
Real-Time Motion Capture Analysis and Music Interaction
with the Modosc Descriptor Library

Federico Visi
Institute for Systematic Musicology

Universität Hamburg
Hamburg, Germany

mail@federicovisi.com

Luke Dahl
Department of Music
University of Virginia

Charlottesville, VA, United States
lukedahl@virginia.edu

ABSTRACT
We present modosc, a set of Max abstractions designed
for computing motion descriptors from raw motion capture
data in real time. The library contains methods for extract-
ing descriptors useful for expressive movement analysis and
sonic interaction design. Moreover, modosc is designed to
address the data handling and synchronization issues that
often arise when working with complex marker sets. This
is achieved by adopting a multiparadigm approach facili-
tated by odot and Open Sound Control to overcome some
of the limitations of conventional Max programming, and
structure incoming and outgoing data streams in a mean-
ingful and easily accessible manner. After describing the
contents of the library and how data streams are structured
and processed, we report on a sonic interaction design use
case involving motion feature extraction and machine learn-
ing.

Author Keywords
Expressive movement, motion capture, motion descriptors,
motion features, sonic interaction design, musical interac-
tion, HCI, Max, Open Sound Control, modosc, NIME.

CCS Concepts
•Applied computing → Sound and music comput-
ing; Performing arts; •Information systems → Music
retrieval;

1. INTRODUCTION
Motion capture technologies have been employed in sev-
eral research fields. As precision and accessibility of motion
tracking improved, an increasing number researchers took
advantage of such technologies to study human body move-
ment in multiple contexts. Motion data has been at the
center of many research works dealing with music cogni-
tion, gait analysis, dance studies, behavioral sciences, user
studies, robotics, and more. In addition to its more conven-
tional usage in digital animation and game design, motion
capture has been employed to develop immersive experi-
ences involving virtual and augmented reality, for scientific
research as well as for entertainment purposes.

Despite the technology being a few decades old, marker-
based infra-red motion capture (MoCap) can be considered

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’18, June 3-6, 2018, Blacksburg, Virginia, USA.

Figure 1: A chain of modosc abstractions process-
ing a stream of motion data and their OSC output
printed in an o.display. Abstractions are connected
in series, resulting in patches that are easy to read
and maintain.

the gold standard for measuring complex movement in a
three-dimensional space. Tracking precision and temporal
resolution have progressively improved, allowing accurate
tracking of finger movements and facial expressions. Re-
cent MoCap systems are also capable of streaming motion
data live, thus making real-time applications possible. Some
programming environments such as Eyesweb [1] offer tools
for real-time human movement analysis.

2. MOTIVATION AND DESIGN
Having access to real-time motion data allows one to ex-
periment with musical interactions based on body move-
ment. However, extracting motion descriptors from raw
motion data is often a necessary step in the design of ef-
fective motion-to-sound mappings. In addition, motion de-
scriptors are frequently employed in expressive movement
analysis, motion recognition, and music performance anal-
ysis. Providing easy access to motion descriptors computed
in real-time from motion capture data is the main purpose
of modosc1 (MOtion Descriptors OSC).

Modosc is a set of Max abstractions for handling motion
data in real-time using Open Sound Control (OSC) [14] and
extracting various motion descriptors from raw motion data
streams using the multiparadigm programming approach of-

1https://github.com/motiondescriptors/modosc

144

fered by odot [8]. OSC was chosen as the main network-
ing protocol due to its flexibility, cross-platform compati-
bility, ease of use, and popularity among music and me-
dia arts researchers and practitioners [6]. While Max of-
fers many useful tools for rapidly prototyping musical inter-
actions, standard Max programming approaches can make
tasks such as synchronizing and naming multiple real-time
data streams often challenging. To address these challenges,
modosc methods are implemented using odot objects. Odot
is a framework for writing dynamic programs using C-like
language inside a host environment such as Max [8]. Com-
pared to more conventional Max objects, it provides access
to advanced formatting and parsing of OSC data bundles,
allowing for greater control over timing and synchronization
of multiple data streams. In addition, it allows the evalua-
tion of functions that would be difficult or cumbersome to
implement using standard objects.

