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 3 

Purpose of document: 4 

This document is intended to document the model structure and user-options available in 5 

package VAST.  For guidance and examples of how to use the model, please see the 6 

Rmarkdown tutorials in the GitHub “/examples” directory.  In the following, I try to use 7 

notation similar to the TMB code:  I use parentheses to indicate a parameter or variable that is 8 

indexed by the specified indices, and I use subscripts for naming (e.g., to indicate different 9 

parameters for different model components).  Feel free to change notation when describing 10 

the model to suite your purposes.  For further details regarding terminology, motivation, and 11 

statistical properties, please read the papers listed on the GitHub main page.   12 

Model description: 13 

Linear predictors 14 

I use a delta-model that includes two linear predictors.  The linear predictor for encounter 15 

probability: 16 

𝑝1(𝑖) = 𝛽1(𝑐𝑖, 𝑡𝑖) + ∑ 𝐿𝜔1(𝑐𝑖,  𝑓)𝜔1(𝑠𝑖, 𝑓 )

𝑛𝜔1

𝑓=1

+ ∑ 𝐿𝜀1(𝑐𝑖,  𝑓)𝜀1(𝑠𝑖, 𝑓, 𝑡𝑖)

𝑛𝜀1

𝑓=1

17 

+ ∑ 𝐿𝛿1(𝑣𝑖 , 𝑓)𝛿1(𝑣𝑖, 𝑓)

𝑛𝛿1

𝑓=1

+ ∑ 𝛾1(𝑐𝑖,  𝑡𝑖, 𝑝)𝑋(𝑥𝑖, 𝑡𝑖 , 𝑝) + ∑ 𝜆1(𝑘)

𝑛𝑘

𝑘=1

𝑄(𝑖, 𝑘)

𝑛𝑝

𝑝=1

 18 

where 𝑝1(𝑖) is the predictor for observation 𝑖, 𝛽1(𝑐𝑖, 𝑡𝑖) is an intercept for category 𝑐𝑖 and 19 

year 𝑡𝑖, 𝜔1(𝑠𝑖, 𝑓 ) represents spatial variation at location 𝑠𝑖 for factor 𝑓 and 𝐿𝜔1(𝑐𝑖,  𝑓) is the 20 

loadings matrix that generates spatial covariation among categories for this linear predictor, 21 

𝜀1(𝑠𝑖, 𝑓, 𝑡𝑖) is spatio-temporal variation and 𝐿𝜀1(𝑐𝑖,  𝑓) is the loadings matrix that generates 22 
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spatio-temporal covariation for this predictor, 𝛿1(𝑣𝑖, 𝑓) is random variation in catchability 23 

among a grouping variable (tows or vessels) and 𝐿𝛿1(𝑣𝑖, 𝑓) is a loadings matrix that generates 24 

covariation in catchability among categories for this predictor, 𝑋(𝑥𝑖 , 𝑡𝑖, 𝑝) are measured 25 

density covariates that explain variation in density and 𝛾1(𝑐𝑖,  𝑡𝑖, 𝑝) is the estimated impact of 26 

density covariates, and 𝑄(𝑖, 𝑘) are measured catchability covariates that explain variation in 27 

catchability and 𝜆1(𝑘) is the estimated impact of catchability covariates for this linear 28 

predictor.  Similarly, the linear predictor for positive catch rates: 29 

𝑝2(𝑖) = 𝛽2(𝑐𝑖, 𝑡𝑖) + ∑ 𝐿𝜔2(𝑐𝑖,  𝑓)𝜔1(𝑠𝑖, 𝑓 )

𝑛𝜔1

𝑓=1

+ ∑ 𝐿𝜀2(𝑐𝑖,  𝑓)𝜀2(𝑠𝑖, 𝑓, 𝑡𝑖)

𝑛𝜀1

𝑓=1

30 

+ ∑ 𝐿𝛿2(𝑣𝑖, 𝑓)𝛿2(𝑣𝑖, 𝑓)

𝑛𝛿1

𝑓=1

+ ∑ 𝛾2(𝑐𝑖,  𝑡𝑖 , 𝑝)𝑋(𝑥𝑖, 𝑡𝑖 , 𝑝) + ∑ 𝜆2(𝑘)

