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ABSTRACT
In this paper we expand on prior research into the use of
Continuous Time Recurrent Neural Networks (CTRNNs)
as evolvable generators of musical structures such as au-
dio waveforms. This type of neural network has a com-
pact structure and is capable of producing a large range
of temporal dynamics. Due to these properties, we believe
that CTRNNs combined with evolutionary algorithms (EA)
could offer musicians many creative possibilities for the ex-
ploration of sound. In prior work, we have explored the use
of interactive and target-based EA designs to tap into the
creative possibilities of CTRNNs. Our results have shown
promise for the use of CTRNNs in the audio domain. How-
ever, we feel neither EA designs allow both open-ended dis-
covery and effective navigation of the CTRNN audio search
space by musicians. Within this paper, we explore the pos-
sibility of using novelty search as an alternative algorithm
that facilitates both open-ended and rapid discovery of the
CTRNN creative search space.
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1. INTRODUCTION
Evolutionary algorithms (EAs) are a powerful optimisation
technique based on Darwinian theory [9], grounded in the
idea that the incredible novelty, diversity and complexity
created by evolutionary processes in nature can be mod-
elled in computers and applied to many different domains
such as music. There are a variety of different composi-
tional tools described within the literature that explore the
creative possibilities of this type of machine learning, such
as ‘Eden’ [16], ‘MutaSynth’ [2], ‘Darwin Tunes’ [15] and
‘Synthbot’ [26]. However, when we look at the various tools
that are readily available to musicians, few EA-based exam-
ples exist. A possible cause for this situation is discussed
by McCormack [17], who identifies that researchers applying
evolutionary principles to art are “...trying to find the aes-
thetically satisfying needle from the data haystack of com-
putation and algorithm” [17, p.424]. A contributing factor
to this problem is the difficulty of finding an EA genotype
(encoded representation of the phenotype or problem solu-
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tion) structure that offers both variety in its search space
and exploitability in realistic timeframes.

In prior work [11, 10], we have proposed the use of Con-
tinuous Time Recurrent Neural Networks (CTRNNs) as
a possible candidate EA genotype for the generation of
musical structures, which perform reasonably well in light
of the ‘needle in a haystack’ problem. Much is known
about CTRNNs and their capacity for extensive tempo-
ral dynamics [5, 1]. However, little research exists on ex-
ploring their potential as a low-level generator of musical
structures such as audio waveforms. A possible cause for
this is their idiosyncratic behaviour, which makes it hard
to discover CTRNN configurations that could be useful to
musicians without the aid of some form of machine learn-
ing. As CTRNNs have a compact structure capable of pro-
ducing a vast range of temporal dynamics, they could pro-
vide an ideal genotype structure for an EA. By utilising
this method, we could potentially discover and navigate the
CTRNN musical search space in an effective way, a prospect
that could facilitate a foundation for a co-creative tool that
allows musicians to easily explore a large space of interesting
audio possibilities without needing an expert level of experi-
ence required by many existing sound generation tools such
as a modular synthesiser. Our prior work has supported this
claim, as we have shown that EAs can be used to explore
the musical search space of CTRNNs, which can be evolved
to produce different timbres such as that of a Clarinet and a
Sawtooth waveform. However, through these experiments,
we are still yet to find an EA design that will be effective in
achieving both thorough and open-ended discovery of the
CTRNN search space.

Initially, an interactive EA was adopted allowing explicit
control over the aesthetic trajectory of the creative search
process without needing to define generalised targets for the
algorithm to search for. However, the manual process of sift-
ing through each individual of the population for assessment
can be fatiguing, limiting population size and the number of
generations that can be realistically explored [3]. A target-
based EA approach was also explored and removed the need
for constant human evaluation, allowing more rapid naviga-
tion of the CTRNN search space. However, the necessity for
a specific predefined algorithm targets inhibited possibilities
for the open-ended discovery achieved using an interactive
approach.

