

Interacting with Musebots

Andrew R. Brown
Griffith University
226 Grey Street

South Brisbane, Australia.
andrew.r.brown@griffith.edu.au

Matthew Horrigan
Independent Researcher

5869 Fremlin
Vancouver, Canada

matthorriganmusic@gmail.com

Arne Eigenfeldt
Contemporary Arts

Simon Fraser University
Vancouver, Canada

arne_e@sfu.ca

Toby Gifford
Monash University

900 Dandenong Road
Caulfield East, Australia

toby.gifford@monash.edu

Daniel Field
Griffith University
226 Grey Street

South Brisbane, Australia.
daniel.field@griffithuni.edu.au

Jon McCormack
Monash University

900 Dandenong Road
Caulfield East, Australia

jon.mccormack@monash.edu

ABSTRACT
Musebots are autonomous musical agents that interact with
other musebots to produce music. Inaugurated in 2015,
musebots are now an established practice in the field of
musical metacreation, which aims to automate aspects of
creative practice. Originally musebot development focused
on software-only ensembles of musical agents, coded by a
community of developers. More recent experiments have
explored humans interfacing with musebot ensembles in
various ways: including through electronic interfaces in
which parametric control of high-level musebot parameters
are used; message-based interfaces which allow human users
to communicate with musebots in their own language; and
interfaces through which musebots have jammed with human
musicians. Here we report on the recent developments of
human interaction with musebot ensembles and reflect on
some of the implications of these developments for the
design of metacreative music systems.

Author Keywords

Musebots, interaction, musical agents, generative music,
metacreation.

CCS Concepts

• Applied computing → Sound and music computing;
Performing arts; • Human-centered computing →
Collaborative and social computing; Collaborative and
social computing theory, concepts and paradigms;
Collaborative and social computing systems and tools.

1. INTRODUCTION
Musical metacreation, a subfield of computational creativity,
is the art of “endowing machines with the ability to achieve
creative musical tasks” [1]; including realtime procedural
music generation. Human performance with metacreative
music systems has typically involved bespoke protocols for
interaction, often based on machine listening techniques.
This tendency toward idiosyncratic approaches to interaction

is not dissimilar to the ad hoc manner in which algorithmic
composition methods are often assembled, famously
described as ‘Frankensteinian’ [2]. In this article, we explore
how the musebot framework, designed to support
interoperability, can be used to integrate human and machine
performers through a protocol that does not overtly privilege
either type of musical actor.

The open source musebot protocol was originally
developed to coordinate generative music software
ensembles [3] and facilitate modularised prototyping of
designs [4]. It also addresses the very real issue of
researchers developing ad hoc systems in a variety of
languages that are often difficult to share and compare.

One important aspect of the musebot protocol is its open-
endedness: musebots share their internal states through
broadcast network messages. While some messages are
suggested within the protocol, most have been developed for
the specific requirements of an ensemble. To date, musebots
have been used in performances amongst themselves, with
live musicians, with mechatronic instruments, in responsive
accompaniment for video, and in long-duration (up to 8
hours continuously) installations.

Live improvisation with musebot ensembles continues a
long tradition of interactive music systems. There have been
several previous discussions about interactive music systems
seeking to achieve a partnership between human and
computer performers that are inspirational for our attempts to
adapt the musebot framework to that end. These include
performance systems such as Cypher [5], Hyperinstruments
[6], GenJam [7], Duet for One Pianist [8], Voyager [9], live
algorithms [10], OMax [11], Frank [12], Shimon [13], and
Odessa [14]. Our work differs from these systems, which
were designed to interact with performers, whereas musebots
were designed to interact with one another, with human
performers not initially considered in the protocol. Musebots
are available online1, with the messages they react to as well
as generate, provided in human-readable sy

In this paper, we describe experiments with integrating
human musicians into musebot performance, and some
recent modifications to the musebot framework that will
(hopefully) be integrated into an updated Musebot 2.0
specification. We discuss how these modifications were

