. The frequency of one
nominal variable is compared with different values of the second nominal variable.
The data can be displayed in an R × C contingency table, where R denotes the row
and C is the column.

Suppose that n observations in a random sample from a population are classified
into kmutually exclusive classes with respective observed numbers xi (∀ i = 1, · · · , k),
and a null hypothesis gives the probability pi that an observation falls into the ith
class. So we have the expected numbers mi = n · pi, where

k∑
i

pi = 1, (3.35)

k∑
i

mi =
k∑
i

xi = n. (3.36)

[Pearson 1900] proposed that, under the circumstance of the null hypothesis being
correct, as n → ∞ the limiting distribution of the quantity, which is given below, is
the χ2 distribution.
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X2 =

k∑
i=1

(xi −mi)
2

mi
=

k∑
i=1

x2i
mi
− n. (3.37)

3.3.2 ANOVA

The one-way analysis of variance (ANOVA) is used to determine whether there are
any statistically significant differences between the means of three or more indepen-
dent (unrelated) groups.

ANOVA compares the means between the groups you are interested in and deter-
mines whether any of those means are statistically significantly different from each
other. Specifically, it tests the null hypothesis:

Ho : µ1 = µ2 = µ3 = · · · = µk, (3.38)

where µ is the group mean and k the number of groups. If, however, the one-way
ANOVA returns a statistically significant result, the alternative hypothesis (HA) is
accepted, which is that there are at least two group means that are statistically sig-
nificantly different from each other.

It is important to realize that the one-way ANOVA is an omnibus test statistic and
cannot tell you which specific groups were statistically significantly different from
each other, only that at least two groups were. To determine which specific groups
differed from each other, you need to use a post hoc test.

3.3.3 Post hoc Test

Post hoc tests are designed for situations in which the researcher has already ob-
tained a significant omnibus F-test with a factor that consists of three or more means
and additional exploration of the differences among means is needed to provide
specific information on which means are significantly different from each other.

During this work, the Bonferroni correction will be used as the post hoc test. The
Bonferroni correction compensates for that increase by testing each individual hy-
pothesis at a significance level of α/m, where α is the desired overall alpha level and
m is the number of hypotheses.

The Bonferroni correction can be interpreted as being the correction that makes the
probability of incorrectly rejecting the null hypothesis in at least one of n n inde-
pendent tests to be the chosen overall significance threshold. Indeed, given inde-
pendence this probability is αall = 1 − (1 − αone)n, which for n × αone � 1 can be
simplified to αall ≈ n× αone.

Let H1, · · · , Hm be a family of hypotheses and p1, · · · , pm their corresponding p-
values. Letm be the total number of null hypotheses andm0 the number of true null
hypotheses. The familywise error rate (FWER) is the probability of rejecting at least
one true Hi, that is, of making at least one type I error. The Bonferroni correction
rejects the null hypothesis for each pi ≤ α/m (where α is the error probability and in
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this study is set to 0.05) , thereby controlling the FWER at ≤ α. Proof of this control
follows from Boole’s inequality, as follows:

FWER = P

{
m0⋃
i=1

(
pi ≤

α

m

)}
≤

m0∑
i=1

{
P
(
pi ≤

α

m

)}
= m0

α

m
≤ mα

m
= α. (3.39)

This control does not require any assumptions about dependence among the p-
values or about how many of the null hypotheses are true.

The Bonferroni correction can be used to adjust confidence intervals. If one estab-
lishesm confidence intervals and wishes to have an overall confidence level of 1−α,
each individual confidence interval can be adjusted to the level of 1− α/m.

3.4 Audio Material

Two sets of music data are used in this study; one set for training and testing of the
SS algorithms and the other just for testing.

3.4.1 Training and Testing Data Set

The iKala Chan et al. 2015 dataset3, which is composed of 252 30-second excerpts
sampled from 206 iKala songs, is used in the training stage. The music accompani-
ment and the singing voice are recorded on the left and right channels respectively,
a convenient format for training the network. 50% of this dataset was dedicated to
the training of the network.

