On the origin of the cosmic-ray halo

Carmelo Evoli

Gran Sasso Science Institute (Italy)

CRISM @ Grenoble

based on: C. Evoli, R. Aloisio, P. Blasi and G. Morlino, 2018, PRL arXiv:1806.04153

The diffusive paradigm of galactic CRs

The ratio of boron and carbon fluxes provides us with the best estimates of the time spent by CRs in the Galaxy before escaping.

The diffusive paradigm of galactic CRs

▶ The grammage traversed by CRs is related to the escape time:

$$X(E) = \bar{n}\mu v \tau_{\rm esc}(E)$$

▶ if we assume that the gas is concentrated in a thin disc, h, and the diffusive halo extends to a height H, the mean density

$$\bar{n} = n_d \frac{h}{H} \sim 0.1 \left(\frac{H}{2 \,\mathrm{kpc}}\right)^{-1} \mathrm{cm}^{-3}$$

the typical escape time is

$$au_{
m esc}\sim 50\left(rac{H}{2\,{
m kpc}}
ight){
m Myr}$$

The diffusive paradigm of galactic CRs

Strong et al., 2007, Annu. Rev. Nucl. Part. Sci.

The observed fraction of unstable isotopes which live long enough, e.g. Be¹⁰ ($\tau \sim 1.4$ Myr), can be used to derive $H \gtrsim 2$ kpc

< 🗇 🕨

The radio halo in external galaxies Credit: MPIfR Bonn

Total radio emission of edge-on galaxy NGC891, observed at 3.6 cm wavelength with the Effelsberg telescope

Total radio intensity of edge-on galaxy NGC 5775, combined from observations at 3.6 cm wavelength with the VLA and Effelsberg telescopes

Image: A match a ma

The γ -halo in our Galaxy Tibaldo et al., 2015, ApJ

- Using high-velocity clouds to measure the emissivity per atom as a function of z (proportional to CR density)
- ▶ Indication of a halo with $H \gtrsim$ few kpc

< □ > < ^[] >

The interstellar turbulence

- > Turbulence is stirred by Supernovae at a typical scale $L \sim 10 100$ pc
- Fluctuations of velocity and magnetic field are Alfvénic (moving at v_A)
- They have a Kolmogorov $k^{-5/3}$ spectrum (density is a passive tracer so it has the same spectrum: $\delta n_e \sim \delta B^2$):

$$W(k)dk \equiv \frac{\langle \delta B \rangle^2(k)}{B_0^2} = \frac{2}{3} \frac{\eta_B}{k_0} \left(\frac{k}{k_0}\right)^{-5/3}$$

• where $k_0 = L^{-1}$ and the level of turbulence is

$$\eta_B = \int_{k_0}^{\infty} dk \ W(k) \sim 0.1 \div 0.01$$

Charged particle in a turbulent field: QLT

- The turbulent field amplitude is a small fluctuation with respect to the regular component
- ▶ Resonant interaction wave-particle: $k_{res}^{-1} \sim r_L(p)$
- It follows:

$$D_{\rm zz}(p) = \frac{vr_L}{3} \frac{1}{k_{\rm res}W(k_{\rm res})} \sim \underbrace{3 \times 10^{27}/\eta_B \, \rm cm^2/s}_{3 \times 10^{28} \, \rm cm^2/s} \left(\frac{p}{\rm GeV/c}\right)^{1/3}$$

Image: A math a math

$$-\frac{\partial}{\partial z}\left(D_{zz}\frac{\partial f_i}{\partial z}\right) + u\frac{\partial f_i}{\partial z} - \frac{du}{dz}\frac{p}{3}\frac{\partial f_i}{\partial p} = Q_{\rm SN} - \frac{1}{p^2}\frac{\partial}{\partial p}\left[p^2\frac{dp}{dt}f_i\right] + Q_{\rm frag/decay}$$

