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ABSTRACT 
Hands are important anatomical structures for musical performance, 
and recent developments in input device technology have allowed 
rather detailed capture of hand gestures using consumer-level 
products. While in some musical contexts, detailed hand and finger 
movements are required, in others it is sufficient to communicate 
discrete hand postures to indicate selection or other state changes. 
This research compared three approaches to capturing hand gestures 
where the shape of the hand, i.e. the relative positions and angles of 
finger joints, are an important part of the gesture. A number of sensor 
types can be used to capture information about hand posture, each of 
which has various practical advantages and disadvantages for music 
applications. This study compared three approaches, using optical, 
inertial and muscular information, with three sets of 5 hand postures 
(i.e. static gestures) and gesture recognition algorithms applied to the 
device data, aiming to determine which methods are most effective.  
 
Author Keywords 
Hand posture, Gesture recognition, Motion capture 
 
CCS Concepts 
• Human-centered computing~Gestural input   • Applied 
computing~Performing arts   • Social and professional 
topics~Hardware selection 
 

1. INTRODUCTION 
Hand gesture recognition is of interest to a number of fields such as 
sign-language interpretation, robotics, prosthetics, virtual reality, 
health applications, video games, as well as computer music. Recent 
devices have brought much of the necessary technology to consumer 
level systems, such as the Leap Motion [19] and Kinect [24] 
expanding the potential user base beyond scientific and research 
environments and into everyday use. 
 Real-time hand gesture recognition systems typically comprise of a 
hardware sensor arrangement to supply a stream of data about the 
user’s hand, signal processing algorithms to extract features from the 
data and machine-learning tools to then determine the current 
gesture. A number of different sensor types can be used at the input 
stage, and in this work we wanted to compare the performance of 
optical (IR depth camera), surface electromyography (sEMG), and 
inertial measurement units (IMUs), although other sensor 
technologies can be used for hand tracking such as electromagnetic 
sensing (e.g. Polhemus) and bend sensors (e.g. Cyberglove). 
 

1.1 Optical Systems 
Optical approaches can include the use of standard video cameras, IR 
depth cameras and multi-camera motion capture systems, with both 
marker-less or marker-based techniques. Each type of system has a 

number of practical difficulties and advantages, but generally optical 
systems are subject to lighting issues, occlusion/line-of-sight 
problems and often quite severe spatial/orientation constraints. High-
end multi-camera mo-cap systems can provide highly accurate 
spatial information and fast response, but can be difficult to setup in a 
concert environment and can be prohibitively expensive. Video 
cameras can be cheap and simple to set up, at the cost of spatial 
constraints and occlusion problems, while IR depth-camera hardware 
is now readily available and affordable, but again with some line-of-
sight and lighting/noise problems. 
 Microsoft’s Kinect provides full body skeletal information but 
currently provides little direct hand information – the second 
generation device providing thumb orientation and some basic hand-
posture detection (lasso, fist, open). Others have used the Kinect or 
other depth cameras to track fully articulated hand gestures, including 
Microsoft (although not released), Intel (RealSense) and other 
research teams (FORTH), although often at low frame-rates and/or 
very high computational cost requiring GPU processing [38]. Both 
generations of Kinect have been used in a number of installations and 
music applications, including [21], [39], [33], [15]. The Leap Motion 
controller currently provides a detailed skeletal model of both hands 
and fingers and again has been explored in a number of music 
applications, including [11], [12], [4]. It has also been adopted 
commercially by some music technology companies, including 
Steinberg for controlling their Cubase software [37] and Fairlight 
(now Blackmagic Design), who embedded a Leap Motion controller 
into their 3D Audio Workstation for “Air panning” of sounds [2]. 
 Camera frame-rates are an important consideration with optical 
systems, as this sets an upper-limit on the speed of tracking and 
gesture recognition. Low-cost industrial USB cameras can achieve 
120fps (at the cost of resolution), high-end multi-camera mo-cap 
systems typically 100-500fps, while consumer depth camera systems 
range from ~30-100fps. In our experience, frame rates of ~50fps and 
higher provide systems which feel responsive in music applications, 
depending on the subsequent processing latency.  
 