3.4.2 Test Data Set

The music excerpt set selected for the testing is conformed by the songs shared
kindly by Buyens et al. 2014 or by the remaining 50% of the iKala dataset.

All songs were matched in loudness by applying the corresponding gain (computed
with the ReplayGain4) leaving the original track mix intact.

3http://mac.citi.sinica.edu.tw/ikala/
4https://hydrogenaud.io/index.php/topic,85536.msg736023.html#msg736023

http://mac.citi.sinica.edu.tw/ikala/
https://hydrogenaud.io/index.php/topic,85536.msg736023.html#msg736023
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Chapter 4

Results

This chapter covers the quantitative results provided by the objective measurements
and by the designed perceptual experiments.

4.1 Objective Results

4.1.1 Ideal Case

Fig. 4.1 presents the global SDR, SAR and SIR values averaged across the testing set
from the ideal case, which is formed by 126 iKala song excerpts. Both DCAEs show
the best mean values. The other three algorithms, on the other hand, show similar
performance, but lower scores than the DCAEs.
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FIGURE 4.1: Mean SDR, SIR and SAR across songs for the ideal case
scenario. Error bars indicate the standard deviation.

Table 4.1 shows the numerical values corresponding to the bars shown in Fig. 4.1.
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TABLE 4.1: Mean and standard deviation for the SDR, SIR and SAR
values expressed in dB corresponding to the implemented algorithms

in the ideal case scenario.

Ideal Case
Algorithm SDR SIR SAR

DCAE1 11.39 ± 3.62 17.05 ± 4.68 13.21 ± 3.21
DCAE2 9.70 ± 4.33 14.51 ± 5.45 12.11 ± 3.53
DRNN 5.38 ± 2.13 8.98 ± 2.94 8.62 ± 1.30
MLP 4.27 ± 2.19 2.27 ± 2.62 8.26 ± 1.62
NMF 5.26 ± 2.3 8.41 ± 0.9 8.73 ± 3.5

The performance of both DCAE1 and DCAE2, as measured by the normalized SDR
(NSDR), is similar to the best scores obtained in the MIREX 2016 singing voice separa-
tion challenge1 [Chandna et al. 2017] (see Table 4.2).

TABLE 4.2: Mean values of Normalized SDR expressed in dB ob-
tained from the iKala test set.

NSDR
Architecture Target (Vocals) Target (Music)
DCAE1 6.911 11.133
DCAE2 5.210 9.431
P. Chanda et al., 2016 5.2891 9.668

4.1.2 General Case

Fig. 4.2 shows the mean global SDR, SAR and SIR values for each algorithm trained
with the iKala but now tested using the tracks provided by [Buyens et al. 2014]. This
case shows generalization problems for the two DCAEs and NMF. However, the
results of the DRNN and MLP are consistent with the ideal case.

Table 4.3 shows the numerical values corresponding to the bars shown in Fig. 4.2.

TABLE 4.3: Mean and standard deviation for the SDR, SIR and SAR
values expressed in dB corresponding to the implemented algorithms

in the general case scenario.

General Case
Algorithm SDR SIR SAR

DCAE1 -1.53 ± 6.27 4.43 ± 7.48 2.60 ± 3.85
DCAE2 -3.32 ± 5.53 1.09 ± 6.11 2.46 ± 3.66
DRNN 5.27 ± 4.13 9.81 ± 5.80 9.73 ± 2.01
MLP 4.43 ± 3.01 6.54 ± 3.70 9.99 ± 1.60
NMF -5.30 ± 2.3 3.22 ± 0.9 -2.96 ± 3.5

The values achieved by the DRNN and MLP are comparable with the ones obtained
in previous research [Pons et al. 2016].

1http://www.music-ir.org/mirex/wiki/2016:Singing_Voice_Separation_
Results

http://www.music-ir.org/mirex/wiki/2016:Singing_Voice_Separation_Results
http://www.music-ir.org/mirex/wiki/2016:Singing_Voice_Separation_Results
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FIGURE 4.2: Mean SDR, SIR and SAR across songs for the general
case scenario. Error bars indicate the standard deviation.

