
JythonMusic: An Environment for
Developing Interactive Music Systems

Bill Manaris, Pangur Brougham-

Cook
Computer Science Dept.

College of Charleston, USA
 manarisb@cofc.edu,

broughamcookpj@g.cofc.edu

Dana Hughes

Computer Science Dept.
University of Colorado, Boulder, USA

 dana.hughes@colorado.edu

Andrew R. Brown

Queensland Conservatorium
Griffith University, Australia

 andrew.r.brown@griffith.edu.au

ABSTRACT
JythonMusic is a software environment for developing interactive
musical experiences and systems. It is based on jMusic, a software
environment for computer-assisted composition, which was extended
within the last decade into a more comprehensive framework
providing composers and software developers with libraries for
music making, image manipulation, building graphical user
interfaces, and interacting with external devices via MIDI and OSC,
among others. This environment is free and open source. It is based
on Python, therefore it provides more economical syntax relative to
Java- and C/C++-like languages. JythonMusic rests on top of Java,
so it provides access to the complete Java API and external Java-
based libraries as needed. Also, it works seamlessly with other
software, such as PureData, Max/MSP, and Processing. The paper
provides an overview of important JythonMusic libraries related to
constructing interactive musical experiences. It demonstrates their
scope and utility by summarizing several projects developed using
JythonMusic, including interactive sound art installations, new
interfaces for sound manipulation and spatialization, as well as
various explorations on mapping among motion, gesture and music.

Author Keywords
Music and interaction, user interfaces, interactive sound art and
installations, musical mapping, Python, software libraries

CCS Concepts
• Applied computing → Sound and music computing; • Human-
centered computing → Interaction design; • Information systems
→ Open source software;

1. INTRODUCTION
Interactive computer music systems emerged in the last 40
years with the development of increasingly more powerful and
versatile I/O devices and software frameworks for interaction.
These advances in technology, as is usually the case through
history, have been exploited in music to develop new and
innovative computer-based and electroacoustic music systems,
compositions, and interactive experiences [1].
 Rowe defines interactive computer music systems as music
systems that respond to human input, which gives them the
ability to participate in live performances [2].
 Paine [3] extends this to create a more thorough taxonomy of
systems for interactive musical performance, or digital musical
interfaces (DMI). He takes into account existing musical
instrument taxonomies, such as the Hornbostel and Sachs [4]
instrument taxonomy, consisting of aerophones, chordophones,
idiophones, membranophones, and electrophones. He then
superimposes the dimensions specified by Birnbaum, et al. [5].
Finally, Paine introduces additional dimensions to form a
conceptual map of musical interaction, including gesture type
(e.g., body movement, eye tracking, senstate surface, steering

wheel, etc.), controller type (e.g., mobile phone, motion
sensor, glove, joystick, digital controller, glass sensor, etc.), and
computer software used. [3].
 Several audio libraries and software packages for musical
programming have been developed over the last two decades.
In addition to manipulating audio, many focus on other
characteristics such as live coding, sample-level manipulation,
or minimal programming requirements. Well-established
packages include ChucK [6], SuperCollider [7], Pure Data [8],
Csound [9], Minim [10], and Gibber [11].
 Most of the above packages assume programs are generated
or executed in a console, and are not focused on simplifying
GUI development in addition to generating audio. Instead, GUI
development either relies on packages available in the
underlying language (e.g., Java Swing), or a separate GUI
development environment (e.g., Qt GUI used by SuperCollider,
Tcl/Tk used by Pure Data). These may require learning
relatively very complex APIs that expose needless low-level
components to the musician (e.g., the Java Swing package
contains well over 100 classes, including managers, events,
listeners, etc.), or possibly entirely new languages.
Alternatively, users may utilize existing front ends. For
instance, several front ends have been developed for ChucK
since its inception, specifically Audicle [12] and miniAudicle
[13, 14]. While these provide a more streamlined interface, and
useful visualizations, they still rely heavily on an embedded
console for real-time coding, and do not provide a robust set of
widgets for building GUI-based musical instruments. Third-
party GUI libraries are available for some environments (e.g.,
for Processing, used by Minim), though these have varying
levels of complexity and maintenance.
 Finally, modern web browsers allow building cross-platform
musical interfaces using web technologies (HTML5,
JavaScript, CSS, etc.), while leveraging the inherent layout and
networking capabilities of the browser. NexusUI provides an
API for UI widget and sending OSC messages via UDP, as well
as builders for converting a Max/MSP patch and drag-and-drop
interfaces [15]. Similarly, a simple browser-based API for
creating and storing interfaces for the Gibberish.js audio library
is presented in [16].
 This paper presents JythonMusic (http://jythonmusic.org), a
software framework for developing interactive musical
experiences. JythonMusic is an open-source environment with
an extensive online API reference. It has been used to develop
various interactive sound art and installations, among other
projects, which explore various mapping strategies, and explore
relationships among motion, gesture and music.1