1 http://musicalmetacreation.org/musebots/

NIME Proceedings Template for LaTeX

Ben Trovato
⇤

Institute for Clarity in
Documentation

1932 Wallamaloo Lane
Wallamaloo, New Zealand
trovato@corporation.com

G.K.M. Tobin
†

Institute for Clarity in
Documentation
P.O. Box 1212

Dublin, Ohio 43017-6221
webmaster@marysville-

ohio.com

Lars Thørväld
‡

The Thørväld Group
1 Thørväld Circle

Hekla, Iceland
larst@affiliation.org

Lawrence P. Leipuner
Brookhaven Laboratories
Brookhaven National Lab

P.O. Box 5000
lleipuner@researchlabs.org

Sean Fogarty
NASA Ames Research Center

Moffett Field
California 94035

fogartys@amesres.org

Anon Nymous
Redacted

8600 Datapoint Drive
San Antonio, Texas 78229

cpalmer@prl.com

ABSTRACT
This paper provides a sample of a LATEX document for the
NIME conference series. It conforms, somewhat loosely, to
the formatting guidelines for ACM SIG Proceedings. It is an
alternate style which produces a tighter-looking paper and
was designed in response to concerns expressed, by authors,
over page-budgets. It complements the document Author’s
(Alternate) Guide to Preparing ACM SIG Proceedings Us-

ing LATEX2✏ and BibTEX. This source file has been written
with the intention of being compiled under LATEX2✏ and
BibTeX.
To make best use of this sample document, run it through

LATEX and BibTeX, and compare this source code with your
compiled PDF file. A compiled PDF version is available to
help you with the ‘look and feel.’ The paper submit-
ted to the NIME conference must be stored in an
A4-sized PDF file, so North Americans should take
care not to inadvertently generate letter paper-sized
PDF files. This paper template should prevent that from
happening if the pdflatex program is used to generate the
PDF file.
The abstract should preferably be between 100 and 200

words.

Author Keywords
NIME, proceedings, LATEX, template

CCS Concepts
•Applied computing ! Sound and music comput-
ing; Performing arts; •Information systems ! Music

retrieval;

⇤Dr. Trovato insisted his name be first.
†The secretary disavows any knowledge of this author’s ac-
tions.
‡This author is the one who did all the really hard work.

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’18, June 3-6, 2018, Blacksburg, Virginia, USA.

Please read the comments in the nime-template.tex
file to see how to create the CCS Concept Classifi-
cations!

1. INTRODUCTION
The proceedings are the records of a conference. ACM seeks
to give these conference by-products a uniform, high-quality
appearance. To do this, ACM has some rigid requirements
for the format of the proceedings documents: there is a
specified format (balanced double columns), a specified set
of fonts (Arial or Helvetica and Times Roman) in certain
specified sizes (for instance, 9 point for body copy).
The good news is, with only a handful of manual set-

tings,1 the LATEX document class file handles all of this for
you.
The remainder of this document is concerned with show-

ing, in the context of an “actual” document, the LATEX com-
mands specifically available for denoting the structure of a
proceedings paper, rather than with giving rigorous descrip-
tions or explanations of such commands.

2. THE BODY OF THE PAPER
Typically, the body of a paper is organized into a hierar-
chical structure, with numbered or unnumbered headings
for sections, subsections, sub-subsections, and even smaller
sections. The command \section that precedes this para-
graph is part of such a hierarchy.2 LATEX handles the num-
bering and placement of these headings for you, when you
use the appropriate heading commands around the titles of
the headings. If you want a sub-subsection or smaller part
to be unnumbered in your output, simply append an aster-
isk to the command name. Examples of both numbered and
unnumbered headings will appear throughout the balance
of this sample document.
Because the entire article is contained in the document

environment, you can indicate the start of a new paragraph
with a blank line in your input file; that is why this sentence
forms a separate paragraph.

1Two of these, the \numberofauthors and \alignau-
thor commands, you have already used; another, \bal-
ancecolumns, will be used in your very last run of LATEX
to ensure balanced column heights on the last page.
2This is the second footnote. It starts a series of three
footnotes that add nothing informational, but just give an
idea of how footnotes work and look. It is a wordy one, just
so you see how a longish one plays out.

19

driven, in part, by the requirements of enabling seamless
human performer interactions with musebot ensembles.

2. ORIGINAL MUSEBOT
INTERACTIONS
The musebot framework has evolved as demands on it to
operate in different performance contexts have developed.
One original goal of the musebot framework was to allow for
autonomous metacreative systems to communicate without
the need for human interaction; in other words, as a potential
avenue to progress higher in the metacreative taxonomy [15].
We focus here on the changes, and artistic reasons for
change, driven by a growing interest in human participation
in musebot ensembles.