4.2 Subjective Results

4.2.1 Pairwise Comparison

Fig. 4.3 presents the preference rating percentage and the corresponding SDR value
(see Table 4.4) of each excerpt described in Table 3.4. The green shaded area corre-
sponds to the ratings having a p > 0.05 as estimated from the chi-squared test (with
H0: equal preference for both conditions). The black line corresponds to a fitted
linear model which intersects with the minimum value of the non-preference area.
This intersection point is indicated by the horizontal red dotted line and provides
the distortion above which CI users present no significant preference between the
original and the processed multi-track, i.e. SDR=0.14 dB.

For the data analysis, the χ2 test was used to determine whether the preference for
the pre-sets proposed for CI users changed when using SS or not. The test was
applied as a goodness of fit test where theH0 was set to be the preference percentage
distribution of Original MT vs SS. The χ2 test measured how well the preference
percentage distribution of SS mix vs Original MT fitted the H0 distribution. This
test provides a measure of how much distortions and artifacts in the estimated SS
influenced the user mixing preferences.

Fig. 4.4 shows the preference rating for SS as a function of the achieved SAR value
(see Table 4.4). This figure shows the level of introduced artifacts above which CI
users present no clear preference between the original multi-track and the processed
one. This value corresponds to SAR=3.63 dB.

A significance test for each linear regression model was performed in order to quan-
tify how well a linear fit represents the data. The SDR model provides a p = 0.027
and a R2 = 0.6114 (top left of Fig. 4.3), the SAR model gives a p = 0.018 and a
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FIGURE 4.3: Results facing the SDR objective measures with the pref-
erence ratings for the first condition (see Table 4.4).

TABLE 4.4: SDR and SAR values expressed in dB corresponding to
the benchmark.

ID SDR SAR
10161V 3.76 2.97
10171V 3.53 8.98
10174C 10.48 12.03

Jud 0.98 6.44
Jude -9.81 -3.8
Mic 0.38 7.17

Hall [Pons et al. 2016] 11.97 12.04
Befo [Pons et al. 2016] 3.96 4.03
Mic2 [Pons et al. 2016] 9.88 9.90
Jud2 [Pons et al. 2016] 3.67 3.68
Jude [Pons et al. 2016] 6.91 7.20
Dock [Pons et al. 2016] 3.71 4.05

R2 = 0.6033 (top left of Fig. 4.4). It can be observed that there is a significant cor-
relation between the SDR/SAR and the preference ratings, complementing and ex-
tending thus the benchmark proposed by previous research [Pons et al. 2016]. Data
from [Pons et al. 2016] (last 6 songs in Table 4.4) has been replotted together with the
collected data during the present study. Increasing the amount of data allows us to
improve the benchmark for CI users.

the SIR is disregarded, as this study is dealing with the remixing of the different
sources, and therefore, the interference coming from other sources mutually com-
bined are difficult to perceive.

Figure 4.5 shows the score preference between the mixes separated by DCAE1 vs.
DRNN (Figure 4.5 a)) and by DCAE2 vs. MLP (Fig. 4.5 b)). The confidence re-
gion (α < 0.05) is defined by the regions outside the area defined by the two green
horizontal lines. This plot shows a significant preference for both DRNN (prefer-
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FIGURE 4.4: Results facing the SAR objective measures with the pref-
erence ratings for the first condition (see Table 4.4).

ence=74.92%) and MLP (preference=90%) for the song Jude, which is the only one
presenting negative SDR and SAR for both DCAEs. It also shows significant prefer-
ence for Jud in Fig. 4.5 a) and for 174C in Fig. 4.5 b) for both DCAEs. These will be
not discussed since the lower bound of the distortions and artifacts tolerance are of
interest.

This part of the pairwise comparison serves as a confirmation of the benchmark
in most of the tested cases. However, there are two situations where the benchmark
fails to predict the preference scores; for the excerpt 10174C when comparing DCAE2
vs. MLP where no clear preference should be obtained, a clear preference for the
DCAE2 is observed, which can be due to the large difference between the objective
values provided by the algorithms. Furthermore, for the excerpt Jud, a significant
preference for the MLP is expected but not observed.

