I J Hewitt, August 2014

nevis : Documentation

This model is mostly as described in Hewitt (2013).! Continuum variables on a two-dimensional
domain (hydraulic potential ¢ and water sheet thickness h) are discretised on a rectangular mesh
of nodes. These nodes also form the basis of a discrete network of conduits (cross-sectional area S),
connecting the nodes across each of the 8 compass points. Water is exchanged between englacial
storage, water sheet and conduits such that the hydraulic potential is continuous.

Equations

Variables and parameters are summarized in Table 1.

Atmospheric and overburden potentials (corresponding to p, = 0 and py,, = pi = pig(Zs — Zp)
respectively) are defined by

ba(T,Yy) = Pw9gZs, do(z,y) = pigZs + (pw — Pi)9 2. (1)

Ice pressure, water pressure and effective pressure are related to hydraulic potential ¢(x, y, t) through
pl(‘rvy) :¢0_¢a7 pw(xayat) :¢_¢aa N(:E7y7t) :¢0_¢ (2)

The distributed sheet is separated into a cavity sheet, with thickness heq(2,y,t), and an elastic
sheet, with thickness h¢(z,y,t). By default these are added together to obtain the overall sheet
thickness h(x,y,t) = heay + her, though they can alternatively be treated separately, with different
discharge in each. The cavity sheet evolves according to

ahcav _ Pw

- r — llcav 'I‘_A cchn_lN'
B pim—I—Ub(h heav)+ /¢ heav|N| (3)

The elastic sheet has thickness related directly to the water pressure

2

y
hel - hc <pw) + ha2 [_N— + %N52 (1 - N+/N62)2+) (4)

where N_ = min(V,0) and N; = max(N,0). The second term here is designed to increase rapidly
when N is negative, as a crude representation of hydraulic jacking. Discharge q(z,vy,t) is given by

q=—Kh*|Ve|""'Ve. (5)

Basal melting in the sheet m(x,y) is either prescribed, or should be coupled to ice sliding speed and
basal shear stress according to (any conduction into the ice is absorbed into G here)

_G+Tb-ub

pwL (6)

m

Each conduit has cross-sectional area S(s,t) (s is distance along the conduit) evolving according to
oS ~ _
B = M Uphe(1 = 5/50) — ASIN|" LN, (7)
(2

Discharge Q(s,t) is given by

3o (8)

"Hewitt, I1.J. 2013 Seasonal Changes in Ice Sheet Motion due to Meltwater Lubrication Earth and Planetary Science
Letters, 371-372, 16-25.

Melting M (s, t) is given by

_ pwycB 0% lq- V¢
L Qg tA (9)

M— chﬁ ‘Q

Mass conservation is expressed as

oh 03 aQ o5

where englacial storage ¥(z,y,t) is a function of water pressure

S =0 2% 4 AP 5(xm), (11)
Pwg Pw9
and the delta functions apply along the (linear) positions of the conduits x.(s) and the (point)
positions of the moulins x,,. The source term FE(z,y,t) can include both distributed and moulin
point sources.

Boundary conditions are required on either the pressure or the discharge at all boundaries of the
domain. Initial conditions are required for ¢, h and S.

Numerical structure of the model

An example model run is given in nevis_example.m.

The computations are all performed using non-dimensional variables; that is, each variable is scaled
by an appropriate value. This non-dimensionalization is performed before calculations begin, and
the variables that are subsequently used and saved are all non-dimensional. In order to plot the
dimensional quantities, the quantities must be multiplied by the appropriate scale.

Everything is stored in Matlab structures:

pd dimensional parameters

oo options

ps scales used for non-dimensionalization

pp parameters (non-dimensional)

gg grid and discretization (non-dimensional)

aa prescribed fields and boundary conditions (non-dimensional)
vv current solution variables (non-dimensional)

tt time series of solution summary (non-dimensional)

Default parameters and options are assigned and then non-dimensionalized by

>pd = struct; oo = struct;
>[pd,o0] = nevis_defaults(pd,o0);
>[ps,pp] = nevis_nondimension(pd);

Non-default values can be assigned to pd or oo before calling nevis_defaults.
A grid is set up by