The original musebot protocol2 required a Conductor and
any number of musebots. The Conductor acted as a network
hub through which all musebot messages passed;
additionally, it provided a timecode that coordinated all
musebots, as well as having the ability to launch and “kill”
any active musebot. The original implementation passed
messages via OSC [16], with each musebot communicating
with the Conductor via a unique UDP port. The Conductor
assigned these ports by writing port numbers into a
configuration file read by the musebots when they launched.
This implementation required all musebots to exist within a
directory on the same hard drive as the Conductor.

Musebots, developed in a variety of coding environments
(including MaxMSP, Java, Pure Data, Extempore, and
SuperCollider) were curated into ensembles; in these cases,
the musebots demonstrated an ability to communicate with
one another through agreed upon messages, as well as a
musical compatibility. The ensembles were presented as
ongoing installations, in which each ensemble would be
launched and perform for 5 to 7 minutes, then be “killed”,
allowing the next ensemble to perform. Eigenfeldt [17]
describes these installations in more detail.

3. ADAPTING MUSEBOTS FOR
HUMAN INTERACTION
While musebots were used in a variety of metacreative
situations in the first two years since their inception, they
remained autonomous—without the need for (or benefit of)
live human interaction. However, several musebot
developers, including some of the authors, experimented
with musebots interacting with live performers in a concert
in Vancouver in July 2017 entitled Play Nice: Musical
collisions between humans and intelligent machines. The
event is documented online, including video of all
performances, as well as a repository of all software
developed3. These experiences underscored the need for an
updated Musbot specification.

Several of the works in Play Nice explored sound-as-
interface [18] and performance-as-interface [19] methods of
human interaction by representing the live performative
actions of humans as musebot messages, thereby placing a
human agent within the virtual ensemble. This was done in a
variety of ways. In Hewn from Living Rock, audio and MIDI
data from a guitarist’s performance on a MIDI guitar was
analyzed by a dedicated musebot so as to produce a
‘/density’ measure of the guitarist’s playing, as well as an
estimate of their present key, which were then broadcast to
the rest of the currently running musebots.

2 https://bit.ly/2uOUJE2
3 http://musebots.weebly.com/play-nice.html

In The Indifference Engine, the live performer’s audio
was analysed for audio features, including spectral centroid,
loudness, onset detection for activity measure, and spectral
flux. These features were then mapped to more general
musebot parameters: for example, activity level to /arousal,
and flux to /valence.

In Moments, musebots attempted to fulfill a spectral goal,
as provided through a spectrum generated by a structural
musebot: the live performer’s audio was analyzed, and
included in the complete live spectrum, which the musebots
then used to realign their own goals. In performance, this
resulted in musebots slowly moving away from the live
performer’s spectral areas so as to fill other spectral regions.

In Clasm, live human control over musebot parameters
was exploited. An ensemble of audio musebots performed
with a video musebot on a networked computer. Audio
musebots were “cajoled” and “prodded” through the use of
an external USB controller that had its MIDI messages
translated into messages understood by the audio musebots.
While individual musebots continued to send messages, such
as /density, /valence, and /arousal, human interaction tended
to push these values to extremes, thus overriding the more
moderate generative values. The result was one in which the
musebots tended to interact with one another more gently,
while the human could demand fast and immediate changes.

Because two of the works involved musebots running on
multiple computers, the musebot framework had to be
adapted to allow for network performance. A special
musebot, ServerBOT, was developed to implement network
bridging, sending the messages from the musebots hosted on
one’s local computer to those hosted on a remote computer
also running a ServerBOT. This allowed two computers to
run independent musebot ensembles, while only one
Conductor was providing timing information. This enabled
developers to use ensembles on their own computers as
before, albeit with additional messages coming in from
remote musebots, although it also required initiating the
ServerBOT with IP addresses from all computers, a process
that was not always seamless in performance.