1.2 sEMG Systems 
 sEMG devices need to have skin contact near to the muscles of 
interest, which for hand control are in the upper forearm. They 
measure the electrical activity in the muscle fibres, which correlates 
with the exertion being made. Holding the hand in different finger 
postures requires different patterns of muscle activation in the 
forearm, and therefore the sEMG data can be interpreted to say 
something about the shape of the hand, although of course the sEMG 
data will vary with the pressure being exerted by the fingers (e.g. if a 
fist is being squeezed tightly or more relaxed). Indeed it is possible to 
tense the forearm muscles voluntarily without changing hand 
posture, which will affect the sEMG signals being generated. 
 Nymoen [29] explored a wireless sEMG device, the Myo 
Armband, as a digital musical instrument controller, and found issues 
with misattribution of hand postures, and jitter in posture detection 
response as limiting factors in the utility of the device in music 
performance. Despite this, wireless sEMG devices offer a potential 
solution to hand posture capture, without the lighting, spatial and 
line-of-sight limitations of optical systems, or the intrusion of gloves.  
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1. INTRODUCTION
The proceedings are the records of a conference. ACM seeks
to give these conference by-products a uniform, high-quality
appearance. To do this, ACM has some rigid requirements
for the format of the proceedings documents: there is a
specified format (balanced double columns), a specified set
of fonts (Arial or Helvetica and Times Roman) in certain
specified sizes (for instance, 9 point for body copy).
The good news is, with only a handful of manual set-

tings,1 the LATEX document class file handles all of this for
you.
The remainder of this document is concerned with show-

ing, in the context of an “actual” document, the LATEX com-
mands specifically available for denoting the structure of a
proceedings paper, rather than with giving rigorous descrip-
tions or explanations of such commands.

2. THE BODY OF THE PAPER
Typically, the body of a paper is organized into a hierar-
chical structure, with numbered or unnumbered headings
for sections, subsections, sub-subsections, and even smaller
sections. The command \section that precedes this para-
graph is part of such a hierarchy.2 LATEX handles the num-
bering and placement of these headings for you, when you
use the appropriate heading commands around the titles of
the headings. If you want a sub-subsection or smaller part
to be unnumbered in your output, simply append an aster-
isk to the command name. Examples of both numbered and
unnumbered headings will appear throughout the balance
of this sample document.
Because the entire article is contained in the document

environment, you can indicate the start of a new paragraph
with a blank line in your input file; that is why this sentence
forms a separate paragraph.

1Two of these, the \numberofauthors and \alignau-

thor commands, you have already used; another, \bal-

ancecolumns, will be used in your very last run of LATEX
to ensure balanced column heights on the last page.
2This is the second footnote. It starts a series of three
footnotes that add nothing informational, but just give an
idea of how footnotes work and look. It is a wordy one, just
so you see how a longish one plays out.
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1.3 IMU Systems 
MEMS-based IMUs are small multi-axis devices that measure the 
orientation and forces acting on the device. 9-axis IMUs include 
accelerometer, gyroscope and magnetometer (3 axes each), the 
signals from which can be used to track the motion of the device 
from a known starting point. IMUs are becoming pervasive in 
consumer electronic devices: fitted as standard into smart-phones, 
some fitness trackers and wearables, used in a number of video game 
controllers, such as the Nintendo wiimote and Sony DualShock 4 and 
VR headsets such as the Occulus Rift, and form a key part of the 
flight control system for drones. 
 For capturing hand gestures, a number of IMUs can be attached to 
the hand and fingers to report the relative positions of the different 
parts of the hand and therefore the the hand posture. For convenience 
the sensors can be attached to a glove, which is then worn, but this 
can be quite intrusive and physically cumbersome to wear while 
performing. IMUs do suffer from drift, but generally provide spatial 
freedom (if connected wirelessly), good data rates and low latency 
(100+fps is possible) - important factors for music applications.  
 “Data gloves” are a related technology, but usually involve flex 
sensors in the fingers rather than IMUs for the posture detection, but 
may have an IMU for overall hand orientation. These have typically 
been expensive and/or custom-made. Glove-based controllers 
specifically for music applications have been developed by a number 
of researcher/performers, with varying levels of detail in the hand 
capture. These include the Tod Machover’s use of the Exos Dextrous 
Hand Master [31], Morita’s conducting follower with data glove 
[27], Lady’s Glove [3], VAMP [16] and mi.mu gloves [26], a design 
adopted by others such as [35] in control of physical model synthesis.   
 IMUs should provide reliable data for gesture recognition in this 
work, free from spatial, line-of-sight and finger posture confusion, 
but are the most intrusive in terms of disrupting the performer’s 
natural hand state and can suffer from drift and bias issues. 
 