>x = linspace(0,10000/ps.x,50); y = linspace(0,10000/ps.x,50);

>gg = nevis_grid(x,y,00);

>gg = nevis_mask(gg,nout);
>gg = nevis_label(gg,nbdy) ;

nevis_grid populates gg with the coordinates of nodes and edges, as well as derivative and mean
matrix operators. x and y define the z and y coordinates for the rectangular grid (note the scaling

Primary variables [vv] ¢(x,y,t) phi Hydraulic potential

hs(x,y,t) hs Cavity sheet depth
S(s,t) Sx,3y,3s,3r Conduit cross-sectional area
Derived variables [vv] he(z,y,t) he Elastic sheet depth
N(xz,y,t) N Effective pressure in sheet
Q(s,t) Qx,Qy,Qs,Qr Discharge in channel
alz,y,t) qx,qy Discharge in sheet
Prescribed fields [aa] Zy(xz,y) D Bed elevation
Zs(x,y) s Surface elevation
¢o(z,y) phi_a Atmospheric potential at bed elevation
¢o(z,y) phi_0 Overburden potential
m(z,y) m Basal source
E(z,y,t) E Englacial source
o(x,y) sigma Englacial void fraction connected to sheet
Az, y) lcx,lcy,lcs,lcr Sheet width contributing to conduit melting
Parameters [pd] pw Tho_w Density of water [1000 kg m 3]
pi rho_i Density of ice [910 kg m~3]
g g Gravitational acceleration [9.81 m s™2]
L L Latent heat of melting [3.35 x 10° J kg™?]
c c Specific heat capacity of water [4200 J kg™' K™!]
Ié; gamma_cc Melting point pressure gradient [0 K Pa™?]
G G Geothermal heat flux [0.063 W m—?2]
n n_Glen Ice flow law exponent [3]
A A Ice flow law coefficient [6.8 x 10724 Ps™3 s~ 1]
A K_s Modified ice flow law coefficient in channel [5.04 x 10725 Ps™3 1]
A K Modified ice flow law coefficient in sheet [5.04 x 1072% Ps™ s~ 1]
o, alpha_c Conduit flux exponent [5/4]
Be beta_c Conduit pressure gradient exponent [1/2]
as; alpha_s Sheet flux exponent [3]
Bs beta_s Sheet pressure gradient exponent [1]
K. k_c Conduit flux coefficient [0.1 m s~ Pa~1/?]
Ks k_s Sheet flux coefficient [10~* Pa~! s~1]
hr h_r Sheet roughness height [0.1 m]
Ly lr Sheet roughness length [10 m)]
A lc Default sheet width contributing to conduit melting [10 m]
U, ub Default basal sliding speed [60 m/ y]
o sigma Default englacial void fraction [0]
m melt Default basal melt rate [0.0059 m/ y]
Ay, Am Moulin cross-sectional area [10 m?]
hre h_rc Conduit roughness height [0 m]
S,e S_rc Conduit area cutoff [0 m?]
5 gamma_e Elastic sheet exponent [1]
he c_e_power Elastic sheet depth scale [0 m]
hey c_e_reg2 Uplift regularization rate [0 m Pa™"]
N,y N_reg2 Regularizing pressure for uplift regularization [10® Pa]
V. Psi_reg Regularizing potential gradient [0.1 Pa m™!]
N. N_reg Regularizing pressure for elastic sheet [10® Pa]
De p_a_reg Pressure tolerance for boundary adjustment [9810 Pa]

Table 1: Variables, prescribed inputs, and parameters with default values. Note that several of the parameters
have different names in the code due to historical legacies.

by ps.x to make the quantities non-dimensional). oo can include optional flags for how to assign
the coordinates.

nevis_mask adds labels to gg to identify which nodes and edges are inside, outside, and on the
boundary of the domain, using the node indices nout to define the region outside the domain.

nevis_label re-labels the boundary nodes nbdy at which the hydraulic potential is to be prescribed,
and the adjoining edges as inside, outside or on the boundary of the domain.

The definition of nout and nbdy depend on the specific problem and may for instance be defined
based on ice thickness, or using a pre-existing mask.

