
A Framework for Modular VST-based NIMEs
Using EDA and Dependency Injection

Patrick Palsbröker
FH Bielefeld University of

Applied Sciences
Minden, Germany

ppalsbroeker@fh-bielefeld.de

Christine Steinmeier
FH Bielefeld University of

Applied Sciences
Minden, Germany

csteinmeier@fh-bielefeld.de

Dominic Becking
FH Bielefeld University of

Applied Sciences
Minden, Germany

dbecking@fh-bielefeld.de

ABSTRACT
In order to facilitate access to playing music spontaneously,
the prototype of an instrument which allows a more natural
learning approach was developed as part of the research
project Drum-Dance-Music-Machine. The result was a mod-
ular system consisting of several VST plug-ins, which on
the one hand provides a drum interface to create sounds
and tones and on the other hand generates or manipulates
music through dance movement, in order to simplify the un-
derstanding of more abstract characteristics of music. This
paper describes the development of a new software concept
for the prototype, which since then has been further devel-
oped and evaluated several times. This will improve the
maintainability and extensibility of the system and eliminate
design weaknesses. To do so, the existing system first will
be analyzed and requirements for a new framework, which
is based on the concepts of event driven architecture and
dependency injection, will be defined. The components are
then transferred to the new system and their performance
is assessed. The approach chosen in this case study and
the lessons learned are intended to provide a viable solution
for solving similar problems in the development of modular
VST-based NIMEs.

Author Keywords
software engineering for NIMEs, dependency injection, VST,
event-driven-architecture

CCS Concepts
•Applied computing→ Sound and music computing;
•Software and its engineering → Publish-subscribe
/ event-based architectures; Abstraction, modeling and
modularity;

1. INTRODUCTION
In 2015, as part of the interdisciplinary research project
”Drum-Dance-Music-Machine”(DDMM), a NIME was con-
ceptualized and developed which aims to facilitate easier
access to music-making for preschool children.[5] We as-
sumed that with the help of an instrument with a simple
interface, like a drum, but which produces a melodic sound,
children could be provided with an easy and intuitive way
to produce consonance. Central to the modular system we

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’18, June 3-6, 2018, Blacksburg, Virginia, USA.

created to solve this is a dynamic composition, which can
be influenced by two drum pads, a Kinect camera and/or
a Wii Balanceboard (as an alternative to drums) as input
media. The data from these components is then processed
on a PC using different Virtual Studio Technology (VST)
plug-ins (see figure 1). Since then, the prototype has been
further developed and evaluated several times.[26, 27] In this
process some design weaknesses within the structure of the
VST plug-ins were revealed, for example the communication
between plug-ins, which is only possible to a limited extent.
Furthermore, the planned enhancement of DDMM is very
complicated due to the difficulty of debugging and measuring
the runtime of each individual plug-in. We assume that other
developers may encounter similar problems when creating
modular VST-based NIMEs.

Figure 1: DDMMs VST structure

2. GOALS
These problems can be solved by converting existing plug-
ins into an independent system of only one VST plug-in
with a new framework, which provides a common basis
for the existing plug-ins supporting them with all their
functionalities. Thus, in this paper the basis for future
extensions of DDMM, as well as the new development of VST-
based NIMEs in general, will be defined and implemented in
a first example. Tools for the internal plug-in communication
and for communicating with external parts will also be
added. The loaded plug-ins will furthermore be monitored
and their runtime measured in order to find errors more
quickly. In addition, a service monitoring system shall be
implemented to illustrate the runtimes of the individual
components graphically in order to make deviations in the
execution time visible, which supports the optimization
process. As an example, we will migrate our existing system
DDMM into the new framework. After the system has
been transferred, it will be re-evaluated in three iterations
(functional tests, unit tests and performance tests) to find
further problems and possible improvements for the future.