The typical modosc data flow consists of abstractions con-
nected in series as shown in figure 1. Rather than send-
ing many messages in parallel, motion data is bundled into
OSC packets. In each abstraction, data that is already in
the stream may be used as inputs to expressions written
and evaluated inside a o.expr.codebox. These may gen-
erate new data bound to OSC addresses, which are then
blended with the rest of the stream before being sent out
of the outlet. Figure 2 shows an example of how this pro-
cess works in mo.centroid, an abstraction for calculating
the geometric center of a groups of points. This design ap-
proach results in more streamlined patches that are easier
to maintain and re-purpose. Moreover, this avoids many
timing and synchronization issues that would arise using a
more conventional patching approach.

For the development of the alpha release of modosc, we
took advantage of the native support for OSC real-time
streaming of Qualisys Track Manager (QTM), Qualisys’
tracking software used for recording data using their Oqus
and Miqus cameras.

3. HANDLING OF AFFERENT STREAMS
AND DATA TYPES

Before motion descriptors can be extracted, MoCap data
streams from QTM need to be parsed and assigned to OSC
addresses in the modosc/ domain. Data from a marker or
a rigid body tracked by QTM can be used to define a new
modosc point using mo.qtm3D and mo.qtm6Deuler methods.
Points can be then collected in groups. Points and groups
are the two main data types on which modosc abstractions
operate.

3.1 Points
A point consists in 3D or 6DoF data bound to an OSC
address. The data is in the form of a vector describing
the position (3D) or the position and rotation (6DoF) of a
single point in the coordinate system. As an example, a 3D
point named “hand” is defined by a 3D vector bound to the
corresponding OSC address:
modosc/points/hand/pos : [11, 22, 33].

Similarly, a 6DoF point named “forearm” has its position
data (x, y, and z coordinates) bound to a specific OSC ad-
dress: modosc/points/forearm/pos : [11, 22, 33]. Eu-
ler angles (roll, pitch, and yaw) are instead bound to an
additional OSC address:
modosc/points/forearm/rot: [44, 55, 66].

New points can be defined from incoming MoCap data
as mentioned above, or by processing the data of previously
defined points or groups. For example, mo.centroid creates
a new point corresponding to the geometric centre of an

Figure 2: An example of how modosc abstractions
are coded using odot in Max: the code in this
o.expr.codebox is used to compute the centroid of
an input group (see section 4.2.1).

input group (see figure 2).

3.2 Groups
In modosc, a group is a list of points bound to an OSC
address. Groups are defined using mo.group. To avoid con-
fusion with points, new groups are bound to a new OSC
address in the /modosc/groups sub-domain. Groups do not
directly contain MoCap data. Rather, they are used to re-
fer to multiple points that define a specific area of a marker
set. For example, the group /modosc/groups/arms might be
used to list the points placed on the arms of a performer.
The group address can then be used as the argument of mo-
dosc abstractions that compute descriptors using multiple
points, such as mo.contractionIndex. In addition, groups
also store the weight values of each point in the list. Weights
are used as parameters for the computation of some motion
descriptors such as mo.QoM (quantity of motion, see section
4.2.2). When a new group is created, all weights are set to 1
by default and can then be changed using mo.setWeights.

4. DESCRIPTORS
Modosc abstractions typically consist of odot code wrapped
in a Max patcher (see figure 2). Some abstractions may use
local variables bound to temporary OSC addresses that are
deleted before the new data stream is sent to the outlet.

There are two main types of descriptors:

• single point descriptors: they take one or more points
as their main arguments and output a descriptor for
each input point;

• group descriptors: they take a group as their main ar-
gument and output descriptors that refer to the mo-
tion of the whole group.

