Neuron-modeled Audio Synthesis

Jeff Snyder
Princeton University Music
Department
310 Woolworth Center
Princeton, NJ 08544
josnyder@princeton.edu

ABSTRACT

This paper describes a project to create a software instru-
ment using a biological model of neuron behavior for audio
synthesis. The translation of the model to a usable audio
synthesis process is described, and a piece for laptop orches-
tra created using the instrument is discussed.

Author Keywords

neuron, biological model, software, musical instrument

CCS Concepts

eApplied computing — Sound and music computing;
Performing arts; Computational biology;

1. INTRODUCTION

While the majority of audio synthesis methods aim for pow-
erful and clear control over sound parameters, some ap-
proaches eschew this control in favor of a more experimen-
tal and serendipitous outlook. One example is seen in the
barely-controllable instrumental systems of David Tudor,
the performance of which he described as “an act of discov-
ery. I try to find out what’s there and not to make it do
what I want but to, you know, release what’s there.” [6]

The project described is one path toward this type of
musical interaction, in which a biological model is used as
a synthesis technique with intent to discover exciting and
unexpected sonic possibilities.

2. MOTIVATION FOR NEURON SYNTHE-
SIS

This idea came about when a member of the Princeton
Laptop Orchestra (PLOrk), Mitch Nahmias, was explain-
ing how the lab he works at in the Electrical Engineering
department used biological models of neurons to create op-
tical computers. He mentioned that, under certain condi-
tions, these neuron models could be coaxed to oscillate, and
he mused that it might sound interesting to use this as a
basis for audio synthesis. Together, Jeff Snyder and Nah-
mias created a quick prototype using the simplest possible
neuron model in the programming language ChucK|[11], and
it made sound! We promptly lost that work in a computer
crash, and dejectedly set the project aside for another day.

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright

-. remains with the author(s).

NIME’18, June 3-6, 2018, Blacksburg, Virginia, USA.

Aatish Bhatia
Princeton University Council
on Science and Technology

233 Lewis Library
Princeton, NJ 08544
aatishb@princeton.edu

394

Mike Mulshine
Princeton University Music
Department
310 Woolworth Center
Princeton, NJ 08544
mulshine@princeton.edu

Two years later, the concept came up again in discussions
with physicist Aatish Bhatia, and he was also curious about
how these models might sound. Bhatia and Snyder worked
on researching the existing models to explore, and Bhatia
handled the mathematics of turning the differential equa-
tions into a real-time solvable algorithm. Once they had
a working synthesis algorithm, Snyder brought Mike Mul-
shine into the project to work on integrating the algorithm
into a usable instrument.

The expectation was never that this synthesis technique
would sound dramatically different from traditional meth-
ods, but rather that it would provide an interesting alter-
native to synthesis methods that have easily understood
control parameters (pitch, amplitude, etc.). We hoped that
by introducing control parameters relating to physical pro-
cesses that are unfamiliar, such as “sodium channel acti-
vation”, a more experimental approach to digital synthesis
would be opened up to the user.

3. PRIOR ART

This project is in the tradition of physical modeling synthe-
sis, where mathematical models of real-world systems are
simulated for sound creation[3][10]. Much of the research
into this area so far has focused on modelling physical sys-
tems for which sound production or sound transformation
are the typical use cases, such as flute acoustics[2], room
reverberation[7], or guitar amplifier simulation[12]. This
project falls into a much smaller field: repurposing mathe-
matical models that are not originally intended to describe
audio systems for audio purposes. Examples include the
use of strange attractors[8] and other creative misuses of
scientific research tools.

The prior research with the closest relation to this project
is another attempt to use a biological neuron model for syn-
thesis. This is briefly included as part of Nick Collins’ pa-
per, Errant Sound Synthesis [1]. Audio implementations of
the FitzHugh Nagumo and Termen Wang models of neu-
ron behavior are mentioned and included in the library of
SuperCollider code that accompanies the paper. Collins’
approach is similar to ours in that he also uses the Euler
method to discretize the equations, and includes these al-
gorithms in a publicly available library. We hope that our
paper adds more illuminating detail to the process, and a
more in-depth discussion of the usefulness of this concept
in introducing non-linear control into instruments.

