On the origin of the cosmic-ray halo

Carmelo Evoli

Gran Sasso Science Institute (Italy)

CRISM @ Grenoble

based on: C. Evoli, R. Aloisio, P. Blasi and G. Morlino, 2018, PRL arXiv:1806.04153

← ロ ▶ → イ 同

The diffusive paradigm of galactic CRs

The ratio of boron and carbon fluxes provides us with the best estimates of the time spent by CRs in the Galaxy before escaping.

4 0 F → 母

The diffusive paradigm of galactic CRs

 \triangleright The grammage traversed by CRs is related to the escape time:

$$
X(E)=\bar{n}\mu v\tau_{\rm esc}(E)
$$

if we assume that the gas is concentrated in a thin disc, h , and the diffusive halo extends to a height H , the mean density

$$
\bar{n} = n_d \frac{h}{H} \sim 0.1 \left(\frac{H}{2 \,\mathrm{kpc}}\right)^{-1} \mathrm{cm}^{-3}
$$

 \blacktriangleright the typical escape time is

$$
\tau_{\rm esc} \sim 50 \left(\frac{H}{2 \, \text{kpc}} \right) \text{Myr}
$$

← ロ ▶ → イ 同 →

The diffusive paradigm of galactic CRs α be combined with stability stable stability stability stability stability α $\Gamma_{\rm tr}$ h_{\circ}

Strong et al., 2007, Annu. Rev. Nucl. Part. Sci.

The observed fraction of unstable isotopes which live long enough, e.g. Be¹⁰ $(\tau \sim 1.4 \text{ Myr})$, can be used to derive $H \gtrsim 2 \text{ kpc}$

4 0 F → 何 ▶ つへへ

The radio halo in external galaxies Credit: MPIfR Bonn

Total radio emission of edge-on galaxy NGC891, observed at 3.6 cm wavelength with the Effelsberg telescope

Total radio intensity of edge-on galaxy NGC 5775, combined from observations at 3.6 cm wavelength with the VLA and Effelsberg telescopes

K ロ ト K 伊 ト K

The γ -halo in our Galaxy Tibaldo et al., 2015, ApJ

- Using high-velocity clouds to measure the emissivity per atom as a function of z (proportional to CR density)
- Indication of a halo with $H \gtrsim$ few kpc

4 0 F

同

The interstellar turbulence

- \blacktriangleright Turbulence is stirred by Supernovae at a typical scale $L \sim 10 - 100$ pc
- \blacktriangleright Fluctuations of velocity and magnetic field are Alfvénic (moving at v_A)
- ▶ They have a Kolmogorov $k^{-5/3}$ spectrum (density is a passive tracer so it has the same spectrum: $\delta n_e \sim \delta B^2$):

$$
W(k)dk \equiv \frac{\langle \delta B \rangle^2(k)}{B_0^2} = \frac{2}{3} \frac{\eta_B}{k_0} \left(\frac{k}{k_0}\right)^{-5/3}
$$

ighthrow where $k_0 = L^{-1}$ and the *level of turbulence* is

$$
\eta_B = \int_{k_0}^{\infty} dk W(k) \sim 0.1 \div 0.01
$$

Charged particle in a turbulent field: QLT

- \triangleright The turbulent field amplitude is a small fluctuation with respect to the regular component
- ► Resonant interaction wave-particle: $k_{\text{res}}^{-1} \sim r_L(\rho)$
- It follows:

$$
D_{\rm zz}(p) = \frac{\nu r_L}{3}\frac{1}{k_{\rm res}W(k_{\rm res})} \sim \overbrace{3\times 10^{28}\, \text{cm}^2/\text{s}}^{3\times 10^{27}/\eta_B\,\text{cm}^2/\text{s}} \left(\frac{p}{\text{GeV}/\text{c}}\right)^{1/3}
$$

K ロ ▶ K 何 ▶ K

 QQ

$$
-\frac{\partial}{\partial z}\left(D_{zz}\frac{\partial f_i}{\partial z}\right)+u\frac{\partial f_i}{\partial z}-\frac{du}{dz}\frac{\rho}{3}\frac{\partial f_i}{\partial p}=Q_{\rm SN}-\frac{1}{\rho^2}\frac{\partial}{\partial p}\left[p^2\frac{dp}{dt}f_i\right]+Q_{\rm frag/decay}
$$