2. JythonMusic
JythonMusic is based on Python. It was originally developed
for teaching computer programming in a musical context [17],

1 This work has been funded in part by NSF DUE-1323605,

DUE-1044861, IIS-1049554, IIS-0849499 and IIS-0736480.

NIME Proceedings Template for LaTeX

Ben Trovato
⇤

Institute for Clarity in
Documentation

1932 Wallamaloo Lane
Wallamaloo, New Zealand
trovato@corporation.com

G.K.M. Tobin
†

Institute for Clarity in
Documentation
P.O. Box 1212

Dublin, Ohio 43017-6221
webmaster@marysville-

ohio.com

Lars Thørväld
‡

The Thørväld Group
1 Thørväld Circle

Hekla, Iceland
larst@affiliation.org

Lawrence P. Leipuner
Brookhaven Laboratories
Brookhaven National Lab

P.O. Box 5000
lleipuner@researchlabs.org

Sean Fogarty
NASA Ames Research Center

Moffett Field
California 94035

fogartys@amesres.org

Anon Nymous
Redacted

8600 Datapoint Drive
San Antonio, Texas 78229

cpalmer@prl.com

ABSTRACT
This paper provides a sample of a LATEX document for the
NIME conference series. It conforms, somewhat loosely, to
the formatting guidelines for ACM SIG Proceedings. It is an
alternate style which produces a tighter-looking paper and
was designed in response to concerns expressed, by authors,
over page-budgets. It complements the document Author’s
(Alternate) Guide to Preparing ACM SIG Proceedings Us-
ing LATEX2

✏

and BibTEX. This source file has been written
with the intention of being compiled under LATEX2

✏

and
BibTeX.
To make best use of this sample document, run it through

LATEX and BibTeX, and compare this source code with your
compiled PDF file. A compiled PDF version is available to
help you with the ‘look and feel.’ The paper submit-

ted to the NIME conference must be stored in an

A4-sized PDF file, so North Americans should take

care not to inadvertently generate letter paper-sized

PDF files. This paper template should prevent that from
happening if the pdflatex program is used to generate the
PDF file.
The abstract should preferably be between 100 and 200

words.

Author Keywords
NIME, proceedings, LATEX, template

CCS Concepts
•Applied computing ! Sound and music comput-

ing; Performing arts; •Information systems ! Music
retrieval;

⇤Dr. Trovato insisted his name be first.
†The secretary disavows any knowledge of this author’s ac-
tions.
‡This author is the one who did all the really hard work.

Licensed under a Creative Commons Attribution

4.0 International License (CC BY 4.0). Copyright

remains with the author(s).

NIME’18, June 3-6, 2018, Blacksburg, Virginia, USA.

Please read the comments in the nime-template.tex

file to see how to create the CCS Concept Classifi-

cations!

1. INTRODUCTION
The proceedings are the records of a conference. ACM seeks
to give these conference by-products a uniform, high-quality
appearance. To do this, ACM has some rigid requirements
for the format of the proceedings documents: there is a
specified format (balanced double columns), a specified set
of fonts (Arial or Helvetica and Times Roman) in certain
specified sizes (for instance, 9 point for body copy).
The good news is, with only a handful of manual set-

tings,1 the LATEX document class file handles all of this for
you.
The remainder of this document is concerned with show-

ing, in the context of an “actual” document, the LATEX com-
mands specifically available for denoting the structure of a
proceedings paper, rather than with giving rigorous descrip-
tions or explanations of such commands.

2. THE BODY OF THE PAPER
Typically, the body of a paper is organized into a hierar-
chical structure, with numbered or unnumbered headings
for sections, subsections, sub-subsections, and even smaller
sections. The command \section that precedes this para-
graph is part of such a hierarchy.2 LATEX handles the num-
bering and placement of these headings for you, when you
use the appropriate heading commands around the titles of
the headings. If you want a sub-subsection or smaller part
to be unnumbered in your output, simply append an aster-
isk to the command name. Examples of both numbered and
unnumbered headings will appear throughout the balance
of this sample document.
Because the entire article is contained in the document

environment, you can indicate the start of a new paragraph
with a blank line in your input file; that is why this sentence
forms a separate paragraph.