4. ADAPTING THE BIOLOGICAL MODEL
FOR AUDIO SYNTHESIS

While looking for an appropriate neuronal spiking model to
implement, we researched various alternatives. After read-
ing Izhikevich’s review of neural spiking models [5], we de-
cided to implement the Hodgkin-Huxley (HH) model [4].

This is an important classic model in computational neu-
roscience, comprising of 4 coupled non-linear differential
equations, and various biologically inspired input param-
eters such as the activation and inactivation rates of ion
(i.e. sodium and potassium) channels. While the HH model
is more computationally expensive than simplified, single-
purpose models of neuron spiking, it is also a very general
model that can reproduce many different neuronal spiking
patterns. It is therefore well suited to our goals of exploring
the rich parameter space of neuronal spiking behaviors.

To implement this model, we followed the standard Euler
method to discretize the four differential equations. This
resulted in a set of four difference equations that determine
the membrane voltage V,,, of a neuron. The first three equa-
tions are similar in form:

n(t + At) = an At +n(t) (1 — (an + Bn)At)
m(t + At) = amAt + m(t) (1 — (cm + Bm)At) (1)
h(t + At) = anAt + h(t) (1 — (on + Br)At)

The variables being updated here are n, m, h, which are
quantities between 0 and 1 representing the rate of potas-
sium channel activation, sodium channel activation, and
sodium channel inactivation, respectively. The term At is a
timestep — a smaller timestep results in a more accurate
simulation, but is more computationally expensive. The «
and [variables are functions of the membrane voltage Vi, (t)
provided in the original paper by Hodgkin and Huxley [4].

To clean things up a bit, we define the following time
constants:

_Cm Tva(t) = S —— (2)

=) gvam()°h g

These time constants depend on the activation/inactivation
rates (n, m, and h), as well as on other biologically inspired
tunable parameters (¢x, gna, gi, Cm). They are used to
update the membrane voltage V,, as follows:

1 + l))
TNa Ti (3)
-‘rAt(@-FE-FM-FE)
Cm TK TNa T

There are three new tunable parameters here (Vk, Vna,
Vi), as well as an input current I(¢) which we are free to
vary. Thus, the rate of change of the membrane voltage
is governed not only by the input current I(¢), but also,
via the time constants, on the activation/inactivation rates
(n, m, and h), all of which vary over time and, in turn,
depend upon the membrane voltage (via the o and 8 func-
tions). This set of coupled equations thus results in rich
feedback loops and non-linear effects, and the dependence
of the output voltage on the input parameters is difficult to
analytically predict.

To implement this model in code, we execute the following
steps:

Vit 4+ A8) = Vi (0)(1 = At(— +

1. Set the initial membrane voltage V;,(0) and initial
values of the activation/inactivation rates n(0), m(0),
h(0). We initialized these to zero. Also set the timestep
At, which we initialized to 1/50.

2. Choose values for the tunable parameters (gx, gna,
gis ¢m, Vi, VNa, Vi), and a form for the input current
I(t)

3. Use equations 1 to update the activation/inactivation
rates

395

4. Use equation 2 to calculate the time constants

5. Use equation 3 to update the membrane voltage. This
is the output sound signal.

6. Repeat steps 2-4. The tunable parameters and input
current can be varied as needed, allow a user to control
the audio synthesis.

Further details of discretizing the HH model (including
biologically relevant values of parameters) can be found in
various online references *.

Once we had a working audio synthesis version of the
model in ChucK][11], running as a custom class that gener-
ates signal per-sample using input parameters from a MIDI
device, we set about adapting it to be easier to interface
with a variety of platforms. First, we adapted the ChucK
code to be a pseudo-object in our OOPS Audio Library[9].
Since we had already integrated our OOPS library into the
JUCE framework, this made it simple to export a VST plu-
gin, allowing the neuron synthesis to run inside a DAW,
or in Max/MSP using the vst object. It also allowed us
to quickly prototype running the synthesis model on em-
bedded hardware, such as our Genera brain, based on an
STM32F7/H7 microcontroller[9)].