2. HAND POSTURE RECOGNITION 
A large number of studies over the past ~30 years have explored 
hand gesture recognition in a number of application areas, although 
most commonly in sign-language reading, using either data-gloves, 
sEMG or optical systems as the input device. Some studies use 
dynamic gestures, since often sign-language words often involve 
movement as well as a hand posture, while others consider static 
gestures, which we refer to as postures here.  

2.1 Optical 
Huang [13] used a 3D neural network to successfully recognise 15 
sign language gestures on video with a recognition rate of 91%, but 
this was far from real-time at the time (10s processing time). [Chen et 
al 2003] used Hidden Markov Models (HMM) to recognise 20 
different sign-language gestures in real-time with a 30fps camera 
system, with a success rate of 93% and a latency of about 1s. HMMs 
are often used with dynamic gestures since they consider a time 
series of states, rather than the static postures that we consider here. 
 [8] achieved an accuracy of 85-91% with a set of six hand postures 
(open, fist, extended thumb in N, S, E, W directions)  using 320x240 
pixel video data with Adaboost  for hand detection, adaptive 
segmentation and followed by multi-scale feature extraction (blob 
and ridge detection to identify hand and fingers). This process was 
rather slow for music applications (~100ms frame processing), but 
would be quicker with more recent computing hardware. This 
required the hand to be placed in a somewhat constrained space and 
orientation relative to the camera to be detected.  
 [16] used a depth camera with Action Graphs (an HMM variant) to 
recognise 12 sign-language dynamic gestures, the best performing 
variant using hand silhouette feature extraction and achieving 
accuracy of ~88%. 

 [23] unusually used a combination of Leap Motion and Kinect 
devices for the detection of ten (static) sign-language gestures, 
finding that they could increase accurate detection from using the 
Leap Motion alone. For each device, features were extracted from the 
device output data (e.g. orthogonal fingertip distance from palm 
plane from the Leap) and then used to train a multiclass Support 
Vector Machine (SVM) classifier. With the Leap Motion alone, a 
combination of fingertip distances and angles produced an accuracy 
of 80.86%, the Kinect alone 89.28%, and the combination 91.28%. 
Interestingly the Kinect alone produced better results than the Leap 
Motion alone, while the question of whether using two Leap Motion 
devices at different positions/orientations could produce similarly 
improved results is unanswered. In our work we wanted to isolate 
devices and use them independently, but we included some results of 
combined device data for comparison. 
 [4] proposed a solution to the limited capture space of the Leap 
Motion by developing a wrist mount to hold the sensor in a fixed 
position relative to the arm for musical applications. They compared 
the performance of the wrist mounted Leap Motion with a static Leap 
Motion and a data glove with 12 hand postures, although not with a 
recognition system – they simply compared the finger flexion 
measurements from each set-up. The glove appeared to be most 
reliable, while wrist-mounting the Leap Motion aided its accuracy by 
keeping the hand close to the device (accuracy declines with distance 
[40]), limiting hand self-occlusion issues. 