96

3. RELATED WORK
With its combination of different interfaces, DDMM can
best be described as a sensor network. It has been proven
that sensor networks benefit from event-driven architecture
(EDA).[6, P. 39] Tests have shown that EDAs are capable of
much smaller event intervals than approaches using polling
without any dropped events.[11] There are also some projects,
utilizing a Space-Based Architecture (SBA), which combines
paradigms of both, event-driven and service-oriented archi-
tectures, in order to handle the coordination of distributed
applications and autonomous components while keeping the
dependencies to a minimum. One of these projects used the
XVSM middleware to build an event driven extension, which
handles asynchronous jobs, expressive triggering conditions
and time-based constraints.[7]

EDA is also used in a variety of other research fields
like smart home and smart city[12, 8], machine learning[24],
distributed automation systems[17] and mobile computing[1].
Furthermore it is used in several IoT standards (compare
listed standards in [2]) and in the design of context aware
systems (CAS)[4]. Even though there are no cases in research
known to us where EDA is used in the context of VST-plug-
ins, the positive results in other fields are a good indicator
for successfully establishing the foundation of the intended
framework on the paradigms of EDA. One of the key aspects
of DDMM is its modularity.[5] To keep this independence
while creating the new framework, it might be reasonable
to make use of the dependency injection (DI) pattern, since
it has proven to effect a variety of quality attributes of a
software system, like in particular the extensibility. Thus it
would be easy to add more interfaces to DDMM and at the
same time provide testability by supporting mock objects
in unit testing[25] and re-usability by breaking transitive
dependencies[28].

In research, dependency injection is mostly found in web
applications and Java development. In the context of web
development there were attempts to integrate DI into differ-
ent frameworks like the one proposed by Nozawa, Hotta and
Hagiwara in order to develop mobile websites.[16] In June
2012 with the release of AngularJS1 DI became key compo-
nent in one of the most popular front-end frameworks which
is relevant to this day.[20] Within the Java environment
there are a couple of frameworks providing DI functional-
ity like Spring2 or PicoContainer3. Some projects tried to
build upon, and extend these frameworks[10] or developed
new ways of using DI, for example in combination with the
adapter pattern[21]. Other fields of research, where DI is
used, are game engines[18] or even service-oriented applica-
tions (SOA)[15]. SOAs are very close to EDAs and there
were already successful attempts to combine them.[13] Thus,
a combination of EDA and dependency injection might solve
the issues mentioned before.

4. THE FRAMEWORK
The existing concept of DDMM is based on the JUCE frame-
work4. This does not only simplify the development of VST
plug-ins, but also offers a variety of useful methods for han-
dling MIDI data, the file system and the development of
graphical user interfaces. The new framework will therefore
also be built on the basis of JUCE. The fact that these JUCE
features will not be changed should facilitate the porting
of the existing plug-ins. At the same time, however, JUCE
dictates a structure on which the new VST framework must

1https://angularjs.org/
2https://spring.io/
3http://picocontainer.com/
4https://juce.com/discover

be based. Thus, the main class of the framework has to
inherit from AudioProcessor, which cyclically invokes the
processBlock method.[22]

4.1 Requirements
After an extensive analysis of the initial system, some weak-
nesses have come to light. In order to avoid well-known
errors and to improve performance issues, existing problems
should be taken into account when developing the frame-
work and restructuring DDMM. These issues will now be
examined in detail and requirements for the new framework
will be formulated:

4.1.1 Plug-in communication
One of the key aspects when creating a modular VST-based
NIME is the communication between different plug-ins. The
VST-protocol provides a unidirectional connection via a
MIDI-buffer that is handled by the VST-Host, but no way
to respond back to the plug-in that sent this MIDI-stream. In
our use case the plug-in ”Music” generates a composition and
sends it to other plug-ins which each handle additional data
from specific connected interfaces. Based on the comparison
between the interface data and the received composition, the
”Music” plug-in changes the composition dynamically(see
figure 1). The prototype solved this issue with inter-process
communication using pipes for the benefit of modularity,
but this caused a delay in the processing of inputs, e. g.
when changing the key, which in a time-critical topic like
music can lead to a non-intuitive behavior of the program
and frustration with the users. Furthermore, with such a
limited form of communication, the cooperation of several
plug-ins is difficult to realize and could lead to problems
with subsequent development.

4.1.2 Consistent and measurable components
Because of JUCE all synchronous tasks are processed by the
processBlock method, but in a modular NIME the further
structure is left to each plug-in. With DeviceInputPlugin-
Processor the input plug-ins in our use case already have a
common approach for matching inputs with the metronome,
but the architecture of plug-in ”Music” is completely differ-
ent. A precise specification of what has to be done when and
in which area, which is generally admitted and consistent
for all plug-ins, would not only benefit the overall overview-
and orientation time, but would also be helpful in the de-
velopment of standardized performance measurements and
unit tests.