4. IMPROVISATIONAL
INTERFACES
In a recent code jam4 in Byron Bay, Australia, five musebot
developers continued to explore the potential for networked
museboting. A new working method materialized through
daily jam sessions over the course of a week. In each jam, all
five developers networked their respective musebots
together, with each developer’s musebots hosted on their
respective computer. The developers then live-coded changes
to their musebots to refine the musebots’ behaviours, such
that the group of musebots produced increasingly more
sophisticated and coherent music. Each jam lasted
approximately an hour, with the duration of the jam allowing
the developers to observe and learn to influence emergent
behaviours of the ensemble over time.

One of authors dedicated the codejam to developing an
interface for human interaction in the musebot ensemble. The
approach was to implement a human-representing musebot,
acting as a ‘code-wrapper’ around the human player—
whimsically termed an algoskin—so that they appeared like
any other musebot to the rest of the ensemble. In practice,
this meant a combination of typical bidirectional musebot
messaging with human interpretation of received messages
(displayed on a computer screen) that supported the human

4 http://musebots.weebly.com/byron-bay-2017.html

20

player listening to the musical output of the ensemble and
responding accordingly.

The design goal for this algoskin was to facilitate an
accessible and meaningful musical experience for the human
player, without requiring any additional level of musical
expertise. Musical creativity support systems like this lie
somewhere between Digital Musical Interfaces (DMIs) and
Interactive Music Systems (IMSs) and align with the
‘democratizing’ agenda of the NIME 2018 conference.

Where DMI design tends to focus on properties such as
controllability, expressiveness, diversity and the capacity to
demonstrate virtuosity [20], and IMS design tends towards
the implementation of autonomous computational music
agents for collaborative human-computer creativity, this
algoskin adopted a hybrid metaphor which some of the
authors [21] have previously described as an
‘improvisational interface’; where generative music
processes are used to elaborate on human input in a
stylistically appropriate manner, potentially scaffolding
human creativity in circumstances where complete human
control would be difficult (see [22] for some examples)

Musebot ensembles suggest the possibility of such
scaffolded interaction. As they are designed for autonomous
multi-agent real-time music generation, a human with an
appropriate algoskin may participate in the ensemble
leveraging the high-level musical context negotiated through
musebot messaging. In the case of the Byron Bay codejam,
the primary musical features communicated in the ensemble
were /density, /notepool, and /chordscale, as well as a
/downbeat message broadcast at the time of each new
downbeat. In the context of Western tonal music, particularly
in popular genres, a good starting point for musically
appropriate improvisation is to play in-key and in-time. This
algoskin opted to provide two layers of pitch quantisation
(chord and scale), leaving the timing in human hands.

The physical interface to the algoskin was a MIDI
controller comprising a 4x4 square of velocity sensitive pads
and various other dials and buttons. The pads were connected
to a software synthesizer via the algoskin musebot which
remapped the pads so that the left column produced notes
quantised to the chord, and the remaining pads produced
notes between the chord notes quantised to the scale.

The algoskin also transmitted musebot messages in
certain circumstances. When a dedicated ‘mode’ button was
toggled, the MIDI pads were disconnected from the soft-
synth and quantisation removed. The unquantised pitches of
pads subsequently pressed were stored in a pitch-class set.
When this mode was toggled off, the pitch-class set was
broadcast to the ensemble as a /notepool message. Also, a
dedicated ‘density’ dial sent /density messages according to
the dial’s position when turned. This was a subversion of the
intended meaning of the density message to broadcast the
current density, and thus an example of agent misbehaviour
discussed below.

The consensus of developers and performers was that the
experience of interacting with the musebot ensemble through
this interface was enjoyable, and for the most part musically
appropriate. The musebot etiquette, as described elsewhere,
was considered by them to be reasonably successful in
providing musical ‘space’ for the human to shine through at
times, and conversely to pick up the slack at others.

5. MUSEBOTS 2.0
The 2017 musebot code jam aimed to find a new working
method that allowed for more instantaneous—and ostensibly
musical—decision-making while coding. Formerly,
musebots were created as standalone applications, fixed in

their capabilities, then placed in ensembles running on a
single computer. Coders reacted to their musebots like
composers might listen to their fully scored music performed
by an ensemble: listen, take notes, and alter the
music/musebot offline, then repeat the process. It was hoped
that through allowing musebots to remain on developers’
separate individual computers, and interact through
networked communication, a more improvisational
development practice would emerge, in which developers
could alter and adjust their musebots as they interacted
within the ensemble. The resulting approach was live-coding
as software development: developers altered and re-coded
their musebots live, during jam sessions of up to an hour.
Development through live-coding complemented the prior,
more conventional, development process.