2.2 IMU/Data Gloves 
[Dipietro et al.] provide an extensive review of glove technologies 
developed over many years, and outline various applications using 
gesture recognition, including the Data Entry Glove (1983), which 
mapped sensor output patterns to alphanumerical characters in 
hardware, while the Pinch Glove (1990s) detects postures through 
surface electrical contacts on the glove which when meet indicate 
aspects of the hand posture without any further recognition required, 
with up to 1000 postures theoretically possible. 
 [7] identify a number of researchers that have used data gloves for 
sign-language recognition, including: Tahakashi and Kshino (1991) 
who used PCA and Cluster Analysis to code static sign language 
gestures with a similarity function to discriminate 30 of 46 gestures 
tested in pseudo real-time; Murakami and Taguchi who used 
recurrent 3-layer neural networks with a set of 42 dynamic gestures 
with a 77% success rate for subjects not in the training set, 98% for 
those that were; Mehdi and Khan who used ANNs to achieve 88% 
accuracy with 24 sign-language gestures; Liang and Ouhyoung who 
achieved an average success rate of 80% with 250 (dynamic) sign 
language gestures using HMMs and dynamic programming. More 
recently [14] used 18 language signs with a data glove, first 
segmenting the input stream based on local minima in signal 
variation to find gestures, then centroid-based clustering of training 
data and a K-NN algorithm to classify gestures with an accuracy of 
95% with static gestures. [22] used a Probabilistic Neural Network 
(PNN) with 12 static hand gestures, using a combination of clustering 
algorithms selected by minimum classification error to achieve a 
success rate of 86%. 
 Mitchell at al. [26] developed a glove based music performance 
system using flex sensors and distinguished 8 hand postures using an 
ANN in the form of an MLP with back propagation supervised 
learning. While claiming robust results, no accuracy was quoted. 

2.3 sEMG 
sEMG can achieve high levels of recognition, although usually 
requires the sensors to be adhered to the skin and require very careful 
placement.  [17] used 2-channel sEMG forearm data (flexor carpi 
radialis and flexor carpi radialis brevis muscles) to identify 9 sign-
language gestures with 99.7% accuracy, using a number of time and 
frequency domain features extracted from the sEMG data and 
discriminant analysis to classify the data.  
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 In [5] a Wavelet Packet Transform (WPT) was applied with Linear 
Discriminant Analysis (LDA) to 4 channel sEMG data (ex- tensor 
digitorum, extensor carpi radialis, palmaris longus, and flexor carpi 
ulnaris), followed by an MLP classifier to identify 9 dynamic 
gestures with an accuracy of 97.4%.  
 [1] used artificial neural networks (ANN) with 2-channel sEMG 
(brachioradiali, flexor carpum ulnaris plus wrist reference) to 
identify 4 hand movements with 88% success, while [34] used 2-
channel sEMG (flexor capri ulnaris and extensor capri radialis, 
longus and brevis) with Empirical Mode Decomposition (EMD), 
extracting 8 standard features from both EMD and raw sEMG, then 
using a linear classifier. They found that including the EMD data 
improved their classification by an average of 2.6%.  
 8-channel sEMG forearm data (8 sensors placed around the 
forearm), with moving-average pre-processing and Class Augmented 
Principal Component Analysis (CA-PCA) for feature extraction and 
an Extreme Learning Machine (ELM) classifier – a form of ANN for 
fast training – achieved 92% accuracy across 4 hand postures in [20]. 
 [29] achieved 98% accuracy with 2-channel sEMG (flexor carpi 
radialis and extensor carpi radialis longus) and a set of 6 gestures 
using a Mean absolute Value (MAV) feature with an SVM classifier 
optimized via a Cuckoo Search algorithm. 
 

3. EXPERIMENTS 
3.1 Hardware Devices 
The aim of the experiments was to compare consumer level 
devices which can easily be deployed in musical contexts, 
hence high-performance high-cost devices, such as a Vicon mo-
cap system, were eschewed in favour of the Leap Motion for 
optical capture and the Myo Armband for sEMG. A Perception 
Neuron system was used for MEMs based mo-cap, which while 
more expensive than the other devices, at ~1200USD for a 
complete suit including two hands, still sits within range of 
reasonable costs in music. Noitom has announced a new 
consumer VR glove containing 6 9-axis IMUs per finger 
embedded in the glove (rather than the surface mounted 
Neurons) aimed at the consumer market and which appears less 
intrusive than their Neuron system, but the device was not 
available at the time of writing for testing. 