Prescribed fields and initial conditions are assigned by

>b = (0/ps.z)*gg.nx."0;
>s = (100/ps.z)*gg.nx."0;
>[aa,vv] = nevis_initialize(b,s,gg,pp,00);

nevis_initialize populates aa with default prescribed fields, and vv with default initial conditions
for the primary variables (generally these won’t be sensible initial conditions, so new ones should
be assigned subsequently). b and s are matrices or vectors defining the bed and surface elevation,
here taken to be uniform at 0 m and 100 m for illustration.

The model is solved by
>[tt,vv] = nevis_timesteps(t_span,vv,aa,pp,gg,00);

nevis_timesteps solves the equations over the timespan t_span, with initial conditions defined by
input vv. The output vv contains the solution at the final time, and tt contains basic summary
information about the solution at each timestep. Depending on the options in oo, the solution at
intermediate times in t_span is also saved to file.

The current solution (defined by contents of vv) can be plotted using

>nevis_plot;

(what is actually plotted depends on options in oo; see nevis_plot.m), or by typing things like
>imagesc(ps.x*gg.nx,ps.x*gg.ny,ps.phi*reshape(phi,gg.nl,gg.nJ));

(note how the scalings in ps are used to convert the non-dimensional quantities to dimensional ones).

Domain and boundary conditions

Nodes are labelled as inside the solution domain (indices gg.ns) or outside (gg.nout). Similar labels
are assigned to the edges and corners. Those indices on which boundary conditions are prescribed
are labelled gg.nbdy, gg.ebdy, or gg.fbdy. The method of labelling is described below.

By default, the hydraulic potential on indices gg.nbdy is set to phi_a, and the discharge on all
boundary edges gg.ebdy, gg.fbdy is set to 0. If other values are to be assigned, these should be
included in aa; e.g. aa.phi can be defined as a list of values for the hydraulic potential on the nodes

gg .nbdy.

By default the exterior boundaries of the grid set up by nevis_grid are reflecting and there are no
boundary nodes or edges (the exterior boundaries can instead be made periodic using oo .xperiodic
and oo.yperiodic). Usually, however, a solution domain that is strictly inside the rectangular grid
is defined, so that these exterior boundaries are irrelevant. This is performed using

>gg = nevis_mask(gg,nout);

nevis_mask labels node indices nout as outside the domain, the remaining nodes as inside the
domain, edges that are connected to at least one inside node as inside the domain, and corners
that are surrounded by inside nodes as inside the domain. It also identifies which nodes are on the
boundary of the domain (gg.n1), which edges connect inside nodes to outside nodes (gg.el, gg.f1),
and by default it labels these edges as the boundary edges gg.ebdy, gg.fbdy on which discharge is
prescribed.

To prescribe pressure on certain nodes (usually those at the margin), use

>gg = nevis_label(gg,nbdy) ;

which assigns the list of node indices nbdy as the boundary nodes gg.nbdy and removes the adjoining
edges from the labels gg.ebdy, gg.fbdy.

If the option oo.adjust_boundaries is set, the labelling of boundary nodes may be adjusted dy-
namically during timestepping (see below). In that case, a list of current boundary nodes is stored
in vv.nbdy, and the grid labelling is updated at each timestep using nevis_label. This option is
incompatible with prescribing non-default boundary values in aa.

Initial conditions

The default initial conditions assigned by nevis_initialize have zero sheet and conduit sizes,
which will usually not work. Starting with a uniform sheet and with pressure at some percentage
of overburden often seems to work,

>yv.phi = aa.phi_a + 0.9%(aa.phi_O-aa.phi_a);
>vv.hs = (0.1/ps.h)*gg.nx."0;

It is usually a good idea to run the model with a constant input for some time before beginning
calculations in earnest, to avoid a significant transient from the initial condition.

Moulins

Moulins are defined with a list of node indices pp.ni_m for the moulins. In addition, either a function
handle pp.input_function(t) defining the input to the moulins, or a matrix pp.sum_m defining
the catchment areas, should be provided. A list of corresponding moulin labels pp.num_m can also
be defined. The function

>[pp.ni_m,pp.sum_m] = nevis_moulins(x_m,y_m,gg,00);

finds the node indices and the catchment areas (based on a Voronoi tesselation) for moulins with
coordinates x_m,y_m. If oo.random_moulins is non zero, that number of moulins will be located at
random.