The Conductor/Server application was eliminated in
favour of using a single port number with a broadcast IP
address for inter-computer communication. Each individual
computer user was tasked with managing the allocation of
UDP server port numbers to dispatch to the (potentially
multiple) musebots running locally on their machine. The
timekeeping function of the Conductor was delegated to a
separate musebot on a single computer, broadcasting a count
of elapsed downbeats together with a tempo; musebots
distributed on separate computers were responsible for
generating their own timecode between the downbeat pulses.

This also resulted in an alteration, or at least adaptation,
of the musebot messaging protocol. Formerly, messages
were divided into three types: /mc messages from the
Conductor, which included timing information; /agent
messages, also from the Conductor, which allowed the
Conductor to control individual musebot gain, as well as kill
them; and /broadcast messages, which were messages
originating from the musebots, and passed to the ensemble.

With the elimination of a central messaging hub – the
Conductor – there was no longer a need for most of the /mc
messages, nor the /agent messages. This change is substantial
enough that we label this revised protocol Musebots 2.05.
The remaining messages were all /broadcast messages
(including the new /downbeat message), thereby making the
/broadcast message itself superfluous. Instead, we found it
more useful to divide the actual messages being sent into the
following types:6
• /event - messages about actions the musebot takes; the

time sent is typically significant, with /event messages
including note-events and parameter or controller
changes;

• /harmony - any messages suggesting, or informing other
musebots of, harmonic constraints;

• /time - messages coming from the time-generating
musebot, including /downbeat, but also extending to
/beat, /meter, and /tempo;

• /activity - messages to the ensemble that a musebot is
active, such as the /alive message;

• /change - upcoming changes, such as /tempo or /meter;
• /analysis - messages from musebots that examined live

audio, or self-analysis. For example, measured density
output of the sending musebot.
Methodologically, it is significant that these changes to

the musebot protocol resulted from the demands of artistic
requirements to include human participation in the runtime
ensemble activity.

5 https://tinyurl.com/ybb9k9ml
6 The slash(/) is a delimiter in the OSC protocol.

21

6. EMERGING AESTHETIC
PRINCIPLES
The original musebot manifesto suggested that musebots
need not be modeled upon human modes of interaction.
While a great deal of effort has gone into developing usable
machine listening software, relatively straight-forward
human tasks, such as reliable beat detection and source
separation, remain somewhat elusive. In many cases,
musebots have explored non-human modes of collaborative
music-making, explicitly in their ability to communicate
developing plans and intentions, which would be
cumbersome for human improvisors. Despite the provocative
potential of such non-human interactions, in practice the
authors take most of their current inspiration from human
musical behaviours and evaluations [23].

Treating their musebots as artworks, the authors use their
own aesthetic impressions as well as those of human
performers and audience to validate musebot ensembles’
successes and/or problems. They share several general
agreements about the desired musical output of musebot
ensembles. Musebots should produce human-scrutable
musical material that evidences interaction between multiple
agents. Since groups of musebots, rather than individual
musebots, produce the music, developers prioritize intelligent
collectives of musebots over individually intelligent
musebots. They should display what, in human
communication, is called rhetorical reinforcement [25]:
actions must reinforce each other, differing from what they
would be in response to random stimuli. The authors have
not yet tested this quantitatively, however, they intend that
over time their collections of musebots will display
increasingly organized behaviour. Based on their experience
live-coding musebot ensembles, the authors have determined
several processes that they believe tend to cause musebots to
produce diverse, but comprehensible, output.

Firstly, individual musebots need not produce virtuosic,
or complete, music. This approach is similar to that espoused
by live coding performers or algorithmic composers who also
seek to utilise parsimonious generative processes that can be
interestingly combined [26]. Musebot ensembles gain their
complexity and potential power through their interaction and
collective action. Simple individual musebots display more
easily codifiable behaviour than complex ones, and since it is
the behaviour of the ensemble, not the individuals, that
produces music, individual musebots need only be
sophisticated enough to respond musically in the role they
play and to the messages they receive. Once a musebot
ensemble has produced a desired result, new group
behaviours are decided upon by the developers, who then add
capabilities to their musebots to afford those.

