

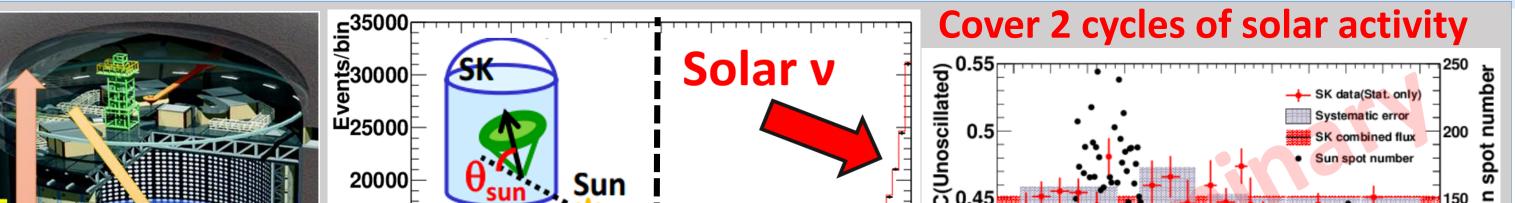
1. Introduction

- **Standard Solar Model (SSM)** [1].
- The SSM has been constructed by inputting several observation results assuming: (1) Spherically symmetric,
 - (2) Hydrostatic equilibrium with no macroscopic motion except for the convection,
 - (3) No mass loss, no mass accretion, no rotation and no magnetic field.
- The model well predicts the production and energy spectrum of solar neutrinos.
- Periodic variations in the Sun.
- 11-years periodic change of the sunspot at the surface. This leads to the change of the magnetic field.
 - \rightarrow Some mechanisms propose conversions of neutrino ($v_L \rightarrow v_R$) if neutrino has a large magnetic moment [3-5].

- Solar oscillations around its equilibrium state because of the Sun's restoring force [6].

→ Acoustic oscillation (p-mode) due to compressibility [7-9] or gravity oscillation (g-mode) due to buoyancy [10].

2. G-mode oscillation and neutrino


- Introduction about g-mode oscillations [11, 12].
- G-mode oscillations are described as spherical harmonics function.
- They may affect both electron density and temperature in the core of the Sun.
- These modes have not been detected because their amplitudes are low at the surface.
- Typical frequencies are about a few hours (~100-300 μHz) [11].
- ⁸B neutrino production rate.
- G-modes are trapped under the convective zone, where ⁸B solar neutrino produced.
- Production rate depends on temperature. It is proportional to T^{24-25} (T~10⁶ K) [13].
- \rightarrow Its production rate is amplified by a factor of 170 [14].
- \rightarrow It may affect the propagation of solar v, MSW effect [15, 16], thus survival probability of ve [12].
- 3. Super-Kamiokande & Methods

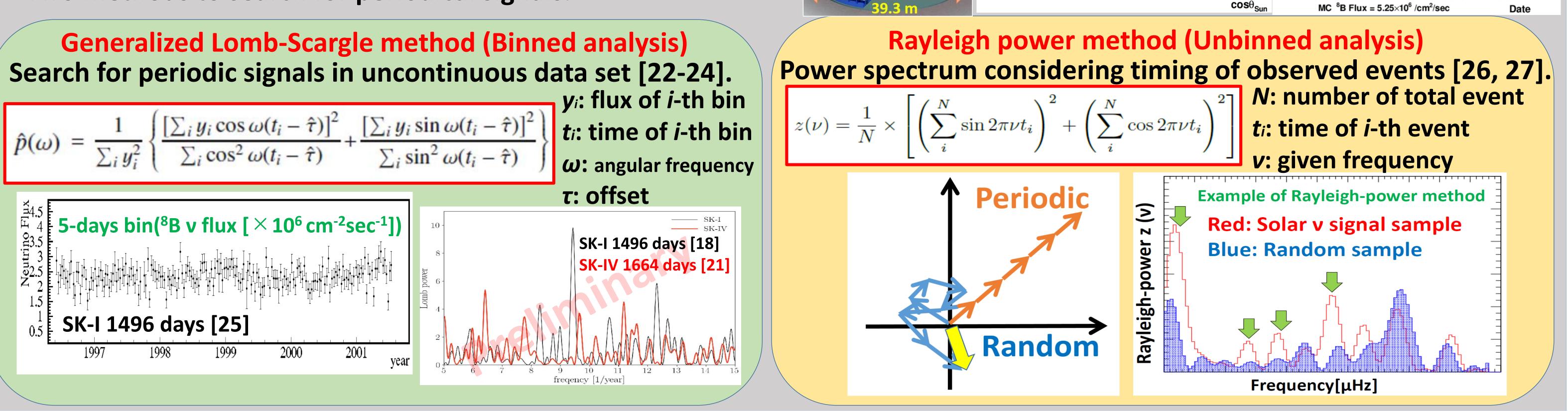
Super-Kamiokande [17] and solar neutrino observation [18-21]