1Two of these, the \numberofauthors and \alignau-

thor commands, you have already used; another, \bal-

ancecolumns, will be used in your very last run of LATEX
to ensure balanced column heights on the last page.
2This is the second footnote. It starts a series of three
footnotes that add nothing informational, but just give an
idea of how footnotes work and look. It is a wordy one, just
so you see how a longish one plays out.

259

based on extensive earlier work in algorithmic music
composition [18]. Within the last decade, it has grown to have
extensive capabilities for developing music interfaces and
interactive experiences across all dimensions mentioned in the
previous section. As a result, it may serve as a complement to
existing music and other art-related software, such as PureData,
Max/MSP and Processing, among many others.
 JythonMusic is built on top of jMusic, an extensive music
library for music composition and audio processing in Java
[19]. It also incorporates other cross-platform libraries, such as
jSyn [20], and makes them available via Python syntax.
 As an extension of jMusic, it supports computer-aided
composition, generative music, instrument building, interactive
performance and music analysis. It provides musical data
structures (i.e., Note, Phrase, Part and Score), playback of
musical scores in real-time, as well as rendering in MIDI or
audio for storage and later processing. It can also read and write
MIDI files, audio files and XML files, among others. As an
extension of jSyn, it provides a modular sound synthesis API
based on unit generators, which can be combined to form
complex timbres and software synthesizers.
 All this functionality is now available through Python. This
design choice is very desirable – Python is a general-purpose
programming language designed to be succinct and easy to
read. Python programs tend to be about three times as short as
equivalent programs in Java, and C/C++ [21]. Accordingly,
Python has become the most popular introductory programming
language at US universities [22]. It is also used extensively by
companies such as Google. Finally, Python includes a large and
comprehensive set of libraries for common algorithmic tasks.
 JythonMusic uses Jython, the version of Python running on
top of the Java Virtual Machine. This gives it great portability,
as it runs on all popular computing platforms. Additionally, it
provides access to the complete Java API through Python
syntax, as well as other external Java libraries, as needed.
 Finally, through relatively easy-to-use MIDI and OSC
libraries, JythonMusic works seamlessly with other music
software, such as Pd, Max/MSP, Ableton Live, as the examples
shown below demonstrate.
 We believe JythonMusic provides a viable alternative to
existing systems (see Section 1.1), as it simplifies development
of interactive musical experiences. While perhaps not as
specialized as some of the above systems, to paraphrase Alan
Kay’s maxim, it makes simple things simple, and complex
things possible. JythonMusic comes with an editor, called
JEM, which encapsulates all available libraries, and provides
various useful keyboard shortcuts.

2.1 Music Library
The JythonMusic music library provides functionality to aid in
transcription, composition, and performance of musical works. It
supports both MIDI and audio material.
 The Note class treats musical notes as objects, which require a
pitch and duration, with a thorough set of constants (such as C4, for
middle C, and QN for quarter note). In addition to standard MIDI
pitches, the music library supports microtones, for exploring non-
traditional tunings, as well as non-Western scales and ancient modes.
 Note objects can be added in series to Phrase objects Phrases can
then be assembled inside Part objects, which allow instruments to be
set. Part objects can be assembled to create Score objects, which can
have a title and a tempo, among others. Each of these objects has
various setter / getter functions, which are documented online (see
http://jythonmusic.org/music-library).
 Figure 1 demonstrates a code sample from a laptop orchestra
performance of Terry Riley’s In C (also see section 3.1). Here a
temporal recursion pattern is being used, i.e., the loopMusic()

function assembles and plays a phrase once and then schedules itself
to repeat.
 Additional functionality is provided in the Mod class, which
contains a large selection of functions for transforming Phrases,
Parts, and Scores. The View class contains functions to visually
display music in various formats. The music library also
supports reading MIDI files as scores and writing scores to
MIDI using the Read and Write classes respectively.
 Finally, multiple classes are provided for rendering sound.
The Play class plays Notes, Phrases, Parts, and Scores using
MIDI. The AudioSample class plays / loops audio files, and
pitch shifts them in real-time. The LiveSample class can record
sounds from a microphone, play / loop them, and pitch shift
them in real-time. The Metronome class synchronizes callback
functions, which supports live coding tasks, such as building
complex rhythmic patterns.