▶ Spatial diffusion: $\vec{\nabla} \cdot \vec{J}$

(ロ) (d)

$$
-\frac{\partial}{\partial z}\left(D_{zz}\frac{\partial f_i}{\partial z}\right)+u\frac{\partial f_i}{\partial z}-\frac{du}{dz}\frac{p}{3}\frac{\partial f_i}{\partial p}=Q_{\rm SN}-\frac{1}{p^2}\frac{\partial}{\partial p}\left[p^2\frac{dp}{dt}f_i\right]+Q_{\rm frag/decay}
$$

- ▶ Spatial diffusion: $\vec{\nabla} \cdot \vec{J}$
- \triangleright Advection by Galactic winds/outflows: $u = u_w + v_A \sim v_A$

4 0 F → 母→

$$
-\frac{\partial}{\partial z}\left(D_{zz}\frac{\partial f_i}{\partial z}\right)+u\frac{\partial f_i}{\partial z}-\frac{du}{dz}\frac{p}{3}\frac{\partial f_i}{\partial p}=Q_{\rm SN}-\frac{1}{p^2}\frac{\partial}{\partial p}\left[p^2\frac{dp}{dt}f_i\right]+Q_{\rm frag/decay}
$$

- ▶ Spatial diffusion: $\vec{\nabla} \cdot \vec{J}$
- Advection by Galactic winds/outflows: $u = u_w + v_A \sim v_A$
- \triangleright Source term proportional to Galactic SN profile

4 0 F → 母 QQ

$$
-\frac{\partial}{\partial z}\left(D_{zz}\frac{\partial f_i}{\partial z}\right)+u\frac{\partial f_i}{\partial z}-\frac{du}{dz}\frac{p}{3}\frac{\partial f_i}{\partial p}=Q_{\rm SN}-\frac{1}{p^2}\frac{\partial}{\partial p}\left[p^2\frac{dp}{dt}f_i\right]+Q_{\rm frag/decay}
$$

- ▶ Spatial diffusion: $\vec{\nabla} \cdot \vec{J}$
- \triangleright Advection by Galactic winds/outflows: $u = u_w + v_A \sim v_A$
- \triangleright Source term proportional to Galactic SN profile
- \blacktriangleright Energy losses: ionization, Bremsstrahlung, IC, Synchrotron, ...

4 0 F → 母→

$$
-\frac{\partial}{\partial z}\left(D_{zz}\frac{\partial f_i}{\partial z}\right)+u\frac{\partial f_i}{\partial z}-\frac{du}{dz}\frac{p}{3}\frac{\partial f_i}{\partial p}=Q_{\rm SN}-\frac{1}{p^2}\frac{\partial}{\partial p}\left[p^2\frac{dp}{dt}f_i\right]+Q_{\rm frag/decay}
$$

- Spatial diffusion: $\vec{\nabla} \cdot \vec{J}$
- Advection by Galactic winds/outflows: $u = u_w + v_A \sim v_A$
- \triangleright Source term proportional to Galactic SN profile
- Energy losses: ionization, Bremsstrahlung, IC, Synchrotron, ...
- \triangleright Production/destruction of nuclei due to inelastic scattering or decay

4 0 F

Predictions of the halo model

▶ For a primary CR species (e.g., H, C, O) at energies where I can ignore losses and advection, the transport equation can be simplified as:

$$
-\frac{\partial}{\partial z}\left[D\frac{\partial f}{\partial z}\right]=Q_0(p)\delta(z)
$$

For $z \neq 0$ one has:

$$
D\frac{\partial f}{\partial z} = \text{constant} \to f(z) = f_0 \left(1 - \frac{|z|}{H}\right)
$$

where I used the definition of a *halo*: $f(z = \pm H) = 0$.

 \blacktriangleright The typical solution on the plane gives:

$$
f_0(\rho) = \frac{Q_0(\rho)}{2\pi R_\mathrm{d}^2} \frac{H}{D(\rho)} \sim \rho^{-\gamma-\delta}
$$

←ロ ▶ → 何 ▶

The H and He hardening

Adriani et al., Science, 2011; Aguilar et al., PRL, 2015

By solving the transport equation we obtain a featureless (up to the knee) propagated spectrum for primaries, at the odds with observations.

What is missing in our physical picture?