▶ Spatial diffusion: $\vec{\nabla} \cdot \vec{J}$

Image: A math a math

$$-\frac{\partial}{\partial z}\left(D_{\rm zz}\frac{\partial f_i}{\partial z}\right) + u\frac{\partial f_i}{\partial z} - \frac{du}{dz}\frac{p}{3}\frac{\partial f_i}{\partial p} = Q_{\rm SN} - \frac{1}{p^2}\frac{\partial}{\partial p}\left[p^2\frac{dp}{dt}f_i\right] + Q_{\rm frag/decay}$$

- ► Spatial diffusion: $\vec{\nabla} \cdot \vec{J}$
- Advection by Galactic winds/outflows: $u = u_w + v_A \sim v_A$

Image: A math a math

$$-\frac{\partial}{\partial z}\left(D_{\rm zz}\frac{\partial f_i}{\partial z}\right) + u\frac{\partial f_i}{\partial z} - \frac{du}{dz}\frac{p}{3}\frac{\partial f_i}{\partial p} = Q_{\rm SN} - \frac{1}{p^2}\frac{\partial}{\partial p}\left[p^2\frac{dp}{dt}f_i\right] + Q_{\rm frag/decay}$$

- ► Spatial diffusion: $\vec{\nabla} \cdot \vec{J}$
- Advection by Galactic winds/outflows: $u = u_w + v_A \sim v_A$
- Source term proportional to Galactic SN profile

< 🗇 🕨

$$-\frac{\partial}{\partial z}\left(D_{\rm zz}\frac{\partial f_i}{\partial z}\right) + u\frac{\partial f_i}{\partial z} - \frac{du}{dz}\frac{p}{3}\frac{\partial f_i}{\partial p} = Q_{\rm SN} - \frac{1}{p^2}\frac{\partial}{\partial p}\left[p^2\frac{dp}{dt}f_i\right] + Q_{\rm frag/decay}$$

- ► Spatial diffusion: $\vec{\nabla} \cdot \vec{J}$
- Advection by Galactic winds/outflows: $u = u_w + v_A \sim v_A$
- Source term proportional to Galactic SN profile
- Energy losses: ionization, Bremsstrahlung, IC, Synchrotron, ...

< □ > < ^[] >

$$-\frac{\partial}{\partial z}\left(D_{\rm zz}\frac{\partial f_i}{\partial z}\right) + u\frac{\partial f_i}{\partial z} - \frac{du}{dz}\frac{p}{3}\frac{\partial f_i}{\partial p} = Q_{\rm SN} - \frac{1}{p^2}\frac{\partial}{\partial p}\left[p^2\frac{dp}{dt}f_i\right] + Q_{\rm frag/decay}$$

- ▶ Spatial diffusion: $\vec{\nabla} \cdot \vec{J}$
- Advection by Galactic winds/outflows: $u = u_w + v_A \sim v_A$
- Source term proportional to Galactic SN profile
- Energy losses: ionization, Bremsstrahlung, IC, Synchrotron, ...
- Production/destruction of nuclei due to inelastic scattering or decay

< 🗇 🕨

Predictions of the halo model

For a primary CR species (e.g., H, C, O) at energies where I can ignore losses and advection, the transport equation can be simplified as:

$$-\frac{\partial}{\partial z}\left[D\frac{\partial f}{\partial z}\right] = Q_0(p)\delta(z)$$

For $z \neq 0$ one has:

$$Drac{\partial f}{\partial z} = ext{constant} o f(z) = f_0\left(1-rac{|z|}{H}
ight)$$

where I used the definition of a halo: $f(z = \pm H) = 0$.

▶ The typical solution on the plane gives:

$$f_0(p) = rac{Q_0(p)}{2\pi R_{
m d}^2} rac{H}{D(p)} \sim p^{-\gamma-\delta}$$

C. Evoli (GSSI)

The H and He hardening

Adriani et al., Science, 2011; Aguilar et al., PRL, 2015

By solving the transport equation we obtain a featureless (up to the knee) propagated spectrum for primaries, at the odds with observations.

What is missing in our physical picture?