4.1.3 Buffers and thread safety
When dealing with data from sources outside the VST-host,
buffers usually are each filled by a separate thread and read
by the main thread of the VST-host. This way thread-
related race conditions cannot be completely excluded. For
this reason, it is necessary to protect the buffer with a mutex
to prevent possible problems.

4.2 Concept
In order to offer a more uniform structure and thus enable
the unproblematic migration of old plug-ins as well as the
new development of further plug-ins, a tripartite workflow
will be implemented (see figure 2). It is based on a modified
version of EDA and represents the three elements of the
EDA processing model (event-object, -source and -sink)[6,
p.51]. The event-objects are represented by the interface
Event, which will replace all existing buffers. The interface
Condition is designed for the event-source, which determines
whether an action must be executed based on the existing
instances of Event. The interface Trigger is developed to

97

map the event-sink, which will execute a particular task as
soon as it is called by a Condition. Concrete event-buffers
and triggers will be implemented as singletons in order to
allow access to the same instance in each module.

Condition

�singleton�
Trigger

�singleton�
Event B

�singleton�
Event A

Figure 2: EDA concept with event, condition and trigger

4.2.1 Modules
In order to improve communication between different plug-
ins, the existing structure will be abolished and thus the
previously independent VST plug-ins are integrated to the
new interface Module. This interface will contain some meth-
ods of the AudioProcessor class and additional methods are
provided to register the components implemented by the
individual modules within the context of the main system.
In this way, all existing VST plug-ins merge into one. As
a result, the system loses modularity, but individual func-
tionalities and properties of the system could be switched
off, for example by VST parameters from the graphical user
interface. This could be implemented with checkboxes allow-
ing the deactivation of single guitar strings, for example, or
the deactivation of a whole guitar interface as part of an fic-
titious NIME with several string-based modules. In the case
of DDMM it can be used to deactivate the drum module, if
it is not needed or unwanted. So as long as this checkbox is
not marked, the module could ignore all incoming strokes on
the drum or even terminate the connection to the drumpad.

4.2.2 Events
With the transition to the new framework and the fusion of
memory space, it will be possible to make all buffers visible
outside of their respective module. Thus, each buffer can be
used by all modules. To do so, all buffers are transferred to
the newly created interface Event and each concrete event
will be implemented as a singleton enabling each module to
access a shared set of event objects. All entries in the event
buffer should bear the timestamp of their creation and a
lifespan. This enables the system to automatically iterate
over all events and search for outdated entries, which can
then be automatically removed. The origin of the data used
to fill the event buffers may vary significantly. For example,
data sources within the VST-host transmit their data via
MIDI-buffer and write into the buffer when the processBlock
method is called, but some other interfaces, like any sort
of external inputs, for example a drum machine, require a
separate thread to retrieve the data. In DDMM we have a
similar situation with the music plug-in on the one hand,
generating its composition inside the processBlock method,
and the plug-in ”Balanceboard” on the other hand, which
receives data asynchronously. For this reason each module is
designed to choose how and when it supplies its events with
data. If possible, however, a validity check should take place
before the event buffer is filled, so that later on it can be
assumed, that each record represents a correct and reliable
event.

4.2.3 Triggers
Triggers are the executing components of the framework.
All externally visible changes, such as writing to the audio-
or MIDI-buffer, should occur within an instance of Trigger.
Since triggers are implemented as singleton, they can be
addressed by all instances of Condition(see next section)
without having to fear unforeseen mutual effects. The ex-
ecution time is divided into two parts: Since triggers can
be addressed by several conditions or other conditions can
have an indirect influence on the output of the trigger, it
can be useful to save tasks and only execute them once
all conditions have been processed. For this purpose, all
triggers should implement the fire method, which will be
called centrally in the processBlock method after all con-
ditions have been checked. For example, different triggers
may want to change important parameters for the current
block. To include these eventualities, it would be useful to
save all parameters (eg. note to be played) in an internal
buffer first and when calling up the fire method, after all
conditions have been executed, write the final changes to
the MIDI-buffer.

4.2.4 Conditions
Conditions are check routines that determine the need for
action for a trigger based on the contents of the event buffers.
To do this, concrete conditions have to implement a newly
developed interface Condition that prescribes a method,
which will be executed centrally at a fixed point in time.
The execution of conditions should always take place after
the events have been cleared and filled, so that conditions
will only receive up-to-date records.

