NEXT: Background @ NEXT-White

A. Simón^a, M. Sorel^a, B. Palmerio^a, P. Novella^a, J.J. Gómez-Cadenas^{a,b}, on behalf of the NEXT collaboration ^aInstituto de Física Corpuscular (IFIC), CSIC & Universistat de València; ^bDonostia International Physics Center (DIPC)

The NEXT experiment aims at the sensitive search of the neutrino-less double beta decay of ¹³⁶Xe at the LSC. A large-scale prototype (NEXT-White) is being operated since 2016, proving both the excellent energy resolution and the topological capabilities for background rejection. NEXT-White is currently measuring the backgrounds for the $\beta\beta$ searches. The internal ²²²Rn activity has been estimated and the corresponding extrapolation to the NEXT-100 detector demonstrates that Rn will not be a dominant background. NEXT-100 will thus reach a sensitivity to the $\beta\beta0\nu$ half-life of $6x10^{25}$ y after 3 years of data taking.

Da

Background Model

Rn-induced electron background

• BG rate from selection acceptance and measured Rn activity @ NEXT-White

• Energy estimator combining S1/S2 yields

- ²²²Rn/²¹⁸Po ratio: 68.08±0.25% of ²¹⁸Po ions (plate out on cathode, outside fiducial vol)
- ²²²Rn/²¹⁴Po ratio: ~all ²¹⁴Po decays take place on the cathode (same applies to ²¹⁴Bi)

• Room for improvement: Phys.Lett. B773 (2017) 663-671, JINST 12 (2017) no.01 T01004, Phys.Rev.Lett. 120 (2018) no.13, 132504

European Research Council erc porting top researchers n **anywhere** in the **world**