3.1.1 Leap Motion controller 
The Leap Motion (2013) is a small USB device using stereo 
infrared cameras to view a three-dimensional space above the 
device. Using the image data, the software generates a detailed 
3D model of hand and finger joint positions and orientations for 
both hands at usefully high frame rates for music of the order 
100 Hz (previous software versions could run at higher speeds 
with less hand detail). Spatial accuracy is around 0.2 mm, [38] 
with a precision of 0.5 mm [10] using the earlier software – the 
more recent software appears to have lower accuracy and 
precision, while providing more detailed hand skeleton data. 
 A number of problems emerge in practice: lighting changes, 
occlusion of fingers (either within hand or between hands) due to 
single view point, mislabelling of left and right hands, some erratic 
positioning and jitter, and spatial limitations (e.g. there is a limited 
tracking space, and users’ hands can easily exit the tracking zone 
accidently, as the bounds are not visible to the user). [23] used the 
Leap Motion in their studies, but this was the earlier software version 
which provided less detailed information regarding the hand – chiefly 
fingertip and palm position and orientation, while here we used the 
more recent software which now provides information on all the 
finger bones as well as always including finger data, even if the 
fingers cannot be clearly seen by the device. 
 An important issue with the Leap is the orientation of the device 
relative to the hands, as this will alter the view of the hands seen by 
the device, and therefore the nature of the hand self-occlusion effects 

[11]. In this work, the orientation of the device for each posture set 
was chosen to optimise the Leap response for those hand shapes. 

          
Figure 1. The Leap Motion controller 

3.1.2 Perception Neuron 
The Perception Neuron (2014) is a (relatively) low-cost motion 
capture suit using a up to 32 neurons arranged around the wearer’s 
body, each one containing a 9-axis MEMs-based IMU. The suit can 
communicate wirelessly (or via USB) with software running on a 
PC, which converts signals from the neurons into skeletal motion 
data for real-time display, recording and transmission over TCP/UDP 
networks. Using IMUs and a wifi connection, it allows complete 
freedom of movement over a significant space (such as a stage).  
 In this work only the hand is of interest, which is captured via a 
glove arranged with 9 sensors (2 thumb, 2 fore-finger, 1 each on 
middle, ring and little fingers, back of the hand and wrist). The glove 
is connected to a UART hub which then either connects to a wireless 
hub or directly by USB to the host computer. The system operates at 
a default frame-rate of 120Hz. For music applications, wearing the 
glove is quite intrusive, while strong magnetic fields can be 
problematic for the hardware, which needs to be kept apart from 
various electrical devices that generate such fields. While calibrated 
at the beginning of each session, it was fairly common for the finger 
positions to become confused during the experiments, presumably 
due to interference and drift. 
 

                             
Figure 2. Gloves from the Perception Neuron mo-cap suit. 

 

3.1.3 Myo Armband 
Thalmic Labs Myo Armband (2014) is a bracelet format device 
which is worn on the forearm of the user and which uses 8 
electrical sensors around the bracelet to infer information about 
muscle activity (EMG) in the forearm and hence the disposition 
of the users hand and fingers. In addition, the device contains a 
9-axis IMU sensor, which is used to provide orientation data as 
a quaternion. The Myo software that accompanies the device 
recognizes 5 hand postures (see fig. 4): relaxed, fist, extended, 
outward wrist (i.e. wrist stretched backwards), and inward wrist 
(i.e. hand stretched toward the inner forearm). The device can 
also be calibrated for a particular user. In practical use a 
number of issues arise, including placement of the armband (so 
that it is always positioned in the same place on the arm and at 
the same angle around the arm), misidentification of postures 
(i.e. wrong posture is indicated), wearing the band for long 
periods can be quite tiring, while delays and jitter in posture 
recognition time can be challenging for musical applications 
and frustrating for performances.  

 
Figure 3. Thalmic Labs’ Myo Armband 
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3.2 Test Postures 
Three sets of static hand postures formed the basis of the study 
in order to give a reasonable comparison between the devices 
and for particular musical applications. Each set was the same 
size (five) and was selected on the basis of being particularly 
suited to one of the devices or for human ease of use. 
 
3.2.1 Myo postures 
It seems a reasonable expectation that the Myo has been 
optimised to detect the postures it reports, and that the device in 
someway is suited to detect these postures in terms of different 
muscle activations.  This set (figure 4) was used with all 
devices, but with the expectation that the Myo should perform 
optimally here: Relaxed, Fist, Spread, Wave-Out, Wave-In. 
 

 
Figure 4. The Myo native set of hand postures. 