2.2 GUI Library
The JythonMusic GUI library supports development of computer
musical instruments and graphical user interfaces, having an
extensive set of graphics objects and widgets, with event-driven
programming via callback functions, and various types of keyboard
and mouse events.
 The main GUI object is a Display. A program’s GUI exists inside
a Display object (window). Displays contain other GUI components
(graphics objects and widgets). For example, this:

d = Display("Some Display", 400, 100)

creates a 400x100 pixel window. No other code is needed, compared
to, say, Java Swing, or Tcl/Tk (among others), which require multiple
lines of sometimes cryptic code to set up, pack, and render a simple
window.
 Similarly, creating displayable objects is as simple as creating an
object, and then adding to the display – two lines of code. For most,

Figure 1. A code excerpt using temporal recursion to
perform Terry Riley’s In C. The JEM editor provides
various shortcuts for re-evaluating different sections of
running code.

260

objects, a single-line abbreviation exists. For example, the following
adds a circle with a 10-pixel radius to the above display:

x, y, and radius
c = Circle(200, 50, 10)
d.add(c)

The GUI library is implemented on top of Java Swing, so it provides
access to all Swing functionality. Natively, it offers the following
Graphics objects: Line, Circle, Point, Oval, Rectangle, Polygon, Arc,
Icon, and Label. Additional GUI control objects include: Button,
Checkbox, Slider, DropDownList, TextField, TextArea, and Menu
(top, and pop-up). Other widgets for building musical user interfaces
include HFader, VFader, Rotary, Toggle, Push, and XYPad.
 Finally, the GUI library supports various keyboard and mouse
events (such as key press, mouse click, mouse move, and mouse
drag) to associate callback functions to handle these events. This
allows for developing elaborate, yet easy to comprehend interactive
behaviors. For example, Figure 2 displays the interface for a tunable
microtonal instrument, for exploring different tuning systems, based
on the ancient Greek tetrachord. For more information on the GUI
library, see http://jythonmusic.org/gui-library .

3. SOME PROJECTS
This section discusses a few more comprehensive projects
developed with JythonMusic, which demonstrate its capabilities
and potential for developing interactive musical experiences.
They span various categories, including musical interaction,
interactive sound and visual art installations, new interfaces for
sound manipulation and spatialization, as well as various
explorations on mapping among motion, gesture and music.

3.1 A Laptop Orchestra (2010)
In December 2010, we organized a student laptop orchestra
performance. Students were introduced to the computer as a
musical instrument and as a creative environment to develop
fluency with musical practices, including algorithmic
composition, developing simple computer instruments, and
composing exercises based on models in electroacoustic music
and minimalism [18]. Simultaneously, they were introduced to
programming in Python. For more information, see
http://bit.ly/charlestonLaptopOrchestra .

3.2 Monterey Mirror (2011)
Monterey Mirror [23] is an experiment in interactive music
performance. It engages a human performer and a computer
(the mirror) in a game of playing, listening, and exchanging
musical ideas. The computer player employs an interactive
stochastic music generator, which incorporates Markov models,
genetic algorithms, and power-law metrics. For more
information, see http://bit.ly/montereymirror .

3.3 Time Jitters (2014)
Time Jitters [24] is a four-projector interactive installation (see
Figure 3), which was designed by Los Angeles-based visual
artist Jody Zellen for the Halsey Institute of Contemporary Art
in Charleston, SC, USA.

 Time Jitters includes two walls displaying video animation,
and two walls with interactive elements. The concept is to
create an immersive experience for participants, which
confronts them with a bombardment of visual and sound
elements. For more information, see http://bit.ly/timeJitters .

3.4 Diving into Infinity (2015)
Diving into Infinity [25] is a Kinect-based system which
explores ways to interactively navigate M.C. Escher’s works
involving infinite regression. It focuses on Print Gallery, an
intriguing, self-similar work created by M.C. Escher in 1956.
 The interaction design allows a user to zoom in and out, as
well as rotate the image to reveal its self-similarity, by
navigating prerecorded video material. The system combines
JythonMusic with Processing using OSC. For more
information, see http://bit.ly/escherKinect .

