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The diffusive paradigm of galactic CRs
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The ratio of boron and carbon fluxes provides us with the best estimates of the
time spent by CRs in the Galaxy before escaping.
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The diffusive paradigm of galactic CRs

» The grammage traversed by CRs is related to the escape time:

X(E) = ApvTesc(E)

» if we assume that the gas is concentrated in a thin disc, h, and the diffusive
halo extends to a height H, the mean density

h H \!
Ai=ny— ~ 0.1 -3
n=ndy <2kpc) o

> the typical escape time is

H
Tesc ™ 50 <m> Myr
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The diffusive paradigm of galactic CRs

Strong et al., 2007, Annu. Rev. Nucl. Part. Sci.
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The observed fraction of unstable isotopes which live long enough, e.g. Be™
(7 ~ 1.4 Myr), can be used to derive H = 2 kpc
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The radio halo in external galaxies
Credit: MPIfR Bonn
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Total radio intensity of edge-on galaxy
NGC 5775, combined from observations at
3.6 cm wavelength with the VLA and

Total radio emission of edge-on galaxy
NGCB891, observed at 3.6 cm wavelength

with the Effelsberg telescope
Effelsberg telescopes
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The ~-halo in our Galaxy

Tibaldo et al., 2015, ApJ
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» Using high-velocity clouds to measure the emissivity per atom as a function of z
(proportional to CR density)

» Indication of a halo with H > few kpc

C. Evoli (GSSI) Origin of CR halo



The interstellar turbulence

log,g(spectral density, Py, (m™%)

“The (second) Great Power-Law in the Sky” (Jokipii)
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Electron-density fluctuations in the ISM
[Armstrong et al. 1995, ApJ 443, 209]
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Turbulence is stirred by Supernovae at a typical
scale L ~ 10 — 100 pc

Fluctuations of velocity and magnetic field are
Alfvénic (moving at va)

They have a Kolmogorov k33 spectrum (density is
a passive tracer so it has the same spectrum:
One ~ 65’2):

(6B)*(k)

2 k —5/3
W(k)dk = =L — 215 ( )
B? 3k \ko

where kg = L™ and the level of turbulence is

oo
ng = / dk W(k) ~ 0.1+ 0.01
ko
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Charged particle in a turbulent field: QLT

» The turbulent field amplitude is a small fluctuation with respect to the regular
component

» Resonant interaction wave-particle: kor ~ ri(p)
» It follows:

3x10%7/ ul] cmzy,r's
vry 1

—_— 1/3
D,, A S 1028 cm? P
(p) 3 kies W(kres) 3107 em /S GEV/C
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The CR transport equation in the halo model

_ 10 | pdeg
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» Spatial diffusion: V - J
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The CR transport equation in the halo model

0 of; of;  dup Of;
- E (DZZE) JF u-

10 d|
o9 |:p27€ﬁ] + erag/decay

» Spatial diffusion: v-J

» Advection by Galactic winds/outflows: u = uy + va ~ va

C. Evoli (GSSI) Origin of CR halo



The CR transport equation in the halo model

0 of; ofi  dup Of; 1 0 | 2dp
—-Z (b, Nl Y aali v = Z | 20P
az( a)+ Yoz " dz3op N T pap {”

» Spatial diffusion: V- J
» Advection by Galactic winds/outflows: u = u, + va ~ va

i:| + erag/decay

Source term proportional to Galactic SN profile
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The CR transport equation in the halo model

0 of; ofi  dup Of; 1 0 [ -dp
- a_ Dzzi a. -5 a. = — > a_ i
0z ( 32) + Yoz " dz3 op Qs p? Op {

» Spatial diffusion: v-J
» Advection by Galactic winds/outflows: u = u, + va ~ va

» Source term proportional to Galactic SN profile

» Energy losses: ionization, Bremsstrahlung, IC, Synchrotron, ...
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The CR transport equation in the halo model

_ 10 | pdeg
E — Eg@ip QSN p a |: :| + Qh'a;;/dr:(:ay

0 of; 4y ofi  dup Of;
0z \ "oz

Spatial diffusion: v-J
Advection by Galactic winds/outflows: u = uy + va ~ va
Source term proportional to Galactic SN profile

Energy losses: ionization, Bremsstrahlung, IC, Synchrotron, ...

vV vyVvyVvyy

Production /destruction of nuclei due to inelastic scattering or decay
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Predictions of the halo model

» For a primary CR species (e.g., H, C, O) at energies where | can ignore losses and
advection, the transport equation can be simplified as:

-9 [D?] = Qu(p)0(2)

» For z # 0 one has:

of _ ||
DE = constant — f(z) = fy (1 - H)

where | used the definition of a halo: f(z = +H) =0.

» The typical solution on the plane gives:

h(p) = ‘2"7((,53% —
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The H and He hardening

Adriani et al., Science, 2011; Aguilar et al., PRL, 2015
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» By solving the transport equation we obtain a featureless (up to the knee)
propagated spectrum for primaries, at the odds with observations.

» What is missing in our physical picture?
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The halo size H

v

Assuming f(z = £H) = 0 reflects the requirement of lack of diffusion
(infinite diffusion coefficient)

May be because B — 0, or because turbulence vanishes (in both cases D
cannot be spatially constant!)