This research [11, 10] has led us to explore alternatives to
interactive and target-based EA designs, specifically Nov-
elty Search (NS). Differing from the interactive and target-
based algorithm structures used previously, predefined evo-
lutionary targets are not required as the algorithm simply
looks for novel candidates in relation to an existing popula-
tion, encouraging open-ended discovery. This evolutionary
process is also unsupervised, meaning there is no need for
the cumbersome human evaluation of each individual.
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We expect to find that this initial investigation into NS
will provide solutions to some of the problems encountered
in our prior research when adopting interactive and target-
based EA approaches. We also foresee that this approach
will raise future research question such as how best to algo-
rithmically represent the aesthetic closeness of individuals
in order to measure their novelty as well as how the re-
sulting population can then be utilised by musicians. A
code repository for this project can be found at github.

com/steffanianigro/plecto and audio examples of var-
ious CTRNN configurations can be found at nime2018.

steffanianigro.com

2. BACKGROUND
2.0.1 Evolutionary Algorithms

Evolutionary Algorithms are based on Darwinian theory,
with evolutionary change a result of the fittest of each gen-
eration surviving and passing on the traits that made them
fit [9]. This process starts with the random generation of an
initial pool of candidate solutions. This population is then
evolved through various iterations of an evolutionary pro-
cess during which each individual’s fitness is evaluated in
relation to a selective pressure. The fittest individuals are
bred through a crossover process during which genetic traits
from both partners are passed onto their offspring. There is
also a chance of mutation, achieving genetic drift or explo-
ration outside the current gene pool. The new individuals
replace a number of the least fit existing individuals and the
process is repeated [23]. Asexual reproduction is also pos-
sible, with mutation being the only force for evolutionary
change.

The selective pressure of an EA usually exists as an au-
tomated fitness function, evaluating individuals according
to a criterion that is encoded into the system. However,
in creative situations, it is difficult to define explicit fitness
functions for audio phenotypes that can identify subjective
musicality [22]. An alternative approach involves human
evaluation of the population. The predominant paradigm
for this approach sees the user take the role of a ‘pigeon
breeder’, acting as a selective pressure in an artificial envi-
ronment [4]. Furthermore, this approach shifts the EA into
a new domain, as it“... is no longer a tool for finding optimal
solutions, but instead becomes a vehicle for creative explo-
ration” [25, p. 31], opening up possibilities for the unbound
innovation seen in natural evolution [13]. These interactive
algorithms work well in certain situations but tend to be
less effective when used to explore large search spaces. This
is due to the manual process of hand evaluating each indi-
vidual within the population creating user fatigue, possibly
inhibiting discovery of the most optimal creative solution.

Of most interest to the authors and what we expect will
be the most effective in the exploration of musically inter-
esting CTRNNs is novelty search (NS). NS is an evolution-
ary process during which an individual’s fitness is not mea-
sured by closeness to a specific target but by how novel the
individual is compared to the other individuals that have
already been discovered [14]. A tool for open-ended explo-
ration results that alleviates cumbersome human evaluation
as well as the restrictiveness of target-based approaches in
which only individuals with a high fitness can be further ex-
plored [13]. These characteristics could be advantageous for
our use, being both efficient in exploring large search spaces
and unbiased in the search for creative outputs. However,
this approach comes with the challenge of computationally
estimating novelty in a way that is also perceivable by a
human listener.

2.0.2 Continuous Time Recurrent Neural Networks

Artificial Neutral Networks (ANNs) have been used for many
different functions in music, from beat tracking algorithms
[12] to artificial composers that can extract stylistic regular-
ities from existing pieces and produce novel musical compo-
sitions based on these learned musical structures [18]. Bown
and Lexer [5] offer another application, proposing the use
of CTRNNs to create autonomous software agents that ex-
hibit musicality. Bown and Lexer also outline that another
suitable use for CTRNNs is in the audio signal domain, a
prospect which inspired this research.

A notable example of similar work is discussed by Ohya
[20], who describes a system that trains a Recurrent Neural
Network to match an existing piece of audio. The network
structure can then be manipulated to synthesise variants of
the original sound. Eldridge [8] provides another example,
exploring the use of Continuous Time Neural Models for au-
dio synthesis. Within this research, we further explore the
capabilities of using CTRNNs for the generation of musical
structures.