TABLE 4.5: SDR and SAR values expressed in dB corresponding to
the DCAE1 and DRNN next to the preference ratings.

DCAE1 DRNN DCAE1 vs. DRNN
SDR SAR SDR SAR % Preference

1161V 9.48 10.67 7.47 10.09 43.3% - 56.6%
1171V 7.59 9.28 2.74 6.57 56.6% - 43.3%
1174C 16.34 18.05 3.70 8.53 66.6% - 33.3%

Jud 1.60 2.77 5.31 6.38 73.3% - 26.6%
Jude -3.57 -2.05 9.94 10.94 10.0% - 90.0%
Mic 4.56 5.45 9.35 11.94 46.6% - 53.3%

Tables 4.5 and 4.6 show the preference rating next to the physical measures (SDR and
SAR). The objective values which do not meet with the minimum recommended val-
ues by the benchmark are highlighted in red. The statistically significant preference
scores are also highlighted in color indicating the preferred algorithm preference
percentage in green and the nonpreferred algorithm percentage in red.
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FIGURE 4.5: NN preference score for each tested song.

TABLE 4.6: SDR and SAR values expressed in dB corresponding to
the DCAE2 and MLP next to the preference ratings.

DCAE2 MLP DCAE2 vs. MLP
SDR SAR SDR SAR % Preference

1161V 11.07 11.88 6.53 10.29 63.3% - 36.6%
1171V 9.91 11.74 1.57 5.87 53.3% - 46.6%
1174C 17.25 19.11 2.96 8.31 80.0% - 20.0%

Jud -2.20 0.50 5.03 6.50 63.3% - 36.6%
Jude -6.63 -3.24 8.30 9.27 23.3% - 76.6%
Mic 1.80 3.78 7.84 10.64 43.3% - 56.6%

In summary, the benchmark provides a distortion-artifact working point threshold
below which the SS degrades the signal to a point where CI users perceive it; (SDR,
SAR) ≤ (0.14, 3.63)dB.

4.2.2 MUSHRA

For this test, a robust statistical analysis was adopted to minimize the potential
effects of outliers and non-normality. Means were replaced with the more robust
trimmed means, which are calculated by rank ordering the data, removing the high-
est and lowest values, and calculating the mean of the remaining values. In this
study, the mean is trimmed by 25% due to the high variability CI users present
[Aronoff et al. 2011].

The significance of the collected MUSHRA scores is determined by applying the
Analysis of Variance (ANOVA) model. The result is considered significant if p is less
than 0.05.

Fig. 4.6 presents the trimmed mean MUSHRA scores obtained from the evaluation
of the songs belonging to the iKala dataset.
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FIGURE 4.6: Trimmed mean values for the MUSHRA scores from NH
and CI users for the ideal case scenario. Error bars indicate the stan-

dard deviation.

TABLE 4.7: Individual and mean SDR and SAR values expressed in
dB corresponding to songs tested with the MUSHRA for the ideal

case scenario.

DCAE1 DCAE2 DRNN1 MLP NMF
ID SDR SAR SDR SAR SDR SAR SDR SAR SDR SAR

1161V 11.06 11.88 9.48 10.67 7.47 10.08 6.53 10.29 3.77 9.30
1171V 9.91 11.74 7.59 9.23 2.74 6.58 1.57 5.88 3.54 8.00
1174C 17.26 19.12 16.35 18.06 3.70 8.53 2.96 8.31 10.48 12.03
Mean 12.74 14.24 11.14 12.67 4.64 8.40 3.69 8.16 5.93 9.77

A correlation between the mean objective values (see Table 4.7) and the obtained
subjective results can be observed in most of the algorithms for both CI and NH
subjects. However, there is a disagreement in the case of the DRNN and the MLP.

To substantiate confidence on the results, an ANOVA test with factor "SS algorithm"
was performed. R-studio [RStudio Team 2015] statistics was used with a significance
level p = 0.05. No significant effect of algorithm on MUSHRA scores was found
neither for NH (F (1, 4) = 1.788, p = 0.134) nor for CI users (F (1, 4) = 0.483, p =
0.748). As a result, the factor did not have a significant influence on the subjective
scores, as expected from experiment 1, since all music mixes presented positive SDRs
and SARs, i.e wherein the none significance region of the proposed benchmark.