𝑛𝑘

𝑘=1

𝑄(𝑖, 𝑘)

𝑛𝑝

𝑝=1

 31 

where all variables and parameters are defined similarly except using different subscripts 32 

(Thorson and Barnett In press, Thorson et al. In press).  The loadings matrices are designed 33 

such that 𝐋𝑇𝐋 is the covariance among categories for a given spatial or spatio-temporal 34 

process (Thorson et al. 2015a), and when there is only one category 𝐋 is a 1x1 matrix (i.e. a 35 

scalar) such that its absolute value is the standard deviation for a given process.  This model 36 

therefore reduces to a single-species spatio-temporal model (e.g., Thorson et al. 2015b) when 37 

only one category is available.   38 

 The user controls the number of spatial and spatio-temporal factors used for each 39 

component via input: 40 

# Control number of factors 41 
FieldConfig = c("Omega1"=1, "Epsilon1"=1, "Omega2"=1, "Epsilon2"=1)    42 
 43 

where FieldConfig[1] controls 𝑛𝜔1, FieldConfig[2] controls 𝑛𝜀1, FieldConfig[3] controls 44 

𝑛𝜔2, and FieldConfig[4] controls 𝑛𝜀2, and a value of zero “turns off” that component of 45 
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spatial or spatio-temporal covariation.  The user controls the number of catchability factors 46 

used for each component via input: 47 

# Control number of spatial and spatio-temporal factors 48 
OverdispersionConfig = c("Delta1"=0, "Delta2"=0)    49 
 50 

where OverdispersionConfig[1] controls 𝑛𝛿1, and OverdispersionConfig[2] controls 𝑛𝛿2, 51 

and a value of zero again “turns off” that component of random covariation in catchability.  52 

For example, if the user inputs: 53 

# Control number of spatial and spatio-temporal factors 54 
OverdispersionConfig = c("Delta1"=1, "Delta2"=1)    55 
 56 

then there will be one random effect estimated for each unique level of Data_Geostat$Vessel 57 

for both the first and second linear predictors.   58 

Link functions 59 

There are different user-controlled options for link-functions that calculate expected 60 

encounter probability and positive catch rates given these two linear predictors.   61 

# Control observation error 62 
ObsModel = c("PosDist"=2, "Link"=0)   63 
 64 

where the 2nd element of this vector controls the link functions.   65 

1. ObsModel[2]=0 corresponds to a conventional delta-model: 66 

𝑟1(𝑖) = 𝑙𝑜𝑔𝑖𝑡−1(𝑝1(𝑖)) 67 

where 𝑟1(𝑖) is the predictor encounter probability and 𝑙𝑜𝑔𝑖𝑡−1(𝑝1(𝑖)) is the logistic 68 

function of 𝑝1(𝑖), and: 69 

𝑟2(𝑖) = 𝑎𝑖 × 𝑙𝑜𝑔−1(𝑝2(𝑖)) 70 

where 𝑟2(𝑖) is the predicted biomass density for positive catch rates, 𝑙𝑜𝑔−1(𝑝2(𝑖)) is the 71 

exponential function of 𝑝2(𝑖), and 𝑎𝑖 is the area-swept for observation 𝑖, which enters as a 72 

linear offset for expected biomass given an encounter.   73 
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2. Alternatively, ObsModel[2]=1 corresponds to a “Poisson-process” link function that 74 

approximates a Tweedie distribution: 75 

𝑟1(𝑖) = 1 − exp(−𝑎𝑖 × exp(𝑝1(𝑖)))  76 

where 𝑟1(𝑖) is the predictor encounter probability and 1 − exp(−𝑎𝑖 × exp(𝑝1(𝑖))) is a 77 

complementary log-log link of 𝑝1(𝑖) + log(𝑎𝑖), and: 78 

𝑟2(𝑖) =
𝑎𝑖 × exp(𝑝1(𝑖))

𝑟1(𝑖)
× exp(𝑝2(𝑖)) 79 

where 𝑟2(𝑖) is the predicted biomass given that the species is encountered.  In this 80 