Each condition accesses any number of events and at
least one trigger. As the EDA processing model demands,
event-sources are just responsible for detecting the need to
fire an event-object without knowing how it is processed[6,
P.51]. For this reason no external changes to variables will
be made within conditions. This separation of powers is
supposed to prevent immobility and viscosity of the system
if strictly followed. Although an ”easier” implementation
would be possible, this would weaken the structure of the
entire system[14]. In addition, conditions can be switched
on and off as required without affecting other conditions due
to the low binding to other components.

4.3 Processing
The concept is based on the processing model of an EDA,
but due to the use of the VST protocol, the processing
of the current audio- and MIDI-buffer must be completed
within each block. For this reason a software pipeline is
implemented around the processing model, controlling the
scheduling of the individual components. The process starts
with the initialization of the framework by JUCE when
the plug-in library is loaded into a DAW. At this point,
all modules defined in the framework are activated and
requested to register components such as VST parameters,
events, conditions and triggers. After the initialization of the
plug-in is completed, the system expects the first call of the
processBlock method. Each time JUCE calls this procedure,
the buffers for MIDI and audio will be processed. Due to
the frameworks structure, this cyclically called operation
is divided into individual pipeline segments in which the
individual tasks are executed (see figure 3).

The first step is to execute the cleanup methods of all
events, where all obsolete entries, that were created either
in an earlier run or at any time by a separate thread, are
removed from the event buffers. The second step is to execute
the processBlock method of the individual modules. This is
called exactly like the processBlock method of the plug-in

98

Event : cleanup

Module : processBlock

Condition : checkCondition

Trigger : fire

Figure 3: Software pipeline concept

with the current audio- and MIDI-buffer of the ongoing block.
Within the methods, the modules can fill their events or
modify parameters that have been changed by the user with
the help of the GUI. After the events have been cleaned up
and filled with current data, each module has the opportunity
to send important parameters to the conditions. Then the
checkCondition method of each condition will be executed in
order to evaluate whether actuating of triggers is required.

In the last step, after the existing conditions have been
checked, all registered triggers get the possibility to make
final changes to the buffers of the block or other parameters
and then the fire methods will be called. Once all of the
above steps have been executed, the processing of the current
block is finished. Due to the fact that all tasks running in the
main thread are executed in the processBlock method of the
plug-in, an exception handling and a time measurement can
be integrated into this cycle. Thus, by means of systematic
centralization, errors occurring at runtime can be identified
more quickly and at the same time the components with the
highest optimization potential can be determined without
great effort.

4.4 Implementation
The concept of Dependency Injection is not implemented in
the standard library of C++ [3, 9], so additional libraries
have to be used. For this purpose a selection of frame-
works such as PocoCapsule5, Hypodermic6, Wallaroo7 and
Infector++8 is available. However, these frameworks have
either not been maintained for years, do not meet the sys-
tem requirements, or have a very limited feature list. After
reviewing all frameworks, Google Fruit[19] turned out to be
the best solution for the application.

Fruit uses meta-programming and some special C++11
features to detect injection problems and performs most
checks already at compile time. This makes it particularly
efficient at runtime and ensures low overhead. However,
JUCE uses the Microsoft MSVC compiler, which did not
provide the required features for a long time, but since the
release of Visual C++ 2017 in March 2017 all required fea-
tures are available. Official support for MSVC is currently
experimental, but initial tests have shown that the system
is reliable and therefore Fruit could be used in this work.
The framework makes it possible to break down the source
code into components. These have to implement an interface

5https://github.com/skyrpex/pococapsule
6https://github.com/ybainier/Hypodermic
7http://wallaroolib.sourceforge.net/
8https://sourceforge.net/projects/infectorpp/

into which the functionalities of the components are then
injected. Components can use or be based on other compo-
nents and form new components in combination. The major
advantage of this pattern is the loose coupling between the
components, which keeps the system easily expandable[19].
In our framework for each of the three components Event,
Condition and Trigger appropriate interfaces were defined
at first. They have to supply a constructor marked with
the Fruit INJECT macro, which is used as a reference to
detect errors with injection-candidates at compile time. Now
different implementations can be injected into the interface.
Each implementation has to provide a method, supplying
the Fruit injector with a matching Component object using
the bind function like for example the PlayMetronomeEvent
implementation of the interface Event (see Listing 1).