Generally, using modosc descriptors do not require chang-
ing the odot code, and – as it is idiomatic in Max – all the
inputs can be specified in the arguments of the abstraction
or by sending messages to secondary inlets.

145

4.1 Single Point Descriptors
4.1.1 Velocity, Acceleration, and Jerk
mo.velocity and mo.acceleration take a single point as
their argument and output 3D vector and magnitude of ve-
locity and acceleration respectively bound to new OSC ad-
dresses. For example, mo.acceleration /Hand computes
the acceleration of the point /Hand and outputs the accel-
eration vector to /modosc/points/Hand/acc and the mag-
nitude to /modosc/points/Hand/acc_mag. Velocity and ac-
celeration are calculated using an odot implementation of
Skogstad’s IIR low-pass differentiators, which are designed
to reduce noise in real-time motion capture applications
[11]. Jerk is calculated as the first difference of accelera-
tion, thus mo.acceleration must precede mo.jerk.

4.1.2 Fluidity
Inspired by the theoretical work on human motion by Flash
and Hogan [5], Piana et al. [9] defined Fluidity Index as the
inverse of the integral of jerk. Fluidity Index is implemented
in mo.fluidity, which takes a single point as an argument
and outputs fluidity index to
/modosc/points/point_name/fluidity.

4.2 Group Descriptors
4.2.1 Centroid and Center of Mass
mo.centroid calculates the geometric center of the points
listed in the input group. The coordinates of the centroid
are bound to a new OSC address in the /modosc/points

sub-domain. The name of the output point is specified in
the second argument. mo.centerOfMass works in a simi-
lar way, except it additionally takes into consideration the
weight of each point in order to compute the center of mass
(or barycenter) of the input group. Weights can be changed
using mo.setWeights, as described in section 3.2.

4.2.2 Quantity of Motion
Fenza et al. defined quantity of motion (QoM) as the sum
of the speeds of a set of points multiplied by their mass
[3]. Glowinski et al. [7] included a similar measure in their
expressive feature set, denoted as overall motion energy.
Modosc implementation (mo.QoM) computes QoM of a group
of points, taking into consideration the weight of each point.

4.2.3 Contraction Index
Contraction index is calculated by summing the Euclidean
distances of each point in a group from the group’s centroid
[3]. It is an indicator of the overall contraction or expansion
of a group of points and it has been used for emotion recog-
nition applications based on body movements [9]. In mod-
osc, contraction index is implemented in mo.contractionIndex.

4.2.4 Bounding Box
Bounding shapes have been used in the analysis of affective
gestures [7]. mo.boundingBox computes the height, width,
and depth of the rectangular parallelepiped enclosing the
points listed in the input group.

5. USE CASE: INTERACTION DESIGN
WITH MODOSC AND WEKINATOR

To provide a practical example of how the library can be
used alongside other tools for sonic interaction design, we
describe a basic use case in which three modosc descriptors
are sent as input features to a set of machine learning mod-
els in Wekinator [4] to control the parameters of a physical
modelling algorithm in Max. We chose Wekinator since it
is a well-documented, easy to use machine learning tool,

QTM modosc Wekinator Synthesis
Model

Raw
MoCap data

Motion
features

Synth parameters
(running)

Synth parameters
(training)

Figure 3: Data flow of the example use case with
modosc, Wekinator, and physical modelling.

popular among music and media arts researchers and prac-
titioners. However, any other environment and framework
that can send and receive OSC messages can be used with
modosc. To make this example easier to replicate, we will
use some of the Max patches available in Wekinator’s ex-
ample package2. The general data flow is schematized in
figure 3.