“Poisson-process” link function, exp(𝑝1(𝑖)) is interpreted as the density in number of 81 

individuals per area such that 𝑎𝑖 × exp(𝑝1(𝑖)) is the predicted number of individuals 82 

encountered, and exp(𝑝2(𝑖)) is interpreted as the average weight per individual.  Area-83 

swept 𝑎𝑖 therefore enters as a linear offset for the expected number of individuals 84 

encountered (Thorson In review). 85 

Observation models: 86 

There are different user-controlled options for observation models for positive catch rates.   87 

# Control observation error 88 
ObsModel = c("PosDist"=2, "Link"=0)   89 
 90 

VAST then calculates the probability of data as: 91 

Pr(𝑏𝑖 = 𝐵) = {
1 − 𝑟1(𝑖) if 𝐵 = 0

𝑟1(𝑥𝑖, 𝑐𝑖, 𝑡𝑖) × 𝑔{𝐵|𝑟2(𝑖), 𝜎𝑚
2 (𝑐)} if 𝐵 > 0

 92 

where ObsModel[1] controls the probability density function 𝑔{𝐵|𝑟2(𝑖), 𝜎𝑚
2 (𝑐)} used for 93 

positive catch rates (see ?Data_Fn for a list of options), where each options is defined to have 94 

with expectation 𝑟2(𝑖) and dispersion 𝜎𝑚
2 (𝑐), where dispersion parameter 𝜎𝑚

2 (𝑐) varies 95 

among categories by default.   96 

Settings regarding spatial domain 97 
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VAST approximates spatial and spatio-temporal variation as being piecewise-constant.  To 98 

do so, the user specifies n_x: 99 

# Number of knots 100 
n_x = 1000    101 
 102 

VAST then uses a k-means algorithm to identify the location of n_x knots to minimize the 103 

total distance between the location of available data and the location of the nearest knot.  This 104 

distributes knots as a function of the spatial intensity of sampling data.   105 

 VAST then uses a stochastic partial differential equation (SPDE) approximation to the 106 

probability density function for spatial and spatio-temporal variation (Lindgren et al. 2011). 107 

This SPDE approximation involves generating a triangulated mesh that has a vertex of a 108 

triangle at each knot, and VAST generates this triangulated mesh using package R-INLA 109 

(Lindgren 2012).  Outputs from this triangulated mesh can then be used to calculate the 110 

precision (inverse-covariance) matrix for a multivariate normal probability density function 111 

for the value of a spatial variable at each mesh vertex.  Specifically, the correlation  112 

𝐑1(𝑠, 𝑠 + ℎ) between location 𝑠 and location 𝑠 + ℎ for spatial and spatio-temporal terms 113 

included in the first linear predictor is approximated as following a Matern function: 114 

𝐑1(𝑠, 𝑠 + ℎ) =
1

2𝜈−1Γ(𝑛)
× (𝜅1|ℎ𝐇|)𝑛 × 𝐾𝜈(𝜅1|ℎ𝐇|) 115 

where 𝐇 is a two-dimensional linear transformation representing geometric anisotropy (with a 116 

determinant of 1.0), 𝜈 is the Matern smoothness (fixed at 1.0), and 𝜅1 governs the decorrelation 117 

distance for that first linear predictor (𝜅2 is also separately estimated for the second linear predictor).  118 

By default, the two degrees of freedom in 𝐇 are estimated as fixed effects, but the user can specify 119 

isotropy (i.e., 𝐇 = 𝐈) by specifying: 120 

# Turn of geometric anisotropy 121 
Data = Data_Fn( …, Aniso=FALSE )    122 
 123 
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VAST then specifies that the spatial and spatio-temporal Gaussian random fields each 124 

have a variance of 1.0.  By default VAST specifies these as follows: 125 

𝜔1(∙, 𝑓)~𝑀𝑉𝑁(𝟎, 𝜎𝜔1
2 𝐑1) 126 

𝜔2(∙, 𝑓)~𝑀𝑉𝑁(𝟎, 𝜎𝜔1
2 𝐑2) 127 

𝜀1(∙, 𝑓, 𝑡)~𝑀𝑉𝑁(𝟎, 𝜎𝜀1
2 𝐑1) 128 

𝜀2(∙, 𝑓, 𝑡)~𝑀𝑉𝑁(𝟎, 𝜎𝜀2
2 𝐑2) 129 

where 𝜔1(∙, 𝑓) is the vector formed when subsetting 𝜔1(𝑠, 𝑓) for a given 𝑓, and 𝜎𝜔1
2  is the 130 

variance of 𝜔1(𝑠, 𝑓), where other parameters are defined similarly.  Specifying a variance of 131 