CTRNNs are nonlinear continuous dynamical systems that
can exhibit complex temporal behaviours [1]. They are an
interconnected network of computer-modelled neurons, well
suited to produce audio and rhythmic output as various con-
figurations result in smooth oscillations that can be used to
construct audio waveforms or trigger musical events. Each
neuron of a CTRNN is typically of a type called the leaky
integrator. The internal state of each neuron is determined
by the differential equation (1),

τi(dyi/dt) = −yi +
∑

Wijσ(gj(yj − bj)) + Ii (1)

where τi is the time constant, gi is the gain and bi is the
bias for neuron i. Ii is any external input for neuron i and
Wij is the weight of the connection between neuron i and
neuron j. σ is a tanh non-linear transfer function [5].

The behaviour of a neuron is defined by three parameters
- gain, bias and time constant - and each neuron input has
a weight parameter [5]. CTRNNs are continuous, recurrent,
and, due to their complex dynamics, are typically trained
using an EA. For this research, we adopt a fully connected
CTRNN, meaning that the neurons in the hidden layer are
all connected and the input layer has a full set of connec-
tions to the hidden layer. Each hidden neuron also has a
self connection. The output or activation of each neuron
is calculated using a tanh transfer function and produces
outputs within the range of -1 and 1.

3. NS ALGORITHM DESIGN
Similar to our prior work [10], we adopt an EA structure
based on the opt-aiNet algorithm by de Castro and Timmis
[7]. It is a model that can maintain many individual candi-
date solutions to a problem, each evolved independently of
one another. This means the algorithm can provide not only
the global optimum, but many of the local optimum as well.
Within this paper, we use multi-objective optimisation so
that we can measure novelty through multiple isolated au-
dio metrics that cannot be effectively combined into a single
measure. The opt-aiNet algorithm is particularly useful for
multi-objective optimisation because many Pareto optimal
[24] candidates can be maintained.

Differing from more conventional EA structures, the opt-
aiNet algorithm model incorporates sub-populations, each
locally optimised. These sub-populations are generated by
cloning and mutating each member of the EA’s current pop-
ulation, with mutation rates inversely proportionate to the
parent individual’s fitness. The fittest individuals of each
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sub-population then replace the parent individual. This EA
model also discourages convergence on a specific area of
the search space using a population suppression mechanism.
Once the population stagnates (when the difference between
fitness errors over time fall below a predefined threshold),
individuals of the main population are compared using a
distance metric, after which the individuals with a close
similarity are removed (and the fittest individuals are main-
tained). A number of randomly generated individuals are
then introduced into the population (the population size can
vary dynamically) to facilitate thorough exploration of the
EA’s search space [21]. In this paper, fitness refers to the
novelty of individuals and is measured against a persistent
population that exists outside of each algorithm iteration.
This population will gradually grow as more and more in-
dividuals pass the novelty threshold. Below is an outline of
each stage of the NS process.

1. Randomly initialise the main population for current itera-
tion (not the persistent population).

2. While the stopping criterion is not met, continue, else save
individuals to a database containing the persistent popu-
lation for the next algorithm iteration. Go to step 1.

(a) Calculate the fitness of each individual in the main
population. The fitness of these individuals is mea-
sured against the persistent population.

(b) Generate a number of clones for each individual, cre-
ating sub-populations.

(c) Mutate each clone inversely proportionate to its par-
ent’s fitness (fitter individuals are mutated less).

(d) Determine the fitness of individuals within each sub-
population including the parent individual and re-
move all but the fittest, which replaces the parent
individual in the main population.

3. Re-calculate the fitness of each individual in the main pop-
ulation after the fittest individuals of the sub-populations
replace their parents. This is necessary to re-establish the
fitness standing of the main population.

4. Calculate the average fitness of the individuals and if the
population stagnates, continue to steps 5 else go to step 2.

5. Determine the highest affinity individuals (similar pheno-
type) and perform population suppression to avoid redun-
dancy whilst maintaining the fittest individuals.

6. Introduce a number of randomly generated individuals.

7. Re-calculate the fitness of each individual in the main pop-
ulation after suppression and addition of random individ-
uals. This is necessary to re-establish the fitness standing
of the main population. Go to step 2.