Fig. 4.7 presents the trimmed mean MUSHRA scores obtained from the evaluation
of the songs corresponding to the general case scenario set.

A correlation between the mean objective SDR and SAR values presented in Table
4.8 and the obtained subjective scores can be observed in the general case scenario.

In this case, the ANOVA analysis revealed a significant effect on MUSHRA scores
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FIGURE 4.7: Trimmed mean values for MUSHRA scores from NH
and CI users for the general case scenario. Error bars indicate the

standard deviation.

TABLE 4.8: Individual and mean SDR and SAR values expressed in
dB corresponding to songs tested with the MUSHRA for the general

case scenario.

DCAE1 DCAE2 DRNN1 MLP NMF
ID SDR SAR SDR SAR SDR SAR SDR SAR SDR SAR

Hall 2.60 7.52 0.94 7.04 4.20 8.84 2.53 9.30 -0.07 3.30
Jude -3.56 -2.05 -6.63 -3.24 9.94 10.94 8.30 9.27 -9.81 -3.81
Mic 4.56 5.45 1.80 3.78 9.35 11.94 7.84 10.63 0.38 7.17

Mean 0.86 2.05 -2.35 0.34 8.20 9.75 7.06 8.80 -2.82 3.27

for NH subjects (P (1, 4) = 4.11, p = 0.003), thus rejecting the null hypothesis. A
post-hoc test based on Tukey’s method [Tukey 1949] shows that the MLP presents
significantly higher scores than the DCAE (p = 0.007) and than NMF (p = 0.028). For
CI subjects an ANOVA showed a significant effect of SS algorithm on the MUSHRA
scores (F (1, 4) = 2.334, p = 0.05). However, a post-hoc test revealed that the pair
DRNN-NMF (p = 0.056) just missed significance and that the mean differences be-
tween other pairs being compared were not significant.

It is interesting to note the differences in the scores achieved by the reference and
anchor en each ideal and general case scenarios. While being subtle, is easy to see
that the reference is better detected by both CI and NH subjects in the general case
scenario due to the overall poor performance of the algorithms. This fact is also re-
flected in the anchor’s score provided by the CI users in this same case, which is
higher than in the ideal case. However, the anchor was perfectly detected by NH
listeners in both cases which indicates the much higher sensitivity to signal degra-
dation of the natural human hearing system.

These results indicate that NMF is the least preferred algorithm by both subject
groups while the DRNN and the MLP obtain higher scores.
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Chapter 5

Conclusions and Future Work

This chapter relates the data gathered during the SS experiments and the percep-
tual tests. The main conclusions and observations are described here following with
future work ideas.

5.1 Conclusions

This work has demonstrated that any SS algorithm which achieves an SDR and SAR
greater than 0.14 dB and 3.63 dB respectively, is suitable for remixing singing pop
western music for CI users. Using this benchmark, next to a MUSHRA test we pro-
pose an MLP for real-time audio SS implementation.

State-of-the-art SS algorithms have been evaluated for monaural singing voice en-
hancement in pop music for CI users. The evaluation has been performed from an
objective and subjective point of view by investigating how objective metrics (SDR,
SAR) relate to the preference of remixed songs using the original multi-tracks or the
estimated multi-tracks. Moreover, a MUSHRA test has been performed to assess the
perceptual quality ratings of remixed songs with different SS algorithms.

Objective results show that both DCAEs perform better than the MLP, the DRNN,
and NMF in the ideal case scenario. The performance achieved by these are com-
parable to the ones presented at the MIREX 2016 singing voice separation challenge1

[Chandna et al. 2017] (see Table 4.2). However, these complex networks, as well as
NMF, struggle to generalize, as shown in Fig. 4.2.