C. Evoli (GSSI)

< 🗇 🕨

The halo size H

- Assuming $f(z = \pm H) = 0$ reflects the requirement of lack of diffusion (infinite diffusion coefficient)
- May be because B → 0, or because turbulence vanishes (in both cases D cannot be spatially constant!)
- Vanishing turbulence may reflect the lack of sources
- Can be H dependent on p?
- ▶ What is the physical meaning of *H*?

Jones, ApJ 413, 619 (1993)

$$\frac{\partial W}{\partial t} = \frac{\partial}{\partial k} \left[D_{kk} \frac{\partial W}{\partial k} \right] + \frac{\partial}{\partial z} \left(v_A W \right) + \Gamma_{\rm CR} W + Q(k)$$

• Diffusion in k-space (non-linear): $D_{kk} = c_k |v_A| k^{7/2} W^{1/2}$

・ロト ・回ト ・ヨト

Jones, ApJ 413, 619 (1993)

$$\frac{\partial W}{\partial t} = \frac{\partial}{\partial k} \left[D_{kk} \frac{\partial W}{\partial k} \right] + \frac{\partial}{\partial z} \left(v_A W \right) + \Gamma_{\rm CR} W + Q(k)$$

- ▶ Diffusion in *k*-space (non-linear): $D_{kk} = c_k |v_A| k^{7/2} W^{1/2}$
- Advection of the Alfvén waves

Jones, ApJ 413, 619 (1993)

$$\frac{\partial W}{\partial t} = \frac{\partial}{\partial k} \left[D_{kk} \frac{\partial W}{\partial k} \right] + \frac{\partial}{\partial z} \left(v_A W \right) + \Gamma_{\rm CR} W + Q(k)$$

- ▶ Diffusion in *k*-space (non-linear): $D_{kk} = c_k |v_A| k^{7/2} W^{1/2}$
- Advection of the Alfvén waves
- ▶ Waves growth due to cosmic-ray streaming: $\Gamma_{\rm CR} \propto \partial f / \partial z$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Jones, ApJ 413, 619 (1993)

$$\frac{\partial W}{\partial t} = \frac{\partial}{\partial k} \left[D_{kk} \frac{\partial W}{\partial k} \right] + \frac{\partial}{\partial z} \left(v_A W \right) + \Gamma_{\rm CR} W + Q(k)$$

- ► Diffusion in *k*-space (non-linear): $D_{kk} = c_k |v_A| k^{7/2} W^{1/2}$
- Advection of the Alfvén waves
- ► Waves growth due to cosmic-ray streaming: $\Gamma_{\rm CR} \propto \partial f / \partial z$
- External (e.g., SNe) source term $Q \sim \delta(z)\delta(k-k_0)$

Jones, ApJ 413, 619 (1993)

$$\frac{\partial W}{\partial t} = \frac{\partial}{\partial k} \left[D_{kk} \frac{\partial W}{\partial k} \right] + \frac{\partial}{\partial z} \left(v_A W \right) + \Gamma_{\rm CR} W + Q(k)$$

- ► Diffusion in *k*-space (non-linear): $D_{kk} = c_k |v_A| k^{7/2} W^{1/2}$
- Advection of the Alfvén waves
- ► Waves growth due to cosmic-ray streaming: $\Gamma_{\rm CR} \propto \partial f / \partial z$
- External (e.g., SNe) source term $Q \sim \delta(z)\delta(k-k_0)$
- ▶ In the absence of CRs ($\Gamma_{\rm CR} \rightarrow 0$), it returns a kolmogorov spectrum: $W(k) \sim k^{-5/3}$

< ロ > < 同 > < 回 > < 回 > < 回

The turbulent halo

Evoli et al., 2018, PRL

$$\tau_{\text{cascade}} = \tau_{\text{adv}} \rightarrow \frac{k_0^2}{D_{kk}} = \frac{z_c}{v_A}$$

$$\Downarrow$$

$$z_c \sim \mathcal{O}(\text{kpc})$$

z_c set the distance at which turbulence start cascading.