1.0 ensures that the covariance among categories is defined by the loadings matrix for that 132 

term.  However, VAST allows spatio-temporal variance to be specified differently as 133 

discussed in the section titled “Structure on parameters among years”.   134 

Structure on parameters among years: 135 

There are different user-controlled options for specifying structure for intercepts or spatio-136 

temporal variation across time, using input: 137 

# Control autoregressive structure for parameters over time 138 
RhoConfig = c("Beta1"=0, "Beta2"=0, "Epsilon1"=0, "Epsilon2"=0)    139 
 140 

By default (when RhoConfig[1]=0 and RhoConfig[2]=0) the model specifies that each 141 

intercept 𝛽1(𝑡) and 𝛽2(𝑡) is a fixed effect.  However, other settings specify the following 142 

structure: 143 

𝛽1(𝑡 + 1)~𝑁𝑜𝑟𝑚𝑎𝑙(𝜌𝛽1𝛽1(𝑡), 𝜎𝛽1
2 ) 144 

𝛽2(𝑡 + 1)~𝑁𝑜𝑟𝑚𝑎𝑙(𝜌𝛽2𝛽2(𝑡), 𝜎𝛽2
2 ) 145 

where RhoConfig[1] controls the specification of 𝜌𝛽1: 146 

1. Independent among years – RhoConfig[1]=1 specifies 𝜌𝛽1 = 0 147 

2. Random walk  – RhoConfig[1]=2 specifies 𝜌𝛽1 = 1 148 
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3. Constant intercept – RhoConfig[1]=3 specifies 𝜌𝛽1 = 0 and 𝜎𝛽1
2 = 0 (i.e., 𝛽1(𝑡) is 149 

constant for all 𝑡) 150 

4. Autoregressive – RhoConfig[1]=4 estimates 𝜌𝛽1 as a fixed effect 151 

and settings are defined identically for RhoConfig[2] specifying 𝜌𝛽2.  152 

By default (when RhoConfig[3]=0 and RhoConfig[4]=0) the model specifies that each spatio-153 

temporal random effect 𝜀1(𝑠, 𝑓, 𝑡) and 𝜀2(𝑠, 𝑓, 𝑡) is independent among years.  However, 154 

other settings specify the following structure 155 

𝜀1(𝑠, 𝑓, 𝑡 + 1)~𝑀𝑉𝑁(𝜌𝜀1𝜀1(𝑠, 𝑓, 𝑡), 𝜎𝜀1
2 𝐑1) 156 

𝜀2(𝑠, 𝑓, 𝑡 + 1)~𝑀𝑉𝑁(𝜌𝜀1𝜀2(𝑠, 𝑓, 𝑡), 𝜎𝜀2
2 𝐑2) 157 

where RhoConfig[3] controls the specification of 𝜌𝜀1: 158 

1. Random walk  – RhoConfig[3]=2 specifies 𝜌𝜀1 = 1 159 

2. Autoregressive – RhoConfig[3]=4 estimates 𝜌𝜀1 as a fixed effect 160 

and settings are defined identically for RhoConfig[4] specifying 𝜌𝜀2.  161 

Relationship to other named models 162 

VAST can be configured to be identical to (or closely mimic) many models that have 163 

previously been published in ecology and fisheries: 164 

1. Spatial Gompertz model:  If intercepts are constant across years, spatio-temporal variation 165 

follows an autoregressive process, and only one category is modelled, then VAST is 166 

identical to a spatio-temporal Gompertz model (Thorson et al. 2014).   167 

2. Spatial factor analysis:  If only one year is analysed and multiple category are modelled, 168 

VAST is similar to spatial factor analysis (Thorson et al. 2015a), although it permits the 169 

use of a delta-model (separate analysis of encounters and positive catch rates).   170 