 
3.2.2 Thumb Opposition postures 
As well as being an inherently human set of postures, these can 
be made easily in conjunction with other hand movements that 
might be useful for musical control, e.g. beat/tempo indications 
or other parameter variations. These postures (see figure 5) 
activate the tendons of the forearm differently and therefore are 
potentially separable by the Myo, while Leap Motion and 
Neuron should be able to use within hand proximity values to 
identify the postures. It was expected that the Leap however 
might suffer from finger-finger and hand-finger occlusion 
issues in various hand orientations, and some experimentation 
was completed to find the best placement and orientation 
relative to the Leap Motion. This set was seen as the most user-
friendly in terms of ease of use, minimal energy expended to 
maintain, and ease of combination with more global hand 
movement and orientation: Relaxed, Thumb-Index, Thumb-
Middle, Thumb-Ring, Thumb-Little. It was also seen as most 
suitable for the Neuron device, since there should be a clear 
differentiation between postures in the mo-cap data. 
 

 
Figure 5. The Thumb Opposition set of hand postures. 

 
3.2.3 Finger Point postures 
The third set of postures were aimed as being most Leap 
Motion-friendly, in that this device should be able to clearly 
identify the postures with minimal occlusion issues. These 
involve extending different numbers of (thumb and) fingers, 
starting from a fist and ending at all fingers extended. Due the 
difficulty of extending the little and ring fingers independently 
for some people, these were either extended or retracted 
together, giving 5 postures altogether as with the other sets. See 
figure 6: Fist, Thumb, Thumb+Index, Thumb+Index+Middle, 
Thumb+All. 
 

 
Figure 6. The finger point set of hand postures. 

3.3 Software 
Four software tools were initially used in the study: Max/MSP 
was used to interface with Myo and Leap Motion devices, 
record the data stream and also transmit data to/from the 
Gesture Recognition Toolkit (GRT) [9] for gesture 
identification, while Axis Neuron Pro was used to stream the 
Neuron data to Max for decoding and passing on to GRT. 
Figure 7 shows the Max Myo user interface used and similar 
interfaces were designed for the Leap and Neuron. 
 GRT is a convenient Open-Source tool for real-time gesture 
recognition that offers a range of machine-learning algorithms 
and pre-processing that can be easily tested against data sets.  
 

     
Figure 7. Myo interface in Max/MSP. 

 
 Of the three systems tested, the Leap is the only one for 
which line-of-sight is important, and so some consideration was 
given to the placement of the device relative to the hand. For 
the poses selected, it seemed clear that the best line of sight for 
the device would be to mount the Leap vertically beside the 
hand so that the necessary finger details would be visible to the 
device. The subjects’ hands were placed approximately 20cm 
from the device, with palm centred on the Leap.  
  At the time of writing, the calculation data (describing the 
position information of the wearer’s bones) transmitted by the 
host software (Axis Neuron Pro) did not include finger 
information and so BVH (BioVision Hierarchy) format data 
was used instead. This was decoded in a bespoke Max object 
(using Javascript) to provide the finger positions. The current 
Axis Neuron software also does not include complete 
information about the fingers, most notably missing 
adduction/abduction of the fingers, which places some 
limitations on gesture differences that are possible to detect.  
 

3.4 Training and Testing 
Each posture was captured for 500 samples from the device and 
each subject made the posture 3 times. The devices were 
capture successively since the Neuron glove would interfere 
with Leap capture quality. The samples captured variations 
from noise and involuntary human movement, while repeated 
poses captured variation in the subjects’ making of the hand 
posture. While some approaches capture the transition from one 
pose to another (dynamic capture), in this first set of 
experiments we captured static poses only. After informal 
testing with a variety of classifiers in GRT, SVM was used. 
 For each device pre-processing was used prior to the 
classifier. For the Myo, rectified output from the 8 EMG 
sensors was smoothed with a 5-point moving average filter. For 
the Leap, the data processing varied according to the posture 
set. Given that its spatial data will depend on the size of the 
subject’s hand, distances and position vectors were normalised 
by scaling by the wrist to middle finger tip distance with the 
hand extended – taken from the extended pose from the Myo 
set. For the thumb opposition postures, the distances between 
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finger-tips and thumb-tip were used, while for the Myo and 
pointing postures, wrist-to-fingertip distances were used. 
Similar data were used from the Neuron since using hand- 
relative parameters would help minimise global drift problems. 
 In these tests the system was trained on twelve examples of 
each posture (30000 samples) and tested against three examples 
of each posture (1500 samples), not from the training set. The 
testing participant was selected at random from amongst the 
participants captured for each gesture tested. Within subject 
tests were not included here, although these are also of interest 
as training systems for specific individuals is a valuable use-
case for music performance. 
 