The population for the opt-aiNet algorithm used in this
paper is initiated with 10 random individuals. During each
iteration, 5 clones are produced for each individual in order
to create 10 independent sub-populations. The threshold
dictating the chance of mutation for each parameter is cal-
culated according to equation (2)

a = (1/β) exp(−f∗) (2)

where β is a parameter that controls the decay of the
inverse exponential function and f∗ is the fitness of the
parent individual normalised within the interval of [0..1].
The parameter value to be mutated is calculated according
to equation (3)

C′ = c+ aN(0, 1) (3)

where c is a parameter value of a parent cell, C′ is the
mutated parameter value, a is calculated according to equa-
tion (2) and N(0, 1) is a Gaussian random variable with a
mean of 0 and standard deviation of 1.

Each iteration of the opt-aiNet algorithm ends once the
most novel individual of the main population passes a nov-
elty threshold, meaning it is unique enough compared to
the already exisiting individuals in the persistent popula-
tion. This novel individual is then added to the persistent
population, ready for the next iteration.

3.1 Comparison Metrics
Within this experiment, the EA will use a multi-objective
function to measure novelty. In [10], we have explored the
use of Mel-Frequency Cepstral Coefficients (MFCCs) and
dominant frequency as metrics to calculate the spectral sim-
ilarity of two individuals. This approach proved effective,
therefore we adopt these metrics as well as spectral centroid
in order to compare the novelty of individuals within the
population. These metrics will be arranged in various com-
binations to determine which one best facilitates thorough
discovery of the CTRNN search space. Effectively incorpo-
rating all aspects of a CTRNNs audio output in a phenotype
representation exceeded the scope of this study. Therefore,
we have not used any metrics to capture temporal varia-
tion such as rhythm, focusing on pitch and timbre so as not
to overcomplicate the experiment. However, temporal met-
rics will need to be incorporated in a real world use case to
capitalise on the rhythmic capabilities of CTRNNs.

These metrics are calculated from a frequency domain
description of the audio being analysed, produced by ap-
plying a Fast Fourier Transform (FFT) to an 8192 sample
window of audio after a Hamming windowing function is
applied. The dominant frequency of the audio is calculated
by identifying the frequency bin with the highest magni-
tude and the MFCCs are calculated as described in [27]:
the FFT magnitudes are passed through a 42 component
Mel filter bank spaced in the range of 20 to 22,050Hz, the
42 outputs of which are then transformed using a Discrete
Cosine Transform. The first 12 of these 42 coefficients are
kept and used for timbral comparison in this paper. spec-
tral centroid is calculated by taking the mean frequency of
the audio spectrum [6].

During an iteration of the EA, these audio metrics are
extracted for each individual in the population. A novelty
rank is assigned to each metric of each individual, calculated
by finding the individual’s nearest neighbour for each metric
in the exisiting persistent population and comparing the re-
sult to other individuals of the iteration’s population. The
similarity of two dominant frequency or spectral centroid
audio metrics is calculated by taking the absolute value of
their difference. The similarity of two MFCCs is calculated
using a Dynamic Time Warping (DTW) algorithm [19] with
a Euclidean distance metric. The DTW algorithm is used
for future proofing in case MFCCs are compared with differ-
ent numbers of coefficients. Once these ranks are assigned
for each metric, they are summed to measure the overall
novelty of the individual. The EA is run until the most
novel individual in the iteration’s population passes a nov-
elty threshold, after which it is added to the main persistent
population. This process is repeated until the desired num-
ber of individuals are found or the novelty of new individ-
uals can no longer exceed the novelty threshold (all novel
individuals have been found).

4. EXPERIMENT
4.1 Description
This experiment is an initial investigation into the effective-
ness of the described novelty search algorithm. We hope
to answer two main questions when conducting this study.
Firstly, we question whether this algorithm will outperform
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more mundane random search in finding a population of 100
CTRNN configurations that exhibit a variety of audio char-
acteristics. Secondly, we hope to further understand what
combination of audio metrics best facilitate the discovery of
100 novel audio CTRNNs, meaning a human will be able to
easily differentiate between the phenotype representations
of population individuals. In [10], we use both dominant
frequency and MFCC metrics to compare the similarity of
two sounds. MFCCs are pitch independent, therefore Domi-
nant frequency was used to push the EA population towards
the selected target sound’s pitch. In this experiment, we are
more concerned with discovering the CTRNN timbral space,
as once interesting timbres are discovered, it is easy to shift
their pitch during post-production of the audio because we
are mainly dealing with monophonic sounds. Therefore, the
most effective metrics may differ from our prior work.