Secondly, when coding, musebot developers focus on
composing creative algorithms rather than utilities. Musebot
developers are composers and musicians first, and developers
only insofar as needed in order to achieve their musical
goals. So, code virtuosity is always in the service of
musicianship, and individual musicianship always in the
service of group musicianship.

Thirdly, the authors advocate developing individual
musebots by dealing with behavioural questions one at a
time, coming up with a reductive solution for each and
assessing emergent behaviour, rather than imagining a
desired musical result and then trying to encode the capacity
to produce it. The authors believe, as articulated by Sorensen
and Brown [27] in their algorithmic generation of orchestral
music, that this process will yield better results than trying to
either envision the output of the system all at once.

Fourthly, musebot development does not necessarily
emulate human thinking or the natural world, but takes
inspiration from both, and in so doing sometimes reveals
novel music-theory concepts. Combined with the practical
principle of producing simple code, musebot algorithms
therefore function like the best music theory, making maps
simpler than the territory. Musebot developers tend to
address the problem of ensemble behaviour by thinking from
the perspective of each musebot, one at a time, and applying
their own musical intuitions in determining the behaviour of
the individual software agent.

7. METACREATIVE
MUSICIANSHIP
As was the case with the advent of electronic music,
metacreative music requires new skills from the humans
composing and performing within it, a phenomenon the
authors found particularly important in their work with
musebots. As part of the post-digital musicianship [28] used
for making musebots, the authors have begun cultivating a
new kind of ear training which they call algorithmic
listening: the ability to accurately estimate – whether upon
reflection or in the heat of what Leman calls “the expressive
moment” [29] – the procedure causing a musical event.
Where traditional ear training concentrated on replicating
either the physical event that caused a given musical stimulus
(such as a specific piano key being struck or a specific
instrument being played) or some abstraction of it (such as a
notated pitch), and technical listening concentrated on the
electrical process being applied to a given signal [29],
algorithmic listening prioritizes the regular behaviour of the
sounding object – for example the particular pattern of a
bird’s song – thus presenting the acoustic environment as an
algorithmic ecology of interacting agents.

Through algorithmic listening, developers can understand
the algorithms of other developers’ musebots, as well as
become more aware of algorithms present in the natural
world to be used as a basis for “art-as-it-could-be” [30].
While the authors apply algorithmic listening to the
development of rule-based AI, they speculate that it may also
apply to musical machine learning applications, where the
goals would be to ‘hear’ both the characteristics of the corpus
used (in what might be called “topical listening” or listening
for genre) in addition to the learning algorithm derived from
processing it.

Another aspect of metacreative musicianship that
becomes apparent from attempts to integrate human
performance with musebot ensembles is the ability to
welcome serendipitous, aesthetically pertinent, occurrences.
Coding musebot behaviours does not always go to plan and
sometimes the emergent results are surprisingly interesting
and/or provide inspiration for future development. This has
always been the case for artistic creativity and continues to
be even in the digital age with its technical emphasis on
precision and optimisation. In line with Cascone’s notion of
the post-digital [31]– that looks beyond notions of precision
to accept the inherent glitches in technological (including
algorithmic) processes as potential sources of creativity – this
aspect of metacreative musicianship is an “acknowledgement
of technology’s essential character and its situatedness,
including its character flaws” [28].

8. DETERMINING ALGORITHMIC
BEHAVIOUR
Troubleshooting a musebot involves the combined concerns
of creative coding and artificial intelligence design. One of

22

the objectives has always been to create musebots that
interact in a coherent musical fashion. The introduction of
human performers into the ensemble made this objective
especially pertinent because what might be considered as
errors in a machine-only context became, in a musician-
machine context, misbehaviours to be coped with in real time
by the musician. The authors distinguish individual and
collective misbehaviours.

Individual misbehaviours are musical activities that
would be considered rude if performed by a human. Some
examples include: soloing continuously without leaving
space for other agents in the ensemble; not playing for an
entire performance; and/or constantly playing out of time
and/or harmony. To avoid individual misbehaviours, the
authors try to give each musebot an ability to demonstrate
‘good taste’ within the musical idiom, through an iterative
process of development and testing. However, since
individual corrections deal exclusively with the actions of an
individual agent, they do not necessarily result in better
performance from the ensemble as a whole.