To realize singleton Events and Triggers every implemen-
tation of these interfaces is given a static instance, which is
bound using the bindInstance method (see Listing 1, line 10).
This way every time a specific Event or Trigger is injected,
it will always be a reference to a globally unique instance.
During runtime Conditions have to look for specific Events
and fire connected Triggers. To provide them with these
components, they are defined as requirements. This way
Fruit injects them into the constructor of the Condition as
it is created. Fruit can not distinguish between multiple
implementations of the same interface. However, this can be
solved by using the ”Annotated” macro (see Listing 1, line 6
and 8) to specify which specific implementation should be
used.

1 stat ic PlayMetrEvent pmeinstance ;
2

3 const Component <Annotated<MetrEvent , Event>>&
4 getPlayMetrComponent () {
5 stat ic const Component
6 <Annotated<MetrEvent , Event>> comp ;
7 comp = createComponent ()
8 . bind<Annotated<MetrEvent , Event>,
9 PlayMetrEvent>()

10 . b indInstance (pmeinstance) ;
11 return comp ;
12 }

Listing 1: Function to generate a Fruit component

To migrate existing VST plug-ins into the new framework,
a new module has to be created for each of them. The func-
tionality needs to be shifted into the new component design
and the components for each module have to be provided
by the three central methods registerEvents, registerCon-
ditions and registerTrigger, where they are initialized and
provided to the main system. Components are managed by
the AudioProcessor class, created by JUCE. This class can
be considered the main class of the plug-in and is respon-
sible for running the main-loop we defined in 4.3, which is
executed blockwise by the DAW. Since every component of
the plug-in is executed in one central method, this method
will be used to implement analysis tools like performance
tests (see section 5.3). To provide a simple control interface
for the plug-in, AudioProcessor can also implement a new
GUI using the tools provided by JUCE. In case of DDMM, it
automatically integrates the existing GUIs provided by the
former plug-ins. This way the whole system is very modular
and every module can be removed, changed or replaced with
no effect on the functionality of the GUI.

5. TEST ENVIRONMENT AND RESULTS
The evaluation of the system was divided into three main
phases: First, the system was checked and evaluated from
the user’s point of view. As there have not been done any

99

functional changes to the existing system and since it has
already been tested in practice, these checks will be limited
to laboratory conditions. In the second phase, we wrote
unit tests for the individual classes, in order to support the
observations from phase one with measurable results and to
locate possible sources of error. This should ensure that the
test environment is easily extensible for future developments
of DDMM. Since audio programming is highly time-critical,
a centrally managed performance test was used in the third
and final phase to analyze the new system and search for
components that need to be optimized.

5.1 Functional Tests
To carry out the function test, test cases were first developed
and entered into a protocol template. These test cases were
then processed sequentially, the actual results were compared
with the expectations and any observations recorded. In
four of these tests errors occurred, which could be traced
back to two errors in the program code. The first problem
was found, when changes have been made to the sample
rate or the size of the audio buffer while the plug-in was
running. When changing a sound parameter in the DAW,
JUCE returned a DanglingPointerException in a MidiFile
object. Secondly, an error occured when attempting to save
or restore the current state of the plug-in. When saving the
state, the getStateInformation method is executed in the
audio processor. In this, an XML element is created for each
module and named with the module name. This resulted in
an isValidXMLName Exception. The reason for this is the
fact that there was a blank in one of the module names.

5.2 Unit Tests
A variety of libraries are available for unit tests under C++,
such as CPPUnit39, CUTE410 or Boost511. However, JUCE
itself provides unit test classes, which are equivalent to most
alternatives in terms of functionality. Since the existing
project is managed by Projucer and it does not support
the creation of additional build targets, a new test project
needs to be created. In the test project the library, which
is generated when compiling the plug-in, as well as the
”fruit.lib” are then submitted to the linker as an external
dependency. With this workaround the unit tests can always
be compiled with the latest version of the VST plug-in.
For the execution of the tests a UnitTestRunner object has
additionally been implemented. This must be instantiated
in the main method of the application and then executes all
unit tests registered in UnitTest::getAllTests[23].