In order to gain a basic understanding of the CTRNN
space, we discovered 100 CTRNN configurations using plain
random search. From prior studies [11, 10], we have found
that the majority of randomly discovered CTRNNs do not
exhibit musical behaviour, with outputs consisting of in-
audible frequency content or lacking any persistent oscilla-
tions. This initial search will help confirm these prior obser-
vations and provide a base for comparing the populations
discovered using NS.

For the first iteration of the NS algorithm, we only use
the MFCC comparison metric to measure the novelty of in-
dividuals. This focus on timbre over specific pitch content
will identify whether we can use a single timbral measure
to explore the CTRNN audio search space, or if it will re-
sult in a lack of frequency diversity comparable to random
search, with many individuals discovered being inaudible or
musically undesirable. We also run two more iterations of
the algorithm; first adding the dominant frequency metric,
and then both the dominant frequency and spectral centroid
metrics. These resulting populations will help identify the
effects of including more frequency centric novelty metrics.

The populations created by random search and the three
iterations of the NS algorithm are compared, allowing us
to draw conclusions about the NS algorithm design and its
effectiveness. We plot the MFCCs of all individuals in each
population to compare timbral variation. The X axis rep-
resents the Mel Frequency Bins and the Y axis represents
their cepstral coefficients. The closeness of the plotted lines
correlate to the timbral closeness of the individuals. There-
fore, lots of timbral variety in a population will be indicated
by the variety of shapes and positions of the plotted lines in
each graph. We will also plot the dominant frequency and
spectral centroid values of each population on a scatter plot,
providing an insight into the spread of discovered frequency
content.

We expect to find that the novelty search algorithm with
the single MFCC comparison metric produces individuals
with timbral variety. However, similarly to the randomly
discovered CTRNN configurations, individuals will default
to non audible frequencies that will be of little use to mu-
sicians. We also expect that once dominant frequency and
spectral centroid metrics are combined with the MFCC met-
ric, the timbral space will remain similarly diverse. How-
ever, there will be a greater spread of frequency content
within the population, producing CTRNN configurations
that could be more valuable in musical contexts.

4.2 Results
Random generation was used to discover 100 CTRNN con-
figurations and are plotted in Figures 1 and 2. Confirming
our prior observations, the majority of CTRNN configura-
tions either saturated (the CTRNN produces a consistent

output of -1 or 1) or oscillated at low frequencies, behaviours
which are not very useful for musicians unless they are used
as LFOs or control signals. Furthermore, not much timbral
variety is evident in the population, meaning many of the
CTRNNs produced similar temporal behaviour and would
not be creatively engaging for musicians.

Figure 1: MFCCs of 100 individuals discovered us-
ing random search.

Figure 2: Frequency spread of 100 individuals dis-
covered using random search.

These results contrast to the populations produced by the
NS algorithm described in this paper, shown in Figures 3,
4, 5, 6, 7 and 8. Figures 2 and 3 depict the NS algorithm’s
output when only the MFCC metric was used to measure
audio novelty. Figure 3 shows much more timbral variety
in the population than achieved using plain random search.
However, similarly to Figure 2, we do not see much spectral
variety in Figure 4, with the majority frequency content of
many individuals dwelling in inaudible frequency bins.

Figure 3: MFCCs of 100 individuals discovered us-
ing NS with the MFCC comparison metric.

Figures 5 and 6 depict the output of the NS algorithm
that uses both the MFCC and dominant frequency metrics
to measure audio novelty. In Figure 5, we can see a simi-
lar spread of timbral novelty. However, as we have shifted

111



Figure 4: Frequency spread of 100 individuals dis-
covered using NS with the MFCC comparison met-
ric.

the novelty weighting from a purely timbral focus, we can
see a larger spread of frequency content in the discovered
population, represented in Figure 6. These results confirm
that combining timbral and frequency based metrics aid in
achieving a population with a greater diversity of audio fea-
tures.