Figure 1: A waveform of a single neuron spike using
the Neuron synthesizer (AC-coupled)

] J\ A

)
ARRRARARARE

Figure 2: An oscillation waveform created by the
Neuron synthesizer (AC-coupled)

5. USE CASE: CONNECTOME, A PIECE
USING THE NEURON INSTRUMENT
5.1 Compositional Concept

We wanted to quickly test the Neuron synthesizer’s features
in a real-world musical setting. Collaboratively with the
Princeton Laptop Orchestra (PLOrk), we composed a struc-
tured improvisation piece exploring the possibilities of the
instrument. This piece is called Connectome, named for the
map of neural pathways in the brain. Our goal was to create
a piece that was inspired by the functioning of the brain, in
which the performers represented individual neurons.
Since neurons pairing with or communicating with other
neurons seemed to be a basic metaphor for brain function,
we decided to structure the form around “connections” be-
tween performers. We decided not to follow the metaphor
too directly, to give ourselves flexibility to follow directions
that were musically satisfying. In the piece, we used a sim-
ple interaction paradigm between players where two players

Introduction to Biological Signal Processing and
Computational Neuroscience by Richard B. Wells
http://www.mrc.uidaho.edu/ rwells/techdocs/Biological

%20Signal%20Processing /Chapter%2003%20The%20Hodgkin-

Huxley %20Model.pdf (accessed January 2018)

could “connect” with each other, which meant that they
would be listening to each other and playing in a kind of
call and response. The form of the piece would allow for
players to form and break connections with each other, so
that the structure of the connection map would change over
the course of the piece.

To facilitate the establishment of connections between
players, we added a second instrument besides the Neuron
synthesizer to each player’s arsenal. We wanted something
that would be easily heard in a complex texture, and also
visually clear, so that players could look up to see who was
making the sound. To satisfy these needs, we chose to use
acoustic woodblocks. Each performer has a woodblock and
a drumstick at their station, and the signalling of connec-
tion/disconnection actions in the piece is controlled by the
use of these woodblocks.

While the Neuron synthesis instrument was not capable of
precise pitch control, the performers did find ways to coax
expressive gestures from the instrument. We focused the
improvisation structure around allowing the exploration of
these gestures, while still guiding the musical control that
was most readily achievable. While it was extremely hard
for performers to predict what pitch they would enter on in
a gesture, they did have enough control to match a pitch
they heard from another performer, or form a consonance
with another performer through a glissando action. They
could also reliably navigate between the extremes of tone
colors from mellow to aggressively acidic.

5.2 Compositional Form

The form of the piece that resulted involved alternating sec-
tions of performers pulsing on woodblocks and performing
on the Neuron synthesis instrument. One section asked the
performers to independently pulse on their woodblock, ig-
noring other performers. At their discretion, they could
choose another performer to make eye contact with and be-
gin to match the phase and tempo of their woodblock pulse
with this performer. When these two connected performers
had pulsed in phase for a few seconds, they would put down
their woodblocks, tell the software who they had connected
to (necessary for a visualization component described be-
low), and begin a back-and-forth communication. Since
there were an odd number of performers, there was always
one performer pulsing on a woodblock without a partner,
waiting to connect with someone. However, since the con-
nected partners can disconnect at any time, the identity of
this unconnected woodblock player would shift throughout
the piece. There were two sections in the piece where a more
coordinated group motion was executed. These occurred
when a signal from a member of the group who was deemed
the “conductor” would cause connected pairs to disconnect
and instead join in a group musical gesture on the Neu-
ron synthesis instrument. The first gesture was to slowly
lower the pitch of your sound until the whole group landed
on a relatively consonant low chord. The second gesture
was the inverse, in which all performers coalesce onto an
indeterminate high chord. The piece ends after the second
gesture, in a coda where all performers start with asyn-
chronous woodblock pulsing and gradually shift tempo and
phase until they are all in rhythmic unison, at which point
the “conductor” signals the end of the piece with a sharp
cutoff.

Interestingly, while the “drift into rhythmic unison” ges-
ture that was chosen as the closing motif is musically ef-
fective and provides a satisfying closure to the piece, in the
metaphor of neuron behavior, a large group of neurons firing
synchronously is a seizure in a real human brain.