4 0 F

 QQ

The halo size H

- **If** Assuming $f(z = \pm H) = 0$ reflects the requirement of lack of diffusion (infinite diffusion coefficient)
- ► May be because $B \to 0$, or because turbulence vanishes (in both cases D cannot be spatially constant!)
- \blacktriangleright Vanishing turbulence may reflect the lack of sources
- \blacktriangleright Can be H dependent on p?
- \triangleright What is the physical meaning of H?

 Ω

K ロ ▶ K 何 ▶ K 手

Jones, ApJ 413, 619 (1993)

$$
\frac{\partial W}{\partial t} = \frac{\partial}{\partial k} \left[D_{kk} \frac{\partial W}{\partial k} \right] + \frac{\partial}{\partial z} \left(v_A W \right) + \Gamma_{\text{CR}} W + Q(k)
$$

Diffusion in *k*-space (non-linear): $D_{kk} = c_k |v_A| k^{7/2} W^{1/2}$

K ロト K 倒 ト K ミト

 QQ

Jones, ApJ 413, 619 (1993)

$$
\frac{\partial W}{\partial t} = \frac{\partial}{\partial k} \left[D_{kk} \frac{\partial W}{\partial k} \right] + \frac{\partial}{\partial z} \left(v_A W \right) + \Gamma_{\text{CR}} W + Q(k)
$$

- Diffusion in *k*-space (non-linear): $D_{kk} = c_k |v_A| k^{7/2} W^{1/2}$
- \blacktriangleright Advection of the Alfvén waves

K ロ ト K 何 ト K 手

Jones, ApJ 413, 619 (1993)

$$
\frac{\partial W}{\partial t} = \frac{\partial}{\partial k} \left[D_{kk} \frac{\partial W}{\partial k} \right] + \frac{\partial}{\partial z} \left(v_A W \right) + \Gamma_{\text{CR}} W + Q(k)
$$

- Diffusion in *k*-space (non-linear): $D_{kk} = c_k |v_A| k^{7/2} W^{1/2}$
- \blacktriangleright Advection of the Alfvén waves
- \triangleright Waves growth due to cosmic-ray streaming: $\Gamma_{CR} \propto \partial f / \partial z$

 Ω

K ロ ト K 何 ト K 手

Jones, ApJ 413, 619 (1993)

$$
\frac{\partial W}{\partial t} = \frac{\partial}{\partial k} \left[D_{kk} \frac{\partial W}{\partial k} \right] + \frac{\partial}{\partial z} \left(v_A W \right) + \Gamma_{\text{CR}} W + Q(k)
$$

- Diffusion in *k*-space (non-linear): $D_{kk} = c_k |v_A| k^{7/2} W^{1/2}$
- \blacktriangleright Advection of the Alfvén waves
- \triangleright Waves growth due to cosmic-ray streaming: $\Gamma_{CR} \propto \partial f / \partial z$
- \triangleright External (e.g., SNe) source term $Q \sim \delta(z)\delta(k k_0)$

 Ω

イロト イ母ト イヨト

Jones, ApJ 413, 619 (1993)

$$
\frac{\partial W}{\partial t} = \frac{\partial}{\partial k} \left[D_{kk} \frac{\partial W}{\partial k} \right] + \frac{\partial}{\partial z} \left(v_A W \right) + \Gamma_{\text{CR}} W + Q(k)
$$

- Diffusion in *k*-space (non-linear): $D_{kk} = c_k |v_A| k^{7/2} W^{1/2}$
- Advection of the Alfvén waves
- \triangleright Waves growth due to cosmic-ray streaming: $\Gamma_{CR} \propto \partial f / \partial z$
- ► External (e.g., SNe) source term $Q \sim \delta(z) \delta(k k_0)$
- In the absence of CRs ($\Gamma_{CR} \rightarrow 0$), it returns a kolmogorov spectrum: $W(k) \sim k^{-5/3}$

 Ω

メロト メ都 トメ ヨ トメ

The turbulent halo

Evoli et al., 2018, PRL

$$
\tau_{\text{cascade}} = \tau_{\text{adv}} \rightarrow \frac{k_0^2}{D_{kk}} = \frac{z_c}{v_A}
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
z_c \sim \mathcal{O}(\text{kpc})
$$

 \blacktriangleright z_c set the distance at which turbulence start cascading.

