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0νββ: 136Xe→ 136Ba++ + 2e−

The NEXT (Neutrino Experiment with a Xenon TPC) experiment will search for neutrinoless double-beta (0νββ) decay in 136Xe with a high pressure
xenon gas time projection chamber (TPC). Two principle advantages of the NEXT approach are excellent energy resolution and topology-based event
classification. We describe initial results from the first phase of the experiment, the detector NEXT-White deployed in the Laboratorio Subterráneo de
Canfranc (LSC) in the Spanish Pyrenees, demonstrating recent progress towards sub-1% energy resolution at the double-beta Q-value. We also present the
results of a topological analysis, using electron-positron pair events in place of the two-electron events expected from 0νββ, which demonstrates how such
events can be distinguished from background (single-electron) events of the same energy through the use of deep neural networks (DNNs).

The NEXT-White Detector

NEXT-White is the
present phase of the
NEXT experiment. It is a
high pressure xenon
electroluminescent (EL)
TPC currently being
calibrated in the LSC that
will serve to measure the
two neutrino double-beta
decay mode (2νββ). It
contains an energy plane
of 12 PMTs, which detect
the primary scintillation
light (S1) produced upon Schematic of the NEXT-White EL TPC

creation of the ionization track and the secondary EL light (S2) produced by accelerating the
ionization electrons through a narrow region of high electric field. A tracking plane of 1792
SiPMs is positioned just behind the EL region to provide information on the (x, y) location
of the detected ionization electrons, which when combined with the drift time (measured
between S1 and S2), gives a 3D reconstruction of the ionization track.
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An example waveform showing primary (S1) and secondary (S2) scintillation
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A full energy spectrum is shown above, with minimal fiducial cuts, as acquired with two
calibration sources: a 137Cs source placed on the side of the TPC and a 228Th source placed
on top. Corrections were applied to remove geometric variations in light collection and
reduction in measured energy due to electron attachment.
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R2  = 0.669%
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Fits were made to key components of the spectrum in selected fiducial regions to determine
the optimal energy resolution at various energies (∼30 keV xenon x-rays, ∼662 keV 137Cs
γ-ray, and ∼1592 keV e+e− pair-production double-escape events from the 208Tl 2615 keV
γ-ray). The resolution degrades at higher energies due to the increasing difficulty to correct
consistently for geometrical variations over long tracks. Despite this, a sub-1% resolution
(FWHM) was obtained when extrapolated to Qββ (assuming a ∼ 1/

√
E dependence).

Deep Neural Networks

Recent developments in machine
learning techniques have given
rise to the ability to train
networks of interconnected
neurons with many layers, or
deep neural networks, to solve
complex problems with
accuracies previously
unattainable by computers.
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SIGNAL BACKGROUND

The NEXT topological signature [1]

0νββ events have a distinct
topological signature - two
electrons emanating from a
common vertex. As an electron
slows down and stops in the xenon
gas, it leaves a region of high
ionization density at the end of its
track. Background events due to
γ-rays will give a track indicative
of a single electron.

A multi-layer convolutional neural
network (CNN) can be trained on
Monte Carlo events to distinguish
between signal and background
events based on their topology
(see [2]). In the present results we
use the Resnet [3] architecture.

e+e− events from the
double-escape peak of 208Tl, which
exhibit a similar track signature to
0νββ decay events, were used to
evaluate the effectiveness of the
neural network on calibration data
from NEXT-White. The obtained
background rejection for a given
signal efficiency was quantified by
varying the threshold of
acceptance of the DNN, fitting the
remaining events to the sum of a
gaussian and an exponential, and
integrating each function over the
energy region of interest. A
correction was made to account
for the fact that some e+e−

events (shaded blue in the MC
spectra at right) fell outside the
peak due to loss or capture of
additional energy. The results
shown are expected to improve at
higher energies (Qββ).
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Signal (s) and background (b) events (before correction):
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