396

5.3 Live Generative Visualization

‘We wanted the connection metaphor to be as clear as possi-
ble to the audience, so we opted to also do some live video vi-
sualization. We also wanted this aspect of the performance
to be aesthetically interesting on its own, rather than purely
informational. Visual artist and game designer Drew Wal-
lace worked to create a live visualization program that was
projected behind the performers at the premiere, in which
every performer is represented by a blob that connects ten-
drils to other blobs when the performers make musical con-
nections. Like the audio, the video was biologically inspired,
taking visual cues from “Golgi stain” photographs of human
brain neurons. To slightly mirror the digital aliasing arti-
facts in the neuron synthesizer audio, the visualization also
included a contrast glitch that created pixelated edges at
the boundaries of the neuron representations.

Figure 3: A screenshot from the live generative vi-
sualization for Connectome

The live visualization received information from the indi-
vidual performers’ computers via OSC messages over UDP
on a wireless network. These messages contained any con-
nection events (such as “/connect 1 5” to draw a connection
between players 1 and 5), and a continuous stream of ampli-
tude envelope information from each player (such as “/amp
1 .014”). Using this data, the visualization drew connec-
tions between the representations of the players, and scaled
the size of each blob to be proportional to the amplitude of
the sound made by that player.

6. REFLECTIONS ON THE INSTRUMENT

We needed to decide on an interface for the Neuron synthe-
sis instrument, and in the premiere performance of Connec-
tome we chose a relatively simple solution of a small USB-
MIDI controller (Akai MPK2 keyboards and Alesis Trigger
Finger controllers were used), connected to a laptop run-
ning the VST plugin in Max/MSP. This had the immediate
advantages that the instruments were compact and large
number of performers could be supplied easily with an in-
strument, since there were 11 players in the premiere. We
already had a large quantity of these USB-MIDI controller
types on hand in the ensemble. We mapped the eight pa-
rameters of input to the knobs on these controllers, and
mapped the “membrane voltage” input to a note-on/note-
off event, with different voltage options mapped to different
keys on the controller.

Some disadvantages of using these typical MIDI controllers
were that they were not particularly visually striking, and
they may have suggested interactions to the performers that
were not native to the Neural synthesis instrument. For
instance, those performers who had the MPK2 keyboards
may have expected standard equal-tempered pitch control.
One could certainly imagine a more interesting interface to

the software back-end which would be more inspiring to the
player and give more information to the audience. Also,
creating an embedded version of the instrument could have
provided it with a more coherent identity, as opposed to the
general-purpose blandness of a laptop computer in front of
each performer, especially since the visual feedback of the
laptop screen was not used.

The most interesting feature of the instrument turned
out to be the effect of the unfamiliar and non-intuitive
parameter-to-sound mappings. While there was a dedi-
cated knob for each parameter of the model, the meanings
of these knobs were obscure to the users. One represented
the “sodium channel activation”, another the “sodium chan-
nel inactivation”, and yet another the “potassium channel”.
Many of these parameters interacted with each other in
ways that were sometimes counterintuitive but often serendip-
itous and exciting. Most notably, the performers found it
surprisingly expressive that the instrument didn’t have a
“filter cutoff” parameter, but that the interaction of the var-
ious parameters could act on the brightness of the sound,
while also effecting pitch and other features. One parame-
ter could produce a darken/brighten effect in certain con-
ditions, but also slightly detuned the oscillation and could
halt oscillation entirely on other conditions. Informal feed-
back from the performers included comments that this felt
a bit more like playing an acoustic instrument, where many
sonic parameters are coupled so as to not be independently
controllable. For instance, while palm-muting guitar strings
darkens their tone, it also shortens their decay time.

Another feature of the instrument that was particularly
interesting was that many of the sounds that we came to
consider idiomatic to the instrument were the result of ar-
tifacts from pushing the model beyond physically possible
parameters, or artifacts of the discretization process. For
instance, we allowed performer access to a parameter for
step time in the sampling of the system, which gave more
direct control over the general pitch range of the oscillation,
but also made it much easier to create bizarre effects from
aliasing.