With the first perceptual experiment, a distortion artifact working point threshold
above which a SS algorithm would generate a mixture with a degradation difficult
to perceive for CI recipients was assessed. This working point was obtained through
the extension of the benchmark proposed by [Pons et al. 2016] (see Fig. 4.3 and
Fig. 4.4) and imposes the constraint of performing audio SS which achieves positive
SDRs and SARs, where both DRNN and MLP work in a generalized way.

The second perceptual experiment shows a significant effect of SS algorithm on
MUSHRA scores on both NH and CI users for the general case scenario. No sig-
nificant effects were observed for the ideal case scenario due to the general good SS
performance of the algorithms. Nonetheless, both subject groups provide a correla-
tion between the MUSHRA scores and the mean SDR and SAR values in both ideal

1http://www.music-ir.org/mirex/wiki/2016:Singing_Voice_Separation_
Results

http://www.music-ir.org/mirex/wiki/2016:Singing_Voice_Separation_Results
http://www.music-ir.org/mirex/wiki/2016:Singing_Voice_Separation_Results
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and general case scenarios, following a similar trend regarding the relative differ-
ence between scores and objective values.

Results lead to assume that the DRNN and MLP could be promising candidates for
general applications. In fact, considering real-time applications, the MLP could be a
reasonable choice, which despite having a slightly worse objective performance than
the DRNN, shows a robust behavior having thousand times less trainable parame-
ters while working above the minimum perceivable distortion-artifact threshold for
CI users.

5.1.1 Audio SS Algorithms

In this work, two different DCAEs, a DRNN, an MLP, and NMF have been imple-
mented in order to isolate the lead singing vocal from monaural western popular
music recordings.

Performance of the two DCAEs is similar to the performance achieved by state-of-
the art algorithms (see Table 4.2) when tested with data similar to the training data
but failed when changing the input dataset. Despite implementing regularization
methods such as including dropout layers into the network, the relative performance
of the DCAEs with respect to the other algorithms remained similar as shown in Ta-
bles 4.1 and 4.3. Further work has to be done regarding the generalization problems
these architectures present. However, this study conducted some research regard-
ing this generalization problems by adding a dropout layer between the last con-
volution and the fully connected layer (refer to Table C.7). The results show a big
improvement when testing the general dataset but a big drop in performance when
tested with the iKala dataset and hence this solution was not completely satisfactory.
Moreover, Appendix C shows all the conducted objective experiments showing the
performance of each of them next to the number of parameters contained in each
of the networks. It is easy to see that the difference in performance is subtle com-
pared to the difference in the number of trainable weights; however, it was decided
to implement the simplest and the more complex architectures to assess the percep-
tual impact on CI users due to the high range of objective values provided by the
DCAEs.

A similar problem arises when analyzing the results provided by NMF; the overall
performance is worse than the case of the DCAEs and it also presents generalization
problems. Due to this and its complexity, this algorithm is unlikely to be included in
a future investigation related to this study.

On the other hand, the DRNN and MLP behave in a consistent way through the
two test scenarios (ideal and general case) while presenting SDR and SAR values
comparable to previous research [Huang et al. 2014; Pons et al. 2016] when targeting
lead vocals.

The feature extraction used to construct the input of the networks was based on the
STFT which produces linearly spaced frequency data, which does not correspond to
human frequency perception. Moreover, big amount of frequency bins were used
at a sampling frequency of 44.1 kHz. These are not realistic parameters for a CI
sound processor, however; the aim of this study was to investigate the relationship
between physical metrics [Vincent, Gribonval, and Févotte 2006] and the subject’s
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perception. The interest in using high resolution (frequency wise) input data was to
obtain extreme values in these objective metrics.

These results are a motivation for further investigate these architectures in terms of
real implementation by simplifying the input feature map and maybe investigat-
ing some other forms of feature extraction such as through a gammatone filterbank
[Lyon, Katsiamis, and Drakakis 2010]. A specially good candidate for investigating
these aspects is the MLP, which is the one presenting the less degree of complexity
in terms of the number of parameters and computing operations.

5.1.2 Audio SS Perceptual Impact on CI users

The fact that that music simplification by means of re-mixing potentially improves
popular music enjoyment for CI users has been previously investigated [Buyens et
al. 2014; Pons et al. 2016] and confirmed by this work. It could be said that SS tech-
niques can be used for estimating the lead singing vocal and musical accompani-
ment in the context of CIs.