Collective misbehaviours are phenomena, enacted by a
group of agents, which deviate from the aesthetic desired by
its human developers. Examples have included situations in
which groups of musebots all played at once with a high
degree of complexity (creating chaos), all layed out at once
(creating silence), or insisted on playing in different keys. To
correct collective misbehaviours, developers agree on
conventions to which they program their musebots to
conform. Such conventions include: adopting the keys of
other musebots but generating their own key if no other is
provided; and playing their most soloistic material only when
no other musebot is soloing.

Avoiding ‘rude’ musebot behaviours is an important step
in facilitating pleasing human engagement with a musebot
ensemble, because, while the structure of a musebot
ensemble does not privilege the humans interacting with it in
the moment of playing together, it does privilege humans
within the overall project, because human developers
determine rules for aesthetic relevance and social interaction.

Playing with(in) the ensemble gives a human musical
agent a perspective different from that of an outside
audience. Just as great human musicians typically develop
reputations based on what they are like to play with as well
as to listen to—with both these reputations feeding into the
artistic practice upon which they are judged—musebots are,
to the humans who play with them, interactive artworks as
well as producers of artistic sound.

9. CONCLUSION
This article has outlined explorations in human interactions
with musebot ensembles. In the process, the musebot
protocol has evolved to be effective for networking live
music generation algorithms with each other and human
performers. Musebot ensembles have provoked the
development of new musical skills in the humans
programming and using them. Consistent with its purpose,
the musebot framework is extensible and has evolved in the
process of expanded performance practices. Now at version
2.0 the musebot protocol will surely be applied to varied
future applications, prompting further musical, technical and
theoretical responses from its developers in the process.

10. ACKNOWLEDGMENTS
This research was made possible by a Griffith University /
Simon Fraser University Travel Grant and supported by the
Australian Research Council Discovery Grant DP160100166.
Our thanks to these organizations for their support.

11. REFERENCES
[1] Pasquier, P., Eigenfeldt, A., Bown, O., and Dubnov, S.

2016. An introduction to musical metacreation. In
Computers in Entertainment 14(2).

[2] Todd, P., and Werner, G. 1999. “Frankensteinian
Methods for Evolutionary Music Composition.” In
Musical Networks: Parallel Distributed Perception and
Performance, edited by Niall Griffith and Peter Todd.
Cambridge, MA: The MIT Press.

[3] Bown, O., Carey, B., and Eigenfeldt, A. 2015.
"Manifesto for a Musebot Ensemble: A platform for
live interactive performance between multiple
autonomous musical agents." In Proceedings of the
International Symposium of Electronic Art.

[4] Eigenfeldt, A., Bown, O., and Casey, B. 2015.
Collaborative Composition with Creative Systems:
Reflections on the First Musebot Ensemble. In
Proceedings of the International Conference on
Computational Creativity, Park City, 134-141.

[5] Rowe, R. 1993. Interactive Music Systems: Machine
Listening and Composing. Cambridge, MA: The MIT
Press.

[6] Machover, T., and Chung, J. 1989. “Hyperinstruments:
Musically Intelligent and Interactive Performance and
Creativity Systems.” In International Computer Music
Conference, 186–90. San Francisco: ICMA.

[7] Biles, J. 1994. “GenJam: A Genetic Algorithm for
Generating Jazz Solos.” In International Computer
Music Conference, 131–37. San Francisco: ICMA.

[8] Risset, J, and Van Duyne, S. 1996. “Real-Time
Performance Interaction with a Computer-Controlled
Acoustic Piano.” In Computer Music Journal 20
(1):62–75.

[9] Lewis, G. 2000. “Too Many Notes: Complexity and
Culture in Voyager.” In Leonardo Music Journal
10:33–39.

[10] Blackwell, T., and Young, M. 2005. “Live
Algorithms.” In Artificial Intelligence and Simulation
of Behaviour Quarterly 122:7–9.

[11] Assayag, G., Bloch, G., Chemillier, M., Cont, A., and
Dubnov, S. 2006. “Omax Brothers: A Dynamic
Topology of Agents for Improvisation Learning.” In
ACM Workshop on Audio and Music Computing for
Multimedia, International Multimedia Conference,
125–32. Santa Barbara: ACM.