One unfortunate effect of the instrument’s unpredictabil-
ity was the fact that the model could be pushed into un-
stable settings that would cause it to simply stop making
sound until a full reset of the parameters was executed and
the audio buffer was zeroed out. We dedicated a panic but-
ton on the controllers to allow this reset functionality, but
it would be ideal to have a better understanding of the con-
ditions under which this happens and prevent them from
occurring.

7. FUTURE WORK

The immediate goals for the Neuron synthesizer are to cre-
ate a more interesting dedicated interface for the instrument
and to produce a dedicated embedded version that avoids
the need for a computer. It is also important to us that
we reduce the instability of the model, or discover what the
causes of instability are and limit the input parameters or
internal algorithm to prevent catastrophic errors that result
in the model refusing to make sound.

Beyond this, we hope to improve the documentation of
the Neuron pseudo-object in the OOPS library so that oth-
ers can more easily incorporate the model into their own
code, and release a public version of our VST plugin.

We are working on a virtual analog synthesizer version of
the instrument in the VCV Racks format?, which turns out
to have very exciting properties due to the ease of creating
feedback loops from the output to the inputs. We plan to

Zhttps://github.com /spiricom/VCVrack

397

release this when it is finished.

We also intend to write more music that takes advantage
of this unusual technique, and possibly create a new instru-
ment which allows for selection between several competing
biological neuron models to make a kind of meta-neuron
synthesizer.

Outside of the specific Neuron synthesizer outlined in this
paper, the authors hope to explore other mathematical and
biological models as possible sources for sound synthesis.

8. CONCLUSIONS

The authors have presented a project that uses a biological
model of a neuron as an audio synthesis technique. While
this has been attempted before, we intend for this paper
to explore the idea more extensively, with a description of
the translation process and an example of a musical appli-
cation of the resulting instrument. We also consider this
work to be an argument for the advantages of more closely
coupled non-linear control parameters in synthesis, as op-
posed to isolated linear input parameters that do not inter-
act. Hopefully this work will suggest future developments
in the musical applications of physical models of systems
not originally intended for sound production.

9. REFERENCES

[1] N. Collins. Errant sound synthesis. In Proceedings of
the International Computer Music Conference, 2008.

[2] P. Cook. A meta-wind-instrument physical model,
and a meta-controller for real time performance
control. In Proceedings of the ICMC, 1992.

[3] L. Hiller and P. Ruiz. Synthesizing musical sounds by
solving the wave equation for vibrating objects: Part
1. Journal of the Audio Engineering Society,
19(6):462-470, June 1971.

[4] A. L. Hodgkin and A. F. Huxley. A quantitative
description of membrane current and its application
to conduction and excitation in nerve. Journal of
Physiology, 117(4):500-544, 1952.

[5] E. Izhikevich. Which model to use for cortical spiking
neurons? In IEEE Transactions on Neural Networks,
pages 1063—1070, September 2004.

[6] R. Kuivila. Open sources: Words, circuits, and the
notation/realization relation in the music of david
tudor. Presented at the Getty Research Institute
Symposium, “The Art of David Tudor,” in 2001.

[7] Y. W. Lam. A comparison of three diffuse reflection
modeling methods used in room acoustics computer
models. The Journal of the Acoustical Society of
America, 100:2181-2192, 1996.

[8] J. P. Mackenzie. Chaotic predictive modelling of
sound. In Proceedings of the International Computer
Music Conference, pages 49-56, September 1995.

[9] M. Mulshine and J. Snyder. Oops: An audio synthesis
library in ¢ for embedded (and other) applications. In
NIME 2017, pages 460-463. Princeton University
Music Department, 2017.

[10] J. O. Smith. Physical Audio Signal Processing: for
Virtual Musical Instruments and Digital Audio
Effects. W3K Publishing, 2010.

[11] G. Wang, P. Cook, and S. Salazar. Chuck: A strongly
timed computer music language. Computer Music
Journal, 13(4):10-29, Winter 2015.

[12] D. T. Yeh. Automated physical modeling of nonlinear
audio circuits for real-time audio effects - part ii: Bjt
and vacuum tube examples. In IEEFE Transactions on
Speech and Audio Processing, volume 18, March 2011.