5.3 Performance Tests
The PerformanceTest class was implemented to perform
the performance tests. It provides a number of methods
to define individual measurement points and then uses the
JUCE FileOutputStream to export the measurement results
to a CSV file. The largest measurement unit is determined
by the methods startNewMesurement and endMesurement.
These represent a line of the CSV and are executed at the
beginning and end of the ”processBlock” method. First, the
total execution time of all components should be compared
with each other. In our use case it was found that the
onProcessBlock method of the Dynamic Composition compo-
nent takes 61% of the execution time of DDMM identifying
this component as a key issue in performance optimization.
The two components HitDrumOnMetronomCondition and
PlayMidiNoteTrigger also require a substantial share of ex-

9http://cppunit.sourceforge.net/doc/cvs/index.html
10http://cute-test.com
11http://www.boost.org

ecution time. However, these components were expected
to be subject to high stress and 8% of the execution time
in each case means that their priority for optimization is
rather low. When considering the execution time in each
cycle (see figure 4) it is obvious that the execution time of
Dynamic Composition (displayed in dark blue) is not only
continuously high, but also subject to strong and irregular
jitter. All other components have a relatively small ampli-
tude with regular peaks. It is also noteworthy that the drum
module has a very short execution time, which is due to the
fact that it outsources its work to a separate thread. This
approach could also be used for other modules.

Figure 4: Execution Times

6. CONCLUSION AND FUTURE WORK
In summary, it can be said that the goal of this work, the
development of a framework for evaluating and optimizing
VST plug-ins, can be considered fulfilled. We integrated
the concepts of EDA and dependency injection into VST
plug-ins to address problems in the development of modular
NIMEs based on defined objectives and the requirements
formulated in the analysis of an existing system. The im-
plementation of the proof of concept has shown that the
overall concept is valid and the porting of the plug-ins into
the new structure ran smoothly and quickly. This speaks for
a good extensibility of the system. During the evaluation
of the system, functional tests showed that the occurring
errors were easy to locate and performance tests showed
which components had the highest optimization potential.

As for our use case there are numerous possibilities for
the future development of DDMM in the remaining term
of the project and beyond. First of all, the other plug-ins
(Kinect and Balanceboard) should be transferred to the new
framework. Furthermore it would make sense to optimize the
performance of the existing modules, by implementing the
possibilities already mentioned. In addition, new modules
with different input options or other concepts of interaction
could be developed. For example, a free play mode without
a clocked metronome would be an option. Finally, it could
also be useful to develop a scripting language that generates
new conditions with the help of simple controls in order
to be able to implement new concepts in DDMM without
relying on extensive programming skills.

7. REFERENCES
[1] Applying event-driven architecture to mobile

computing. In 2013 IEEE International Symposium on
Signal Processing and Information Technology
(ISSPIT), pages 58–63, Piscataway, NJ, 2013. IEEE.

100

[2] Open connectivity foundation.
https://openconnectivity.org/developer/specifications/upnp-
resources/upnp, 2018. Accessed:
2018-01-10.

[3] Standard c++ library reference.
http://www.cplusplus.com/reference/, 2018. Accessed:
2018-01-11.

[4] Z. Babaei, A. M. Rahmani, and A. Rezaei. Real-time
reusable event-driven architecture for context aware
systems. In 2016 24th Iranian Conference on Electrical
Engineering (ICEE), pages 294–299, Piscataway, NJ,
2016. IEEE.

[5] D. Becking, C. Steinmeier, and P. Kroos.
Drum-dance-music-machine: Construction of a
technical toolset for low-threshold access to
collaborative musical performance. In Proceedings of
the International Conference on New Interfaces for
Musical Expression, pages 112–117, Brisbane,
Australia, 2016.

[6] R. Bruns and J. Dunkel. Event-Driven Architecture :
Softwarearchitektur für ereignisgesteuerte
Geschäftsprozesse. Springer, 2010.

[7] S. CraB, E. Kuhn, V. Sesum-Cavic, and H. Watzke.
An open event-driven architecture for reactive
programming and lifecycle management in space-based
middleware. In M. Felderer, H. Holmström Olsson, and
A. Skavhaug, editors, 43rd Euromicro Conference on
Software Engineering and Advanced Applications,
pages 189–193, Piscataway, NJ, 2017. IEEE.

[8] L. Filipponi, A. Vitaletti, G. Landi, V. Memeo,
G. Laura, and P. Pucci. Smart city: An event driven
architecture for monitoring public spaces with
heterogeneous sensors. In J. Lloret Mauri, editor,
Fourth International Conference on Sensor
Technologies and Applications (SENSORCOMM), 2010,
pages 281–286, Piscataway, NJ, 2010. IEEE.

[9] Information technology – programming languages –
c++. Standard, ISO/IEC JTC 1/SC 22 Programming
languages, their environments and system software
interfaces, Dec. 2014.