> \leftarrow \Box \rightarrow -4 向

The turbulent halo

Evoli et al., 2018, PRL

 \leftarrow \Box \rightarrow

The turbulent halo

Assuming now a power-law diffusion coefficient $D(z) = D_0(z/z_c)^\alpha$ for $z > z_c$:

$$
-\frac{\partial}{\partial z}\left[D_0\left(\frac{z}{z_c}\right)^{\alpha}\frac{\partial f}{\partial z}\right]=Q_0(p)\delta(z)
$$

 \triangleright it implies that the density on the disk is:

$$
f_0 \propto 1 - \left(\frac{H}{z_c}\right)^{-\alpha+1}
$$

ightharpoonup which shows that $f(z = 0)$ is weakly dependent on H as long as $\alpha > 1$

 Ω

K ロ ⊁ K 倒 ≯ K ミ ≯ K

Non-linear cosmic ray transport

Skilling71, Wentzel74

- ▶ CR energy density is ~ 1 eV/cm $^{-3}$ is comparable to starlight, turbulent gas motions and magnetic fields.
- In these conditions, low energy can self-generate the turbulence for their scattering (notice that self-generated waves are with $k \sim r_L$)
- \triangleright Waves are amplified by CRs through streaming instability:

$$
\Gamma_{\rm CR} = \frac{16\pi^2}{3} \frac{v_A}{kW(k)B_0^2} \left[p^4 v(p) \frac{\partial f}{\partial z} \right]_{p_{\rm res}}
$$

and are damped by wave-wave interactions that lead the development of a turbulent cascade:

$$
\Gamma_{\rm d}=\frac{D_{\rm kk}}{k^2}=(2c_k)^{-3/2}kv_A(kW)^{1/2}
$$

What is the typical scale/energy up to which self-generated turbulence is dominant?

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

Non-linear cosmic ray transport

Blasi, Amato & Serpico, PRL, 2012

Transition occurs at scale where external turbulence (e.g., from SNe) equals in energy density the self-generated turbulence

$$
W_{\rm ext}(k_{\rm tr})=W_{\rm CR}(k_{\rm tr})
$$

where W_{CR} corresponds to $\Gamma_{\text{CR}} = \Gamma_{\text{d}}$ Assumptions:

- \blacktriangleright Quasi-linear theory applies
- \blacktriangleright The external turbulence has a Kolmogorov spectrum
- \triangleright Main source of damping is non-linear damping
- Diffusion in external turbulence explains high-energy flux with SNR efficiency of $\epsilon \sim 10\%$

$$
E_{\rm tr}=228\,\text{GeV}\,\left(\frac{R_{d,10}^2H_3^{-1/3}}{\epsilon_{0.1}E_{51}\mathcal{R}_{30}}\right)^{3/2(\gamma_p-4)}\,B_{0,\mu}^{(2\gamma_p-5)/2(\gamma_p-4)}
$$

←ロ ▶ → 何 ▶

Non-linear cosmic ray transport: a global picture Evoli et al., 2018, PRL

Figure: Turbulence spectrum without (dotted) and with (solid) CR self-generated waves at different distance from the galactic plane.

4 D F 4 @

Non-linear cosmic ray transport: a global picture Evoli et al., 2018, PRL

Figure: The normalized turbulent magnetic field $kW(k)$ in the halo without (left) and with (right) CR self-generation.

4 D F

Non-linear cosmic ray transport: a global picture Evoli et al., 2018, PRL

4 D F

つへへ

Conclusions

- \triangleright Recent findings by PAMELA and AMS-02 (breaks in the spectra of primaries, high-energy B/C, flat anti-protons, rising positron fraction) are challenging the standard scenario of CR propagation (\rightarrow Philipp's talk).
- I present a model in which SNRs inject: a) turbulence at a given scale with efficiency $\epsilon_{\rm w} \sim 10^{-4}$ and b) cosmic-rays with a single power-law and $\epsilon_\mathrm{CR}\sim 10^{-1}$. The turbulent halo and the change of slope at \sim 300 GV are obtained self-consistently.
- \triangleright At some level, non-linearities should play a role for propagation (as they do for acceleration). In our model, they allow to reproduce local observables (primary spectra) without ad hoc breaks.
- \triangleright These models enable us a deeper understanding of the interplay between CR, magnetic turbulence and ISM in our Galaxy.

イロト イ部 トメ ヨト メモト