	Ref.	[11]	ν (μHz)	Period (hr)	Energy ^a (ergs)	$\delta T/T^{a}$
•	1 1 1 2 2 2 3 3 4 4 4 4	1 2 3 1 2 3 1 2 3 1 2 3	267.4 297.1 340.2 193.0 259.7 299.2 153.7 224.0 264.7 128.3 195.5 240.5	1.04 0.94 0.82 1.44 1.07 0.93 1.81 1.24 1.05 2.17 1.42 1.15	$\begin{array}{c} 3.4 \times 10^{31} \\ 2.1 \times 10^{31} \\ 4.3 \times 10^{31} \\ 1.3 \times 10^{33} \\ 3.7 \times 10^{31} \\ 4.4 \times 10^{31} \\ 1.7 \times 10^{33} \\ 8.7 \times 10^{31} \\ 3.3 \times 10^{31} \\ 1.7 \times 10^{33} \\ 1.6 \times 10^{32} \\ 2.9 \times 10^{31} \end{array}$	$\begin{array}{r} 6.7 \times 10^{-8} \\ 4.4 \times 10^{-8} \\ 7.7 \times 10^{-8} \\ 4.6 \times 10^{-7} \\ 7.2 \times 10^{-8} \\ 8.8 \times 10^{-8} \\ 6.9 \times 10^{-7} \\ 1.3 \times 10^{-7} \\ 8.1 \times 10^{-8} \\ 7.4 \times 10^{-7} \\ 2.0 \times 10^{-7} \\ 7.4 \times 10^{-8} \end{array}$
	5 5	2	109.9 171.8	2.53 1.62	1.7×10^{33} 3.1×10^{32}	8.7×10^{-7} 3.1×10^{-7}
	5	3	218.9	1.02	6.8×10^{31}	1.3×10^{-7}
	•					

* Normalized to a velocity of 1 cm s⁻¹ at the solar surface.

0.4

Background


-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

15000

10000

5000

- Cherenkov light produced via v e elastic scattering.
- \rightarrow Recoil electrons preserve the direction of incident neutrinos.
- Two methods to search for periodical signals.

4. Progress, Future prospect and Summary

Progress and future prospects

- Dead-time due to calibrations affects the sensitivity in Rayleigh power method.
- We have started to develop a randomly timed MC simulation considering operation-time/dead-time of SK.
- We will open the data soon after the MC production and compare with the former results from SNO collaboration [28-30]. **Summary**
- The SSM has been constructed for 50 years. However, the Sun oscillates around its equilibrium such as p-mode or g-mode.
- G-mode oscillation may amplify the solar v production rate by a factor of 170 because of fluctuation of electron density.
- SK has a chance to search for g-mode oscillations by using its timing information of the observed solar v.

Reference: [1] Rev. Mod. Phys. 60 (1988) 297. [2] Astrophys. J. 765 (2013) 14. [3] Astrophys. Spa. Sci. 10 (1971) 87. [4] Phys. Rev. Lett. 45 (1980) 963. [5] Sov. Phys. JETP 64 (1986) 446. [6] Mon. Not. R. Astron. Soc. 101 (1941) 367. [7] Astrophys. J. 135 (1962) 474. [8] Astrophys. J. 162 (1970) 993. [9] Solar Phys. 44 (1975) 371. [10] Astrophys. J. 613 (2004) L169. [11] Astrophys. J. 409 (1993) L73. [12] Astrophys. J. 588 (2003) L65. [13] Phys. Rev. D 53 (1996) 4202. [14] Astrophys. J. Lett. 792 (2014) L35. [15] Sov. J. Nucl. Phys. 42 (1985) 913. [16] Phys. Rev. D 17 (1978) 2369. [17] Nucl. Inst. Meth. A 501 (2003) 418. [18] Phys. Rev. D 73 (2006) 112001. [19] Phys. Rev. D 78 (2008) 032002 [20] Phys. Rev. D 83 (2011) 052010. [21] Phys. Rev. D 94 (2016) 052010. [22] Astrophys. Spa. Sci. 49 (1976) 447. [23] Astrophys. J. 263 (1982) 835. [24] A&A 496 (2009) 577. [25] Phys. Rev. D 68 (2003) 092002. [26] Astrophys. J 397 (1992) 584. [27] Mon. Not. R. Astron. Soc. 268 (1994) 709. [28] Astrophys. J. 710 (2010) 540. [29] Phys. Rev. D 72 (2005) 052010. [30] Phys. Rev. D 75 (2007) 013010.