3.5 Migrant (2015)
Migrant [26] is a cyclic piece combining data sonification,
interactivity, and sound spatialization. It utilizes migration data
collected over 23 years from 56,976 people across 545 US
counties and 43 states. The piece was originally composed for
Undomesticated, a public-art installation in the context of
ArtFields 2015 (http://www.artfieldssc.org). It was performed,
as part of the ISMIR 2015 music program, in Oct. 2015, in
Málaga, Spain. The original is here http://bit.ly/migrant2015,
and a more extended performance at the American College of
Greece here http://bit.ly/migrant2016 .

3.6 SoundMorpheus (2016)
SoundMorpheus [27] is a sound spatialization and shaping
interface, which allows the placement of sounds in space via
arm movements. This system combines Myo armbands with
JythonMusic and PureData. For more information, see
http://bit.ly/soundmorpheus2 .

4. CONCLUSION
This paper provided a quick introduction to JythonMusic, a software
environment for developing interactive musical experiences and
systems and described some projects developed with it. Due to the
limited space, only a subset of the available libraries were discussed.
The online website - http://jythonmusic.org - provides additional API
documentation, as well as various code samples, videos, and other
references. This environment supports computer-assisted
composition, image manipulation, building graphical user interfaces,

Figure 3. Users interacting with Time Jitters at the Halsey
Institute of Contemporary Art on opening night.

Figure 2. GUI for a microtonal, tetrachord-based tuning
system.

261

and interacting with external devices via MIDI and OSC, among
other features.

5. ACKNOWLEDGMENTS
The following individuals have contributed to JythonMusic code
development, API design and review, and testing: David Johnson,
Paul Helling, Kyle Stewart, Margaret Marshall, William Blanchett,
Christopher Benson, Mallory Rourk, Seth Stoudenmier, and Kenneth
Hanson. The JEM editor is developed and maintained by Tobias
Kohn. The jMusic library and materials have been developed by
Andrew Brown, Andrew Sorensen, Rene Wooller, Tim Opie,
Andrew Troedson and Adam Kirby. The jSyn environment is
developed and maintained by Phil Burk. Chrestos Terzes provided
invaluable information on ancient Greek music theory and the
tetrachord. JythonMusic includes code partially supported by the US
National Science Foundation (DUE-1323605, DUE-1044861, IIS-
0736480, IIS-0849499 and IIS-1049554). Additional support has
been provided by Google and IBM.

6. REFERENCES
[1] P. Modler. Interactive computer music systems and

concepts of Gestalt. In Leman M. (eds) Music, Gestalt,
and Computing. Lecture Notes in Computer Science
(Lecture Notes in Artifical Intelligence), vol 1317.
Springer, Berlin, Heidelberg, 1997, 482-494.

[2] R. Rowe. Interactive Music Systems: Machine Listening
and Composing. MIT Press, Cambridge, MA, 1992.

[3] G. Paine. Towards a Taxonomy of Realtime Interfaces for
Electronic Music Performance. In Proceedings of the 10th
Conference on New Interfaces for Musical Expression
(NIME 2010) (Sydney, Australia, June 15-18, 2010), 436-
439.

[4] E. M. von Hornbostel, and C. Sachs. Classification of
Musical Instruments: Translated from the Original
German by A. Baines and K. P. Wachsmann. The Galpin
Society Journal, 14 (1961), 3-29.

[5] D. Birnbaum, R. Fiebrink, J. Malloch, and M. M.
Wanderley, Towards a Dimension Space for Musical
Devices. In Proceedings of the 5th International
Conference on New Interfaces for Musical Expression
(NIME’05), (Vancouver Canada, May 26-28 2005), 192-
95.

[6] G. Wang, P. R. Cook and S. Salazer, ChucK: A Strongly
Timed Computer Music Language. Computer Music
Journal 39, 4 (Winter, 2015) 10-29.

[7] J. McCartney, Rethinging the Computer Music Language:
SuperCollider. Computer Music Journal 26, 4 (Winter,
2002), 61-68.

[8] M.S. Puckette, Pure Data: Another Integrated Computer
Music Environment. In Proceedings of the Second
Intercollege Computer Music Concerts (Tachikawa, Japan,
1996), 37-41.

[9] B. Vercoe and D. Ellis, Real-Time CSOUND: Software
Synthesis with Sensing and Control. In Proceedings of the
International Computer Music Conference (ICMC),
(Glasgow, Scotland, 1990), 209-211.

[10] J.A. Mills III, D.D. Fede and N. Brix, Music Programming
in Minim. In Proceedings of the 2010 Conference on New
Interfaces for Musical Expression (NIME’10), (Sydney,
Australia, June 15-18. 2010), 37-42.

