
Charge-only energy reconstruction [3]

• Energy reconstruction 

using raw charge 

waveforms of all 

charge collection 

(U) wires

• Training on MC events 

(~750,000) with real 

noise including single 

and multiple scatters in 

the LXe against the total 

deposited energy that is 

distributed uniformly in 

energy

• Event image is fed to 

deep convolutional 

neural network

• Energy reconstruction (after 100 epochs)

works w/o energy dependent features

• MC: Energy resolution (σ) at the 
208Tl full absorption peak (2615keV)

DNN: 1.22% (Single Site: 0.94%)

EXO-200 Recon: 1.29% (SS: 1.15%)

• No significant dependence 

on the event position

• Data (not MC): Energy resolution (σ)

at the 208Tl full absorption peak after combining 

with denoised light channel [4]

from EXO-200 reconstruction

DNN: 1.65% (SS: 1.50%)

EXO-200 Recon: 

1.70% (SS: 1.61%)

Neutrinoless Double Beta Decay

• 0𝜈ββ decay is a hypothetical decay forbidden in 

the Standard Model where a nucleus undergoes 

a double beta decay w/o emitting neutrinos

• Only possible in few nuclei,

e.g. 76Ge, 116Cd, 130Te, 136Xe

• Theoretical implications:

- Neutrinos are Majorana particles

- Violation of Lepton number conservation
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Deep Learning

• Machine learning technique based on representation learning via multiple successive layers of units 

with an increasing level of abstraction and complexity

• Many architectures exist each with certain advantages

• Convolutional Neural Networks suited for image recognition by applying a convolution 

operation to the previous layer 

and a receptive field (feature map)

• Training by adjusting the unit weights

• Done by minimizing the discrepancy 

of network output and target value 

via backpropagation

EXO-200 Recent Results (Phase I+ II) [2]

• Background model + data ➝ maximum likelihood fit

• Fit in parallel Energy + SS/MS + BDTSS (15% improvement)

• Combine Phase I + Phase II profiles (total exposure: 177.6 kg yr)

• Sensitivity of 3.7∙1025 yr (90% CL)

• Limit: T1/2 > 1.8∙1025 yr (90% CL)

EXO-200 Experiment [1]

• Located in the Waste Isolation Pilot Plant 

(WIPP), Carlsbad, NM, US

• Detector is a double-sided single phase 

ultra-low-background time projection chamber 

• 175 kg of liquid Xe enriched in 136Xe (~80%)

• Simultaneous detection of scintillation light 

(by APDs) and ionization charge (by crossed 

induction and collection wire grids)

• Complementary energy and full 

3D position reconstruction

• Multi-parameter analysis

Data driven position reconstruction [3]

• Position reconstruction using 

raw light waveforms from 

recombination and excitation

• Approach solely based on 

data without reliance on a 

MC simulation

• Valuable for events with insufficient charge 

collection (i.e. near PTFE reflectors)

• Training on real data waveforms with single 

charge deposits in the detector against the 

position extracted from the ionization signal 

(X-Y) and timing difference of light and charge (Z)

• Events from source calibration 

runs (228Th, 226Ra, 60Co) at 

different source positions

• Event image is fed to deep 

convolutional neural network

• Produce uniform position 

and energy distribution 

of training events (70,000)

• Performance limit is 

charge position resolution 

(σ3D = 3mm)

• Position resolution of 

light channel only

(after 200 epochs): 

σ3D = 24.5mm
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