We used a simple marker set with three rigid bodies, one
placed on the chest of the performer and the remaining two
on the hands. In QTM, we named the rigid bodies chest,
L_hand, and R_Hand respectively and activated real-time
data streaming via OSC. Modosc is employed to extract
the fluidity index of each hand and the contraction index
of a group containing all three rigid bodies. To do so, in
Max the data from QTM is used to define three new 6DoF
points using mo.qtm6Deuler. The new points are then used
to form a new group named upper_body using mo.group. To
extract the descriptors, mo.fluidity is used with /L_hand

and /R_Hand as arguments, while mo.contractionIndex is
instead called on /upper_body. After these simple steps,
the three descriptors are accessible at their respective OSC
addresses:

/modosc/points/L_hand/fluidity

/modosc/points/R_hand/fluidity

/modosc/groups/upper_body/contractionIndex

The descriptors were then streamed to the default input
port of Wekinator3. Wekinator was set to get 3 inputs and
send 9 outputs, all continuous controls. The outputs were
sent to the ‘BlotarSynth 9ContinuousOutputs.maxpat’ patch
from the Wekinator’s example package. The patch includes
an object from the PeRColate package4 that implements a
hybrid physical model, and is already configured to get the
outputs of the machine learning models and send its control
parameters back to Wekinator using the default OSC ports.
To train Wekinator’s models, we simply selected a preset or
adjusted parameters manually in the synthesis patch to ob-
tain the desired sound, hit ‘Start Recording’ in Wekinator,
performed some example arm movements, and stopped data
recording before training the models. The same procedure
can be repeated with a number of different synthesis pre-
sets. After the training procedure is completed, Wekinator
can be set to ‘Run’ in order to get live motion descriptor
data from modosc and control the physical model in real
time.

2https://github.com/fiebrink1/wekinator_examples
3To do this more quickly, one can simply modify the patch
‘SimpleMax 3Inputs.maxpat’ found in Wekinator’s exam-
ples package.
4https://github.com/Cycling74/percolate

146

6. DISCUSSION AND FUTURE WORK
The design criteria we adopted were aimed at keeping mo-
dosc simple and intuitive to use. The number of available
data types is purposely kept low, and rotation angles of
6DoF data are bound to dedicated addresses. This was
done in order to avoid potential issues or confusion when
using descriptors operating only on positional data. Weight
values are stored in groups as this appeared to be the best
design choice in terms of usability. In the future, we aim
at using weight values to implement more descriptors based
on mass.

Currently, one of the main limitations of modosc is that
it relies on QTM’s native OSC support, and thus it works
only with Qualisys systems. However, other motion capture
systems can be configured to stream data via OSC by tak-
ing advantage of their respective SDKs, and new modosc
abstractions can be made to create points and groups from
different MoCap data streams. For example, Optitrack mo-
tion tracking data can be streamed to various programming
environments using their proprietary NatNet SDK. Then,
it is relatively simple to implement an OSC bridge5 and
stream the data to Max, where it will be parsed to be used
with modosc abstractions.

The way motion data is structured in modosc makes ex-
tracting descriptors from multiple sources relatively easy.
Thus, we do not exclude the possibility of extending the
same design principles and include descriptors for other de-
vices such as IMUs and EMG sensors, since both technolo-
gies have been used extensively for music interaction design.
[13, 12].

The alpha release of modosc will include the descriptors
mentioned in this paper. We are planning to add other
abstractions to implement periodic quantity of motion [13]
and strike detection [2] in the near future. In addition, the
library includes templates to help users with implementing
new or custom point and group descriptors.

Rotations are currently expressed in Euler angles. We
are planning to add support for quaternion representation,
which would enable the implementation of various descrip-
tors based on rotational data [13] and also avoid issues such
as gimbal lock.

7. CONCLUSIONS
We presented a set of Max abstractions that make use of
odot and OSC to overcome some of the data structuring and
synchronization challenges that a more conventional patch-
ing approach may have led to. Moreover, we described how
modosc can be used in a sonic interaction design scenario
involving tools and processes familiar to the NIME commu-
nity. Thanks to its flexibility and ease of use, we believe
modosc can be a useful tool for rapidly prototyping music
interactions based on body movement. We also envision
using the library in research projects involving virtual and
augmented reality, especially for the development of musical
instruments and interactions in virtual environments [10].