The turbulent halo

Evoli et al., 2018, PRL

The turbulent halo

Assuming now a power-law diffusion coefficient $D(z) = D_0(z/z_c)^{\alpha}$ for $z > z_c$:

$$-\frac{\partial}{\partial z}\left[D_0\left(\frac{z}{z_c}\right)^{\alpha}\frac{\partial f}{\partial z}\right] = Q_0(p)\delta(z)$$

it implies that the density on the disk is:

$$f_0 \propto 1 - \left(rac{H}{z_c}
ight)^{-lpha+1}$$

▶ which shows that f(z = 0) is weakly dependent on H as long as $\alpha > 1$

Non-linear cosmic ray transport

Skilling71, Wentzel74

- ► CR energy density is ~ 1 eV/cm⁻³ is comparable to starlight, turbulent gas motions and magnetic fields.
- ▶ In these conditions, low energy can self-generate the turbulence for their scattering (notice that self-generated waves are with $k \sim r_L$)
- Waves are amplified by CRs through streaming instability:

$$\Gamma_{\rm CR} = \frac{16\pi^2}{3} \frac{v_A}{kW(k)B_0^2} \left[p^4 v(p) \frac{\partial f}{\partial z} \right]_{p_{\rm res}}$$

and are damped by wave-wave interactions that lead the development of a turbulent cascade:

$$\Gamma_{\rm d} = \frac{D_{\rm kk}}{k^2} = (2c_k)^{-3/2} k v_A (kW)^{1/2}$$

What is the typical scale/energy up to which self-generated turbulence is dominant?

イロト イポト イヨト イヨ

Non-linear cosmic ray transport

Blasi, Amato & Serpico, PRL, 2012

Transition occurs at scale where external turbulence (e.g., from SNe) equals in energy density the self-generated turbulence

$$W_{
m ext}(k_{
m tr}) = W_{
m CR}(k_{
m tr})$$

where $W_{\rm CR}$ corresponds to $\Gamma_{\rm CR} = \Gamma_{\rm d}$ Assumptions:

- ▶ Quasi-linear theory applies
- ▶ The external turbulence has a Kolmogorov spectrum
- Main source of damping is non-linear damping
- \blacktriangleright Diffusion in external turbulence explains high-energy flux with SNR efficiency of $\epsilon\sim 10\%$

$$E_{\rm tr} = 228 \, {\rm GeV} \, \left(\frac{R_{d,10}^2 H_3^{-1/3}}{\epsilon_{0.1} E_{51} \mathcal{R}_{30}} \right)^{3/2(\gamma_p - 4)} B_{0,\mu}^{(2\gamma_p - 5)/2(\gamma_p - 4)}$$

C. Evoli (GSSI)

Image: A mathematical states and a mathem

Non-linear cosmic ray transport: a global picture Evoli et al., 2018, PRL

Figure: Turbulence spectrum without (dotted) and with (solid) CR self-generated waves at different distance from the galactic plane.

Non-linear cosmic ray transport: a global picture Evoli et al., 2018, PRL

Figure: The normalized turbulent magnetic field kW(k) in the halo without (left) and with (right) CR self-generation.

Non-linear cosmic ray transport: a global picture Evoli et al., 2018, PRL

Conclusions

- ► Recent findings by PAMELA and AMS-02 (breaks in the spectra of primaries, high-energy B/C, flat anti-protons, rising positron fraction) are challenging the standard scenario of CR propagation (→ Philipp's talk).
- ▶ I present a model in which SNRs inject: a) turbulence at a given scale with efficiency $\epsilon_{\rm w} \sim 10^{-4}$ and b) cosmic-rays with a single power-law and $\epsilon_{\rm CR} \sim 10^{-1}$. The turbulent halo and the change of slope at ~300 GV are obtained self-consistently.
- At some level, non-linearities should play a role for propagation (as they do for acceleration). In our model, they allow to reproduce local observables (primary spectra) without ad hoc breaks.
- These models enable us a deeper understanding of the interplay between CR, magnetic turbulence and ISM in our Galaxy.

イロト イヨト イヨト イヨト