When the subjects were asked to choose between SS vs. MT; the pairwise compar-
ison provided the restriction of using SS algorithms that achieve a minimum SDR
and SAR values of 0.14 and 3.63 dB respectively. Those are the lower boundaries
estimated that determine when CI users would not perceive such errors in the vo-
cals when attenuating the instruments 6 dB. When subjects were asked to choose
between DCAE1 vs. DRNN and DCAE2 vs. MLP which presented different levels
of distortions and artifacts; the test confirmed the fact that CI users have a significant
preference for positive values of SDR and SAR.

When the tested subjects provided a score for each of the algorithms considering a
given reference, we observed that these scores followed a similar trend as the objec-
tive values given by the objective evaluation. This relation between the objective and
subjective evaluation is observed in both ideal and general case scenario; however,
the general case scenario shows significant effects on scores with factor "SS algo-
rithm" for both groups. This is likely to be because the difference in performance
between the algorithms in the general case scenario is higher than in the ideal case.

After the data gathered through these perceptual experiments, we concluded that
an MLP meets with the necessary characteristics to be further investigated in the CI
context.

5.2 Future Work

After assessing that SS techniques are suitable for remixing popular music for CI
recipients and that SS algorithmic complexity does not seem to play a big role, the
next natural step would be to extend a simple MLP to tackle stereo music SS and
then accomplish stereo real-time audio SS in less controlled environments e.g. live
music.

The feasibility of the real-time implementation of simple NNs has been confirmed
in the field of speech enhancement [Goehring et al. 2017]. Results obtained by this
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previous research have to be contrasted with the ones provided by these architec-
tures when dealing with more complex signals, such as singing music mixed with
background noise.

From the perceptual point of view, this thesis has confirmed that CI users find mu-
sic more enjoyable when enhancing the lead singing vocal in western pop music;
however, many opportunities for extending the scope of this thesis remain.

One of the next natural steps to take regarding subjective evaluation would be to
extend the proposed benchmark with more data points in order to obtain a more
accurate estimation of the minimum SDR and SAR values to aim at when imple-
menting SS algorithms. Similarly, as the MUSHRA test gave just significant results
in CI users it would make sense to, again, obtain more data extending the number
of tested subjects. Especially for the MUSHRA, where the number of comparisons
made is big in comparison to the number of tested subjects.

Finally, a model which predicts the CI user’s perceptual impact of the signal degra-
dation introduced by the SS process would be helpful to help to design the SS al-
gorithm. This could be achieved by relating the obtained objective and perceptual
results with the predictions made by existing models, i.e. the PEASS toolkit [Emiya
et al. 2011] and proposing an adaptation for CI users.
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Appendix A

Tested Subjects’ Profiles

TABLE A.1: Tested NH subjects.

ID Age Gender

NH01 19 Female
NH02 19 Female
NH03 19 Male
NH04 28 Female
NH05 27 Male
NH06 28 Female
NH07 29 Female
NH08 31 Male
NH09 28 Female
NH10 29 Male

TABLE A.2: Tested CI subjects.

ID Age Gender Etiology CI experience Mode

CI01 68 Male Genetic 22 Bilateral
CI02 48 Female Unknown unknown Unilateral (R)
CI03 81 Male Sudden 20 Bilateral
CI04 74 Female Unknown unknown Bilateral
CI05 82 Male Meningitis 10 Bilateral
CI06 68 Male Genetic 22 Bilateral
CI07 48 Female Unknown unknown Unilateral (R)
CI08 81 Male Sudden 20 Bilateral
CI09 74 Female Unknown unknown Bilateral
CI10 82 Male Meningitis 10 Bilateral
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Appendix B

Checklists for the Perceptual
Experiments

Checklist Experiment 1

Before patient arrives

• Set the Patient ID and Name into the software.

• Calibrate the system at comfort level using a sonometer, making sure the vol-
ume is set to 60 dB(A).