8. ACKNOWLEDGMENTS
The authors would like to thank John Maccallum and Rama
Gottfried for their very kind support on using odot.

This research was partially supported by the European
Research Council (grant agreement: 725319, PI: Clemens
Wöllner) for the five-year project “Slow motion: Transfor-
mations of musical time in perception and performance”
(SloMo).
5Users have made available several OSC streaming tools,
such as OscStreamer for C++ (https://github.com/
hezhao/OscStreamer, not tested by the authors).

9. REFERENCES
[1] A. Camurri, B. Mazzarino, and G. Volpe. Analysis of

Expressive Gesture: The EyesWeb Expressive Gesture
Processing Library. In Gesture-based Communication
in Human-Computer Interaction, LNAI 2915, pages
460–467. 2004.

[2] L. Dahl. Studying the Timing of Discrete Musical Air
Gestures. Computer Music Journal, 39(2):47–66, jun
2015.

[3] D. Fenza, L. Mion, S. Canazza, and A. Rodà.
Physical movement and musical gestures: A
multilevel mapping strategy. In Proceedings of Sound
and Music Computing Conference, SMC 2005,
Salerno, Italy, 2005.

[4] R. Fiebrink, D. Trueman, and P. Cook. A
metainstrument for interactive, on-the-fly machine
learning. In Proceedings of the International
Conference on New Interfaces for Musical Expression,
pages 280–285, Pittsburgh, PA, USA, 2009.

[5] T. Flash and N. Hogan. The coordination of arm
movements: an experimentally confirmed
mathematical model. The Journal of Neuroscience,
5(7):1688–1703, jul 1985.

[6] A. Freed and A. Schmeder. Features and future of
open sound control version 1.1 for nime. In
Proceedings of the International Conference on New
Interfaces for Musical Expression, pages 116–120,
Pittsburgh, PA, United States, 2009.

[7] D. Glowinski, N. Dael, A. Camurri, G. Volpe,
M. Mortillaro, and K. Scherer. Toward a Minimal
Representation of Affective Gestures. IEEE
Transactions on Affective Computing, 2(2):106–118,
apr 2011.

[8] J. Maccallum, R. Gottfried, I. Rostovtsev, J. Bresson,
and A. Freed. Dynamic Message-Oriented Middleware
with Open Sound Control and Odot. In International
Computer Music Conference, Denton, United States,
2015. ICMA.

[9] S. Piana, A. Staglianò, F. Odone, and A. Camurri.
Adaptive Body Gesture Representation for Automatic
Emotion Recognition. ACM Transactions on
Interactive Intelligent Systems, 6(1):1–31, mar 2016.

[10] S. Serafin, C. Erkut, J. Kojs, N. C. Nilsson, and
R. Nordahl. Virtual Reality Musical Instruments:
State of the Art, Design Principles, and Future
Directions. Computer Music Journal, 40(3):22–40, sep
2016.

[11] S. A. Skogstad. Filtering Motion Capture Data for
Real-Time Applications. In W. Yeo, K. Lee,
A. Sigman, J. H., and G. Wakefield, editors,
Proceedings of the International Conference on New
Interfaces for Musical Expression, pages 142–147,
Daejeon, Republic of Korea, may 2013. Graduate
School of Culture Technology, KAIST.

[12] S. A. Skogstad, K. Nymoen, and M. Hovin.
Comparing Inertial and Optical Mocap Technologies
for Synthesis Control. Smc’11, pages 421–426, 2011.

[13] F. Visi, E. Coorevits, R. Schramm, and E. R.
Miranda. Musical Instruments, Body Movement,
Space, and Motion Data: Music as an Emergent
Multimodal Choreography. Human Technology,
13(1):58–81, may 2017.

[14] M. Wright. Open Sound Control: An enabling
technology for musical networking. Organised Sound,
10(3):193–200, 2005.

147