Inputs

The input aa.E is updated at each time t using the function
>aa = nevis_inputs(t,aa,pp,gg,00);
nevis_inputs assigns the input in different ways depending on the options in oo:

If no moulins have been defined, the default is to use function handle pp.meltE(t) and lapse rate
pp.E_lapse, modulated by diurnal amplitude pp.E_amp, to define a distributed runoff.

If moulins have been defined (i.e. pp.ni_m is non-empty), the default is to calculate the same runoff
but concentrate it into the moulins according to catchment areas defined by pp.sum_m (distributed
input can still be enforced by setting oo.distributed_input).

If oo.runoff_function, the runoff is instead calculated using the function handle pp.runoff_function(t)
instead (this function should return runoff on each node).

If oo.input_function, the function handle pp.input_function(t) is used to define the input to
the moulins (this function should return runoff to each moulin). This overrides the options above.

Timestepping

Timestepping is performed using

>[tt,vv] = nevis_timesteps(t_span,vv,aa,pp,gg,00);

The start and end times are defined by the first and last entries of vector t_span and the initial
conditions are defined by vv. The initial timestep is defined by oo.dt. The procedure at each time
step is first to update the inputs for the current time; then calculate the summary information save
in tt (see below); possibly write the current solution to file (see below); then attempt a timestep
(with a Newton iteration performed by the function nevis_timestep; adjusting the timestep if
required, and increasing the suggested next timestep if the iteration was very quick); then finally
adjusting the boundary nodes for the next timestep (see below).

The bulk of the work in solving the equations is in the function nevis_timestep, which performs a
Newton iteration and calls on the function nevis_backbone to evaluate the residuals and Jacobian.
This function also calculates the derived variables such as discharge (on the nodes) and effective
pressure. They can be added to the solution structure vv by

>[vv] = nevis_backbone(inf,vv,vv,aa,pp,gg,00);

If 0o.change_timestep, the timestep may be adjusted based upon the failure or success of previous
iterations (see nevis_timesteps.m).

The structure tt stores summary information for every timestep taken. This includes total inflow
Q_in, m and E, total outflow Q_out, spatially averaged hydraulic potential phi and effective pressure
N, total cavity sheet volume hs and channel volume S.

If the option oo.save_pts_all, the hydraulic potential pts_phi and cavity sheet depth pts_hs are
saved at nodes defined by pp.pts_ni (this is useful for storing a time series of pressure in moulins,
for example).

At each time in the vector t_span, the current solution vv and the summary structure tt are saved
to file, with filename defined with the string oo.fn. In addition, if the option oo.save_timesteps,
the current solution vv is saved to a file in a directory with name oo . fn, each such file being labelled
sequentially. Thus the number and frequency of entries in t_span determines how often the solution
is saved.

If oo.adjust_boundaries, the discharge into and out of the boundary nodes gg.nbdy is evaluated
after each timestep. If there is inflow, this suggests the pressure should not be prescribed there
and such nodes are eliminated from gg.nbdy for the next timestep. Conversely, if the pressure at
a node that is on margin of the domain (defined by indices gg.nlm) is above atmospheric pressure,
it suggests that pressure should be prescribed there and such nodes are added to gg.nbdy for the
next timestep. Since the list of boundary nodes now changes in time, the current list is stored as
vv.nbdy.

Plotting

The current solution (contained in vv) is rescaled and plotted using
>nevis_plot;

By default, this plots the average magnitude of the discharge on each node, expressed as an areal
discharge (units m? s~!) as if the conduit discharge were spread out over each grid cell. This average
is calculated and added to vv using

>vv = nevis_nodedischarge(vv,aa,pp,gg,00);
Other things such as the topography can be plotted by setting, e.g., 0oo.topography (see nevis_plot.m).
A series of timesteps (say 10 of them) saved into a directory with name fn can be animated using

>nevis_animate(fn,1:10,1,0);

The second input here is the timesteps to plot, the third input is an option to plot the discharge,
and the fourth is an option not to save any of the frames.

