Hunting for cosmogenic neutrinos with the ARIANNA experiment

Christian Glaser for the ARIANNA collaboration Contact: christian.glaser@uci.edu

Science goal: **Discovery of cosmogenic neutrinos**

- Ultra-high energy cosmic rays (CRs) are connected to high energy neutrinos
 - \rightarrow through GZK effect (interaction of CRs with CMB)
 - \rightarrow through interaction of CRs at their source

Reconstruction performance

In-Ice Pulser Studies

- A *pulser* that generates short radio pulses was lowered ~800 meters deep into the ice at South Pole
- Radio pulses generated deep in the ice reach a surface station \rightarrow proof of principle of detector technology

• Measurement of neutrinos can reveal sources of CRs

Detection Technique: Radio emission of v induced in-ice showers

- low event rates require instrumentation of huge volumes • why radio?
- \rightarrow attenuation length of radio waves in ice is large (~1km)
- \rightarrow cost-effective instrumentation of large volumes
- \rightarrow a single station has 1km³ effective volume
- \rightarrow optical method (e.g. IceCube) are cost-prohibitive

- Known location of pulser allows to evaluate directional reconstruction
 - → 0.8° resolution achieved with a lever arm of only 6m
 - \rightarrow systematic offset due to uncertainties in the station geometry

Cosmic ray air shower test beam

- Advantage of a surface array: Sensitive to cosmic ray (CR) radio signals
- CR radio pulse similar to neutrino pulse
- \rightarrow full test of detector under realistic conditions
- Properties of CR radio pulse well understood
- \rightarrow reconstruction can be evaluated by comparison with theoretical expectation
- Measurement in multiple antennas with different polarization sensitivity allows for the reconstruction of CR pulse

cosmic ray air shower measured at South Pole

radio emission generated by Askaryan effect

ARIANNA neutrino detector

- Pilot stations located on the Ross ice shelf and at the South Pole
- Sensitive to high energy neutrinos $E > 10^{16} eV$
- Autonomous stations of
 - \rightarrow downward facing antennas \rightarrow neutrino detection
 - \rightarrow upward facing antennas \rightarrow cosmic ray detection/veto
- Pilot array operating successfully for 4 years in harsh Antarctic conditions
- Design goal: 300 stations with 1km spacing
- \rightarrow 10x better sensitivity than IceCube at 10¹⁸ eV

recovered cosmic ray radio pulse

Transient source sensitivity

- ARIANNA's large effective volume results in high sensitivity to transient events
- Coincident detection of neutrinos and gravitational waves from neutron star mergers
 - \rightarrow unique chance to probe a source of cosmic rays
 - \rightarrow neutrinos are produced by cosmic rays at the source
 - \rightarrow no deflection of neutrinos by cosmic magnetic fields

• ARIANNA allows for a basically background free measurement \rightarrow observes the southern sky \rightarrow unprecedented sensitivity for $E > 10^{17} eV$

References:

[1] K. Fang and B. Metzger, ApJ 849:153 (10pp) 2017 [2] A. Albert et al 2017 ApJL 850 L35