[12] Casal, D. 2008. “Time after Time: Short-Circuiting the
Emotional Distance between Algorithm and Human
Improvisors.” In Proceedings of the International
Computer Music Conference 2008. Dublin, Ireland:
ICMC.

[13] Hoffman, G, and Weinberg, G. 2011. “Interactive
Improvisation with a Robotic Marimba Player.” Auton
Robot 31:133–53.

[14] Linson, A. 2014. “Investigating the Cognitive
Foundations of Collaborative Musical Free
Improvisation: Experimental Case Studies Using a
Novel Application of the Subsumption Architecture.”
PhD Thesis, London: Open University.

[15] Eigenfeldt, A., Bown, O., Pasquier, P., and Martin, A.
2013. “Towards a Taxonomy of Musical Metacreation:
Reflections on the First Musical Metacreation
Weekend.” In Proceedings of the Ninth Artificial
Intelligence and Interactive Digital Entertainment
Conference, 40–47. Boston, MA: AAAI.

[16] Wright, M., & Freed, A. 1997. Open Sound Control: A
New Protocol for Communicating with Sound

23

Synthesizers. In Proceedings of the International
Computer Music Conference.

[17] Eigenfeldt, A. 2016. Musebots at One Year: A Review.
In Proceedings of the Musical Metacreation Workshop,
Paris.

[18] Di Scipio, A. 2003. Sound is the Interface: from
interactive to ecosystemic signal processing. Organised
Sound, 8(03):269-277.

[19] Brown A.R. 2018. Creative improvisation with a
reflexive musical bot, Digital Creativity, 29:1, 5-18

[20] McDermott, J., Gifford, T., Bouwers, A., and Wagy,
M. 2013. “Should Music Interaction be Easy”. In
Music and Human Computer Interaction. Heidelberg:
Springer

[21] McCormack, J., and d’Inverno, M. 2016. “Designing
Improvisational Interfaces”. In Proceedings of the 7th
Computational Creativity Conference, Paris.

[22] T. Gifford, S. Knotts, S. Kalonaris, J. McCormack, M.
Yee-King, and M. d’Inverno. Computational systems
for music improvisation. Digital Creativity, 29(1),
2018.

[23] Eigenfeldt, A., Brown, A. R., Bown, O. & Gifford, T.
2017. “Distributed Musical Decision-Making in an
Ensemble of Musebots: Dramatic Changes and
Endings.” In Proceedings of the International
Conference on Computational Creativity, 88–95.
Atlanta, GA: Association for Computational Creativity.

[24] Brandt, A. 2011. Sound Reasoning Chapter 4: “Musical
Emphasis.” Retrieved from
http://www.soundreasoning.org/.

[25] Sorensen, A., and Brown, A. 2007. “aa-Cell in
Practice: An Approach to Musical Live Coding.” In
Proceedings of the International Computer Music
Conference, 292–99. Copenhagen: ICMA.

[26] Sorensen, A., and Brown, A. 2008. “A Computational
Model for the Generation of Orchestral Music in the
Germanic Symphonic Tradition: A Progress Report.”
In Sound: Space - The Australasian Computer Music
Conference, edited by Sonia Wilkie and Anthony
Hood, 78–84. Sydney: ACMA.

[27] Ferguson, J., and Brown, A. 2016. “Fostering a Post-
Digital Avant-Garde: Research-Led Teaching of Music
Technology.” Organised Sound 21(02):127–37.

[28] Leman, M. 2016. The expressive moment: How
interaction (with music) shapes human empowerment.
MIT press.

[29] Letowski, T. 1985. Development of technical listening
skills: Timbre solfeggio. Journal of the Audio
Engineering Society, 33(4), 240-244.

[30] McCormack, J., Eldridge, A., Dorin, A., and McIlwain,
P. 2009. “Generative Algorithms for Making Music:
Emergence, Evolution, and Ecosystems.” In The
Oxford Handbook of Computer Music, edited by Roger
T. Dean. New York: Oxford University Press.

[31] Cascone, K. 2000. “The Aesthetics of Failure: ‘Post-
Digital’ Tendencies in Contemporary Computer
Music.” Computer Music Journal 24(4):12–18.

24