[11] C. Roberts and J. Kuchera-Morin, Gibber: Live Coding
Audio in the Browser. In Proceedings of the 2012
International Computer Music Conference (ICMC’12),
(Ljubljana, Slovenia, 2012), 64-69.

[12] G. Wang and P.R. Cook, The Audicle: A Context-
Sensitive, On-the-fly Audio Programming
Environ/mentality, In Proceedings of the 2004

International Computer Music Conference (ICMC’04),
(Miami, FL, USA, 2004).

[13] S. Salazar, G. Wang and P. Cook, miniAudicle and ChucK
Shell: New Interfaces for ChucK Development and
Performance. In Proceedings of the 2006 International
Computer Music Conference (ICMC’06), (New Orleans,
LA, USA, 2006).

[14] S. Salazar and G. Wang, miniAudicle for iPad
Touchscreen-based Music Software Programming. In
Proceedings of the 2014 International Computer Music
Conference (ICMC’14), (Athens, Greece, Sep. 14-20,
2014), 686-691.

[15] B. Taylor, J. Allison, W. Conlin, Y. Oh and D. Holmes,
Simplified Expressive Mobile Development with
NexusUI, NexusUp and NexusDrop. In Proceedings of the
International Conference on New Interfaces for Musical
Expression (NIME’14), (London, UK, Jun. 30 – Jul. 4,
2014), 257-262.

[16] C. Roberts, M. Wright, J. Kuchera-Morin and T. Hollerer,
Rapid Creation and Publication of Digital Musical
Instruments. In Proceedings of the International
Conference on New Interfaces for Musical Expression
(NIME’14), (London, UK, June 30-July 4, 2014), 239-242.

[17] B. Manaris and A. Brown. Making Music with Computers:
Creative Programming in Python. Chapman & Hall/CRC
Textbooks in Computing - CRC Press, 2014.

[18] B. Manaris, B. Stevens, and A. R. Brown. JythonMusic: An
Environment for Teaching Algorithmic Music Composition,
Dynamic Coding, and Musical Performativity. Journal of
Music, Technology & Education 9, 1 (May 2016), 55-78.

[19] A. R. Brown. Making Music with Java: An Introduction to
Computer Music, Java Programming, and the jMusic Library.
Lulu, Raleigh, North Carolina, 2005.

[20] P. Burk. JSyn - Audio Synthesis API for Java,
http://www.softsynth.com/jsyn (accessed Jan. 27, 2018).

[21] B. Manaris. Dropping CS Enrollments: or The Emperor's New
Clothes?. ACM Inroads, 39, 4 (Dec. 2007), 6-10.

[22] P. Guo. Python is Now the Most Popular Introductory Teaching
Language at Top U.S. Universities. Communications of the
ACM (July 2014).

[23] B. Manaris, D. Hughes, Y. Vassilandonakis. Monterey
Mirror: An Experiment in Interactive Music Performance
Combining Evolutionary Computation and Zipf’s Law.
Evolutionary Intelligence 8, 1 (Mar. 2015), 23-35.

[24] D. Johnson, B. Manaris, Y. Vassilandonakis, and S.
Stoudenmier. Kuatro: A Motion-Based Framework for
Interactive Music Installations. In Proceedings of the 40th
International Computer Music Conference (ICMC’14),
(Athens, Greece, Sep. 14-20, 2014), 2014.

[25] B. Manaris, D. Johnson, and M. Rourk. Diving into
Infinity: A Motion-Based, Immersive Interface for M.C.
Escher’s Works. In Proceedings of the 21st International
Symposium on Electronic Art (ISEA 2015), (Vancouver,
Canada, Aug. 14-19, 2015), 2015.

[26] B. Manaris, and S. Stoudenmier. Specter: Combining
Music Information Retrieval with Sound Spatialization. In
Proceedings of the 16th International Conference on
Music Information Retrieval (ISMIR 2015), (Málaga,
Spain, Oct. 26-30 2015), 2015.

[27] C. Benson, B. Manaris, S. Stoudenmier, and T. Ward.
SoundMorpheus: A Myoelectric-Sensor Based Interface
for Sound Spatialization and Shaping. In Proceedings of
the 16th International Conference on New Interfaces for
Musical Expression (NIME 2016), (Brisbane, Australia,
Jul. 11-15, 2016), 2016.

262