Figure 5: MFCCs of 100 individuals discovered us-
ing NS with MFCC and dominant frequency com-
parison metrics.

Figure 6: Frequency spread of 100 individuals dis-
covered using NS with MFCC and dominant fre-
quency comparison metrics.

A further confirmation of this observation is evident when
the MFCC metric is combined with both dominant fre-
quency and spectral centroid metrics. Figure 7 depicts the
various MFCCs of each individual in the population, high-
lighting similar timbral variety than evident in Figures 3
and 5. We can also see less clustering at the lower bottom
left hand corner of Figure 8, compared to Figures 2, 4 and 6.
This means that the algorithm has achieved similar timbral
variety yet has produced a greater variety of frequency con-
tent in the population, achieved by adding another metric

defined by the clustering of frequencies in the audio being
analysed, further shifting the algorithm’s novelty weighting
away from a purely timbral focus.

Figure 7: MFCCs of 100 individuals discovered us-
ing NS with MFCC, dominant frequency and spec-
tral centroid comparison metrics.

Figure 8: Frequency spread of 100 individuals dis-
covered using NS with MFCC, dominant frequency
and spectral centroid comparison metrics.

Overall, the most effective approach was the NS algo-
rithm with a combination of MFCC, dominant frequency
and spectral centroid metrics, as individuals were discov-
ered with both timbral variety and a large range of fre-
quency content within the audible domain. A downside to
the incorporation of these additional metrics was that the
algorithm’s run time increased by a substantial amount. As
observed in Figures 1 and 2, the CTRNN configurations
seem to gravitate to lower frequency domains which could
be a cause for this decrease in efficiency, as it takes longer
to discover CTRNN configurations that oscillate at higher
frequencies. In future experiments we hope to further in-
crease the algorithm’s efficiency and look towards different
hardware integrations (GPUs) to allow much larger popula-
tion and sub-population sizes, more computationally intense
metrics (running FFTs over larger sample sizes for better
frequency resolution) and higher novelty thresholds.

5. CONCLUSION
Contrasting to our prior work, NS offers a means to nav-
igate the audio possibilities of CTRNNs in an effective,
open-ended manner. The NS algorithm discussed in this
paper out-performed random search and created a range
of CTRNNs that spanned a larger range of frequency and
timbral realms. Listening to samples of the various CTRNN
populations confirmed the results of the above experiments.
CTRNNs discovered through NS feature a larger range of
timbres and frequency ranges, samples of which can be
heard at nime2018.steffanianigro.com. In contrast, most

112



randomly discovered individuals exhibited no desirable au-
dio qualities. However, even though there is variety in the
CTRNNs discovered using NS, some individuals do sound
similar. This highlights the need to refine the algorithm
metrics to better capture nuances of how humans perceive
audio novelty in the phenotype space. This may require
the introduction of different metric weightings, favouring
measures more relevant to the way humans perceive audio.
The lack of temporal metrics could also be a contributor
to this issue as temporal variation is an important part of
timbral identification. Introduction of temporal metrics will
also help capitalise on the rhythmic potential of CTRNNs.
Furthermore, the current NS algorithm only deals with a
fixed input for all CTRNN configurations. If these config-
urations are to be used in real world contexts, consistent
behaviour over multiple input types is required. For ex-
ample, a CTRNN configuration will not be very useful if
it only behaves in interesting ways under very specific cir-
cumstances. They should be versatile enough to be useful
in multiple musical contexts, an issue we will address by
measuring an individual’s novelty over a range of CTRNN
input types instead of just the one used in the described ex-
periments. We will also further expand on the interaction
design aspect of our prior work [11] and develop an effec-
tive interface design that provides access to the resulting
novel audio CTRNNs of these studies. A qualitative eval-
uation stage will also follow during which we will conduct
user studies to gain insight into the effectiveness of our de-
sign and how it can be further improved in future iterations
of our system. The code repository for this project can be
found at github.com/steffanianigro/plecto.
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