3. Spatial dynamic factor analysis:  If intercepts are constant among years, spatio-temporal 171 

variation follows an autoregressive process, and multiple category are modelled, then 172 

VAST is similar to spatial dynamic factor analysis (Thorson et al. 2016a), although 173 
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VAST allows separate estimates of spatial vs. spatio-temporal covariation and also the 174 

user of a delta-model.   175 

Settings regarding derived quantities 176 

After a nonlinear minimizer has identified the value of fixed effects that maximizes the 177 

Laplace approximation to the marginal likelihood, Template Model Builder predicts the value 178 

of random effects that maximizes the joint likelihood conditional on these fixed effects.  179 

Estimated values of fixed and random effects are then used to predict density 𝑑(𝑥, 𝑐, 𝑡) for : 180 

𝑑(𝑥, 𝑐, 𝑡) = 𝑟1
∗(𝑥, 𝑐, 𝑡) × 𝑟2

∗(𝑥, 𝑐, 𝑡) 181 

where 𝑟1
∗(𝑥, 𝑐, 𝑡) and 𝑟2

∗(𝑥, 𝑐, 𝑡) are identical to the values specified previously, except that 182 

catchability variables are excluded from their computation (i.e., 𝛿1(𝑣, 𝑓) = 0 and 𝜆1(𝑘) = 0, 183 

etc.) 184 

 By default, density is used to predict total abundance for the entire domain (or a 185 

subset of the domain) for a given species: 186 

𝐼(𝑐, 𝑡, 𝑙) = ∑(𝑎(𝑥, 𝑙) × 𝑑(𝑥, 𝑐, 𝑡))

𝑛𝑥

𝑥=1

 187 

where 𝑎(𝑥, 𝑙) is the area associated with extrapolation-cell 𝑥 for index 𝑙 (Shelton et al. 2014, 188 

Thorson et al. 2015b).  The user can also specify additional post-hoc calculations via input: 189 

# Control observation error 190 
RhoConfig = c("SD_site_density"=0, "SD_site_logdensity"=0, "Calculate_Range"=0, 191 
"Calculate_evenness"=0, "Calculate_effective_area"=0, "Calculate_Cov_SE"=0, 192 
'Calculate_Synchrony'=0, 'Calculate_Coherence'=0)    193 
 194 

1. Distribution shift – RhoConfig[3]=1 turns on calculation of the centroid of the 195 

population’s distribution: 196 

𝑍(𝑐, 𝑡, 𝑚) = ∑
(𝑧(𝑥, 𝑚) × 𝑎(𝑥, 1) × 𝑑(𝑥, 𝑐, 𝑡))

𝐼(𝑐, 𝑡, 1)

𝑛𝑥

𝑥=1

 197 
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where 𝑧(𝑥, 𝑚) is a matrix representing location for each knot (by default 𝑧(𝑥, 𝑚) is the 198 

location in Eastings and Northings of each knot), representing movement North-South 199 

and East-West).  This model-based approach to estimating distribution shift can account 200 

for differences in the spatial distribution of sampling, unlike conventional sample-based 201 

estimators (Thorson et al. 2016b).   202 

2. Range expansion – RhoConfig[5]=1 turns on calculation of effective area occupied.  This 203 

involves calculating biomass-weighted average density: 204 

𝐷(𝑐, 𝑡, 𝑙) = ∑
𝑎(𝑥, 𝑙) × 𝑑(𝑥, 𝑐, 𝑡)

𝐼(𝑐, 𝑡, 𝑙)
𝑑(𝑥, 𝑐, 𝑡)

𝑛𝑥

𝑥=1

 205 

Effective area occupied is then calculated as the area required to contain the population at 206 

this average density: 207 

𝐴(𝑐, 𝑡, 𝑙) =
𝐼(𝑐, 𝑡, 𝑙)

𝑑̅(𝑐, 𝑡, 𝑙)
 208 

This effective-area occupied estimator can then be used to monitor range expansion or 209 

contraction or density-dependent range expansion (Thorson et al. 2016c).   210 
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