Vanishing turbulence may reflect the lack of sources
Can be H dependent on p?
What is the physical meaning of H?
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The turbulence evolution equation
Jones, ApJ 413, 619 (1993)

+ 2 (AW 4 TerW + QK)

ow 0 ow
0z

ot ok | ok

» Diffusion in k-space (non-linear): Dy = ck|vA\k7/2 Wwt/?

C. Evoli (GSSI) Origin of CR halo



The turbulence evolution equation
Jones, ApJ 413, 619 (1993)

ow 0 { GW] 0 (VW) + TorW + Q(K)

ot ok | %ok | T oz
» Diffusion in k-space (non-linear): Dy = cx|valk”/? W/

» Advection of the Alfvén waves
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The turbulence evolution equation
Jones, ApJ 413, 619 (1993)

+ L W) e+ QUK

ow 0 ow
0z

ot ok | ™ok
» Diffusion in k-space (non-linear): Dy = cx|valk”/? W/
» Advection of the Alfvén waves

» Waves growth due to cosmic-ray streaming: I'cr o Of /0z
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The turbulence evolution equation
Jones, ApJ 413, 619 (1993)

+ 9 (vaW) +TerW + Q(k)

ot ok | %ok | T oz

ow 0 [ GW]
» Diffusion in k-space (non-linear): Dy = cx|valk”/? W/
» Advection of the Alfvén waves
> Waves growth due to cosmic-ray streaming: ['cg x 9f /0z
> External (e.g., SNe) source term Q ~ 6(z)d(k — ko)
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The turbulence evolution equation
Jones, ApJ 413, 619 (1993)

+ g (vaW) +TerW + Q(k)

ow 0 ow
0z

ot 0k | ™ok
Diffusion in k-space (non-linear): Dy = ci|valk”/?W*/2
Advection of the Alfvén waves
Waves growth due to cosmic-ray streaming: ['cg x 9f /0z
External (e.g., SNe) source term Q ~ §(z)d(k — ko)

In the absence of CRs (I'cg — 0), it returns a kolmogorov spectrum:
W (k) ~ k=53

vvyYVvyVvyy
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The turbulent halo

Evoli et al., 2018, PRL

kg zc
Tcascade = Tadv —7 D_ =
kk VA
J
z. ~ O(kpc)

> z. set the distance at which
turbulence start cascading.
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The turbulent halo

Evoli et al., 2018, PRL
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The turbulent halo

> Assuming now a power-law diffusion coefficient D(z) = Dy(z/z.)* for z > z.:

0 {Do () gf} — Qu(p)o(2)

» it implies that the density on the disk is:

( )
Zc

» which shows that f(z = 0) is weakly dependent on H as long as o > 1
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Non-linear cosmic ray transport
Skilling71, Wentzel74

» CR energy density is ~ 1 eV/cm73 is comparable to starlight, turbulent gas
motions and magnetic fields.

» In these conditions, low energy can self-generate the turbulence for their scattering
(notice that self-generated waves are with k ~ r;)

» Waves are amplified by CRs through streaming instability:

ro 1670w “( )g
T3 wneg [P ez,

and are damped by wave-wave interactions that lead the development of a

turbulent cascade:
D

k2
> What is the typical scale/energy up to which self-generated turbulence is dominant?

Mg = = (2ck) " Pkva(kW)/?
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Non-linear cosmic ray transport
Blasi, Amato & Serpico, PRL, 2012

Transition occurs at scale where external turbulence (e.g., from SNe) equals in energy
density the self-generated turbulence

Wext(ktr) == WCR(ktr)

where Wcr corresponds to Ncr =g
Assumptions:

» Quasi-linear theory applies

» The external turbulence has a Kolmogorov spectrum
» Main source of damping is non-linear damping
>

Diffusion in external turbulence explains high-energy flux with SNR efficiency of
€~ 10%

— 3/2(79_4)
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Non-linear cosmic ray transport: a global picture

Evoli et al., 2018, PRL
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Figure: Turbulence spectrum without (dotted) and with (solid) CR self-generated waves
at different distance from the galactic plane.
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Non-linear cosmic ray transport: a global picture
Evoli et al., 2018, PRL
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Figure: The normalized turbulent magnetic field kW(k) in the halo without (left) and
with (right) CR self-generation.
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Non-linear cosmic ray transport: a global picture
Evoli et al., 2018, PRL
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Conclusions

> Recent findings by PAMELA and AMS-02 (breaks in the spectra of primaries,
high-energy B/C, flat anti-protons, rising positron fraction) are challenging
the standard scenario of CR propagation (— Philipp’s talk).

> | present a model in which SNRs inject: a) turbulence at a given scale with
efficiency €, ~ 10™* and b) cosmic-rays with a single power-law and
ecr ~ 1071, The turbulent halo and the change of slope at ~300 GV are
obtained self-consistently.

> At some level, non-linearities should play a role for propagation (as they do
for acceleration). In our model, they allow to reproduce local observables
(primary spectra) without ad hoc breaks.

» These models enable us a deeper understanding of the interplay between CR,
magnetic turbulence and ISM in our Galaxy.
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