After patient arrives

• Not explain too many things. Just explain: different mixes will be presented.
Choose the most enjoyable.

• Prepare CI user by deactivating any special program on the device.

• Start test.

• Ask them to fill up a form to provide us with
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Checklist Experiment 2

Before patient arrives

• Check with the sonometer that the volume is set to 60 dB(A) for training part
(supposed comfort level).

After patient arrives

• Be careful on not explaining too many things. Just explain: score each pre-
sented music excerpt in terms of perceived quality relative to the reference,
where the reference represents a full 100 point score. Explain as well that at
least one of the sliders must be set to 100 as one of them is a hidden reference.

• In order for the to understand the procedure a demo is performed.

• Let them train for at least 10 minutes by listening to all of the music excerpts
they will be listening to.

• Start test.

• Ask them to fill up a form to provide us with information about their musical
background.
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Appendix C

DCAEs Objective Experiments

DCAE Experiment 1

• Topology:

TABLE C.1: DCAE_E_1 Topology

Type Kernel Stride Number of Filters
Conv 1×50 1×3 50
Pool 1×2 - -
Conv 10×20 1×1 30

Fully Connected - - 512
Number of parameters: 113,300,034

• Training parameters:

– Time context = 40

– Batch size = 30

– Epochs: 100

– α = 0.9

– β = 0.05

• Performance:

TABLE C.2: Mean and standard deviation for the SDR, SIR and SAR
values expressed in dB corresponding to the the first implemented

DCAE.

Ideal Case General Case
SDR SIR SAR SDR SIR SAR

11.17 ± 3.5 17.96 ± 4.71 12.59 ± 3.14 -2.47 ± 6.12 4.19 ± 7.91 1.49 ± 3.00
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DCAE Experiment 2

• Topology:

TABLE C.3: DCAE_E_2 Topology

Type Kernel Stride Number of Filters
Conv 1×30 1×1 20
Pool 1×2 - -
Conv 10×20 1×1 30

Fully Connected - - 128
Number of parameters: 116,604,050

• Training parameters:

– Time context = 30

– Batch size = 20

– Epochs: 100

– α = 0.9

– β = 0.05

• Performance:

TABLE C.4: Mean and standard deviation for the SDR, SIR and SAR
values expressed in dB corresponding to the the second implemented

DCAE.

Ideal Case General Case
SDR SIR SAR SDR SIR SAR

9.84 ± 4.03 13.19 ± 4.79 13.17 ± 3.16 -0.77 ± 5.86 2.19 ± 6.54 5.64 ± 2.76
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DCAE Experiment 3

• Topology:

TABLE C.5: DCAE_E_3 Topology

Type Kernel Stride Number of Filters
Conv 20×20 1×1 10

Fully Connected - - 64
Number of parameters: 21,472,126

• Training parameters:

– Time context = 30

– Batch size = 20

– Epochs: 100

– α = 0.9

– β = 0.05

• Performance:

TABLE C.6: Mean and standard deviation for the SDR, SIR and SAR
values expressed in dB corresponding to the the third implemented

DCAE.

Ideal Case General Case
SDR SIR SAR SDR SIR SAR

11.06 ± 3.74 16.68 ± 4.78 12.90 ± 3.32 -1.85 ± 6.46 3.37 ± 7.51 2.89 ± 3.84
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DCAE Experiment 4

• Topology:

TABLE C.7: DCAE_E_4 Topology

Type Kernel Stride Number of Filters Droput
Conv 20×20 1×1 10 -

Dropout layer 5- - - 5%
Fully Connected - - 64 -

Number of parameters: 1,955,726

• Training parameters:

– Time context = 20

– Batch size = 40

– Epochs: 50

– α = 0.005

– β = 0.05

• Performance:

TABLE C.8: Mean and standard deviation for the SDR, SIR and SAR
values expressed in dB corresponding to the the fourth implemented

DCAE.

Ideal Case General Case
SDR SIR SAR SDR SIR SAR

1.55 ± 5.58 2.46 ± 6.17 12.83 ± 1.57 7.66 ± 5.25 9.98 ± 7.04 14.00 ± 2.53
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