4. RESULTS 
The initial results are summarized in tables 1-3 below. These 
show the relative performance of each device across the test 
data, which was the primary aim of the research, rather than 
optimizing the gesture recognition for the different hardware. 
Each table represents one of the sets of hand postures and 
shows the accuracy achieved, as well as the precision (above) 
and recall (below) for each of the five postures. For the Myo 
postures, the Myo did in fact perform very well, better than 
both the Leap and Neuron, although not high enough for critical 
music performance events. It was noted that during the testing, 
the Myo’s own posture labeling was also below 100% - with 
some postures failing to be detected, and others mislabeled. 
 

Table 1. Results for the Myo posture set 

 Accuracy P1 P2  P3 P4  P5 

Leap 79.65% 1 1 1 1 0.50 
0.65 1 1 0.33 1 

Myo 92.39% 0.97 0.94 0.84 0.93 0.91 
0.98 0.85 0.89 0.91 0.96 

Neuron 68.81% 0.99 1 0.25 0.75 043 
0.67 1 0.11 0.99 0.67 

 
 All devices performed less well with the Oppose postures – 
the Leap seemed confuse the finger positions, although tracked 
the little finger pinch well, while the Neuron data appeared very 
good in some cases in terms of representing the hand shape, in 
other examples it clearly did not. This time the Myo performed 
the least well, appearing to not be able to distinguish the muscle 
activity effectively for these hand differences.  
 

Table 2. Results for the Oppose posture set 
 
 Accuracy P1 P2  P3 P4  P5 

Leap 65.59% 0.53 0.64 0.74 0.43 1 
0.38 1 0.33 0.55 1 

Myo 48.13% 0.81 0.36 0.41 0.58 0.97 
0.22 0.94 0.30 0.65 0.30 

Neuron 56.70% 0.46 0 0.99 0 0.5 
1 0 0.83 0 1 

  
 As expected the point posture set (table 3) seems most 
promising for the Leap motion sensor, although it seems to 
have difficulty distinguishing the fist and thumbs up postures 
on the basis of the fingertip to wrist distances. The Neuron 
should have been able to perform similarly well, but its failure 
to reliably maintain good position information about the fingers 
appears to hamper this result significantly. The Myo again 
performed relatively poorly, although better than for the oppose 
set, perhaps as here there are larger changes in hand shape. 
 
 

Table 3. Results for the Point posture set 
 
 Accuracy P1 P2  P3 P4  P5 

Leap 80.0% 1 0.5 1 1 1 
0.01 1 1 1 1 

Myo 56.9% 0.45 0.62 0.25 0.59 0.76 
0.99 0.07 0.01 0.78 0.99 

Neuron 67.0% 0.46 0 0.99 00 0.5 
1 0 0.83 0 1 

 

5. DISCUSSION AND FURTHER WORK 
While the devices used in these tests are attractive for musical 
control, there remain a number of issues which can lead to 
frustrating performance experiences. In our testing, the Leap 
would quite often mislabel the hand left rather than right, or 
simply lose tracking completely while the hand was stationary. 
In some poses, the tracking clearly became noisier as the 
tracking algorithm struggled maintain a lock. The Neuron 
suffered from frequent drift, and anomalies in the finger data – 
e.g. in one data capture the finger flipped periodically between 
two very different positions, even though the subject’s hand 
was stationary. The Myo also sometimes had odd patterns of 
output (e.g. bursts of high values across all the sEMG sensors).  
Beyond these issues, the results indicate clearly the importance 
of organising posture designs and device selection to work 
together to give the most accurate results. Informal testing also 
indicated significant performance differences between 
classification algorithms. Although SVM appeared to give good 
results across devices, this warrants further investigation. 
 Future work will examine how to improve the quality and 
consistency of the raw device data (e.g. lighting and positioning 
for the Leap), alternative data pre-processing and testing with a 
range of classification algorithms. Including one of the Kinect 
hand-tracking systems would be desirable due to the potentially 
larger tracking volume available compared with the Leap.  
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