[10] K. Jezek, L. Holy, and P. Brada. Dependency injection
refined by extra-functional properties. In M. Erwig,
editor, 2012 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), pages
255–256, Piscataway, NJ, 2012. IEEE.

[11] R. Kannan, J.-H. Jo, and H. S. Go. Improved event
driven architecture for tizen sensor framework. In
T. Catarci, editor, 1st International Conference on
Mobile Software Engineering and Systems
(MOBILESoft 2014), pages 75–78, New York, NY,
2014. Association for Computing Machinery, Inc.

[12] T. Kato, N. Ishikawa, and N. Yoshida. Distributed
autonomous control of home appliances based on event
driven architecture. In 2017 IEEE 6th Global
Conference on Consumer Electronics (GCCE), pages
1–2. IEEE, 2017.

[13] Z. Laliwala and S. Chaudhary. Event-driven
service-oriented architecture. In V. C. S. Lee, editor,
International Conference on Service Systems and
Service Management, 2008, pages 1–6, Piscataway, NJ,
2008. IEEE Service Center.

[14] R. C. Martin. Design principles and design patterns.
Object Mentor, 1(34), 2000.

[15] C. Mateos, M. Crasso, A. Zunino, and M. Campo.
Separation of concerns in service-oriented applications

based on pervasive design patterns. In S. Y. Shin,
editor, Proceedings of the 2010 ACM Symposium on
Applied Computing, page 849, New York, NY, 2010.
ACM.

[16] T. Nozawa, H. Hotta, and M. Hagiwara. A
development framework for mobile user-interfaces
based on html centric dependency injection. In
Proceedings of the 2008 IEEEWICACM International
Conference on Web Intelligence and Intelligent Agent
Technology - Volume 02, pages 186–189, Washington,
DC, 2008. IEEE Computer Society.

[17] C. Pang, J. Yan, and V. Vyatkin. Time-complemented
event-driven architecture for distributed automation
systems. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 45(8):1165–1177, 2015.

[18] E. B. Passos, J. W. S. Sousa, E. W. G. Clua,
A. Montenegro, and L. Murta. Smart composition of
game objects using dependency injection. Computers
in Entertainment, 7(4):1, 2009.

[19] M. Poletti. google/fruit.
https://github.com/google/fruit, 2018. Accessed:
2018-01-11.

[20] M. Ramos, R. Terra, and M. T. Valente. Angularjs
performance: A survey study. IEEE Software, page 1,
2017.

[21] A. Roemers, K. Hatun, and C. Bockisch. An
adapter-aware, non-intrusive dependency injection
framework for java. In M. Plümicke and W. Binder,
editors, Proceedings of the 2013 International
Conference on Principles and Practices of
Programming on the Java Platform: Virtual Machines,
Languages, and Tools (PPPJ’13), ICPS, page 57, New
York, New York, 2013. Association for Computing
Machinery.

[22] ROLI Ltd. Audioprocessor class reference.
https://juce.com/doc/classAudioProcessor, 2018.
Accessed: 2018-01-11.

[23] ROLI Ltd. Unittestrunner class reference.
https://juce.com/doc/classUnitTestRunner, 2018.
Accessed: 2018-01-23.

[24] A. Roy, S. Venkataramani, N. Gala, S. Sen,
K. Veezhinathan, and A. Raghunathan. A
programmable event-driven architecture for evaluating
spiking neural networks. In ISLPED 2017, pages 1–6,
Piscataway, NJ, 2017. IEEE.

[25] F. Solms and L. Marshall. Contract-based mocking for
services-oriented development. In F. F. Blauw, editor,
SAICSIT 2016, ACM international conference
proceedings series, pages 1–8, New York, NY, USA,
2016. The Association for Computing Machinery, Inc.

[26] C. Steinmeier and D. Becking. Toddlers testing ddmm:
Evaluation results and ideas towards creating better
learning environments for small children. In 25th
International Conference on Computers in Education
(ICCE), 2017.

[27] C. Steinmeier and D. Becking. Visual feedback for
ddmm: A simple approach for connecting and
synchronizing unity animations with events from vst
plugins. In 43rd International Computer Music
Conference (ICMC), Shanghai, China, 2017.

[28] H. Y. Yang, E. Tempero, and H. Melton. An empirical
study into use of dependency injection in java. In F. K.
Hussain, editor, 19th Australian Conference on
Software Engineering, 2008, pages 239–247, Los
Alamitos, Calif., 2008. IEEE Computer Soc.

101

